Investigate the implementation of different algorithm to speed up painting of a big number of data points and to reduce data points of data sets
http://www.codeproject.com/Articles/114797/Polyline-Simplification
http://web.cs.sunyit.edu/~poissad/projects/Curve/about_algorithms/
http://geomalgorithms.com/a16-_decimate-1.html
www.cs.au.dk/~gerth/madalgo/posters/10/pdf/shervin-2.pdf
- Douglas-Peuker
- https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
- https://hydra.hull.ac.uk/resources/hull:8328
- http://de.mathworks.com/matlabcentral/fileexchange/21132-line-simplification
- http://www.codeproject.com/Articles/1711/A-C-implementation-of-Douglas-Peucker-Line-Approxi
- https://www.namekdev.net/2014/06/iterative-version-of-ramer-douglas-peucker-line-simplification-algorithm/
- Variant: http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingDPN
- Visvalingam-Whyatt
- N-th point http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingNP
- Radial distance http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingRD
- Perpendicular distance http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingPD
- Reumann-Witkam http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingRW
- Opheim http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingOP
- Lang http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingLA
- Interpolation (see xmgrace)
- Jenks algorithm
- Zhao-Saalfeld simplification
Positional error calculation: http://www.codeproject.com/Articles/114797/Polyline-Simplification#headingPOSE
See also
- http://plasma-gate.weizmann.ac.il/Xmgr/doc/trans.html#prune
- Adaptive sampling
- https://www.kdab.com/a-speed-up-for-charting-on-embedded/
Related: T3509