diff --git a/duchain/declarationbuilder.cpp b/duchain/declarationbuilder.cpp index e91e027b..d5a45bb3 100644 --- a/duchain/declarationbuilder.cpp +++ b/duchain/declarationbuilder.cpp @@ -1,1905 +1,1905 @@ /***************************************************************************** * Copyright (c) 2007 Piyush verma * * Copyright 2007 Andreas Pakulat * * Copyright 2010-2016 Sven Brauch * * Copyright 2016 Francis Herne * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License as * * published by the Free Software Foundation; either version 2 of * * the License, or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************** */ #include "declarationbuilder.h" #include "duchain/declarations/decorator.h" #include "duchain/declarations/functiondeclaration.h" #include "duchain/declarations/classdeclaration.h" #include "types/hintedtype.h" #include "types/unsuretype.h" #include "types/indexedcontainer.h" #include "contextbuilder.h" #include "expressionvisitor.h" #include "pythoneditorintegrator.h" #include "helpers.h" #include "assistants/missingincludeassistant.h" #include "correctionhelper.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "duchaindebug.h" #include using namespace KTextEditor; using namespace KDevelop; namespace Python { DeclarationBuilder::DeclarationBuilder(Python::PythonEditorIntegrator* editor, int ownPriority) : DeclarationBuilderBase() , m_ownPriority(ownPriority) { setEditor(editor); qCDebug(KDEV_PYTHON_DUCHAIN) << "Building Declarations"; } DeclarationBuilder:: ~DeclarationBuilder() { if ( ! m_scheduledForDeletion.isEmpty() ) { DUChainWriteLocker lock; foreach ( DUChainBase* d, m_scheduledForDeletion ) { delete d; } m_scheduledForDeletion.clear(); } } void DeclarationBuilder::setPrebuilding(bool prebuilding) { m_prebuilding = prebuilding; } ReferencedTopDUContext DeclarationBuilder::build(const IndexedString& url, Ast* node, ReferencedTopDUContext updateContext) { m_correctionHelper.reset(new CorrectionHelper(url, this)); // The declaration builder needs to run twice, so it can resolve uses of e.g. functions // which are called before they are defined (which is easily possible, due to python's dynamic nature). if ( ! m_prebuilding ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "building, but running pre-builder first"; DeclarationBuilder* prebuilder = new DeclarationBuilder(editor(), m_ownPriority); prebuilder->m_currentlyParsedDocument = currentlyParsedDocument(); prebuilder->setPrebuilding(true); prebuilder->m_futureModificationRevision = m_futureModificationRevision; updateContext = prebuilder->build(url, node, updateContext); qCDebug(KDEV_PYTHON_DUCHAIN) << "pre-builder finished"; delete prebuilder; } else { qCDebug(KDEV_PYTHON_DUCHAIN) << "prebuilding"; } return DeclarationBuilderBase::build(url, node, updateContext); } int DeclarationBuilder::jobPriority() const { return m_ownPriority; } void DeclarationBuilder::closeDeclaration() { if ( lastContext() ) { DUChainReadLocker lock(DUChain::lock()); currentDeclaration()->setKind(Declaration::Type); } Q_ASSERT(currentDeclaration()->alwaysForceDirect()); eventuallyAssignInternalContext(); DeclarationBuilderBase::closeDeclaration(); } template T* DeclarationBuilder::eventuallyReopenDeclaration(Identifier* name, Ast* range, FitDeclarationType mustFitType) { QList existingDeclarations = existingDeclarationsForNode(name); Declaration* dec = 0; reopenFittingDeclaration(existingDeclarations, mustFitType, editorFindRange(range, range), &dec); bool declarationOpened = (bool) dec; if ( ! declarationOpened ) { dec = openDeclaration(name, range); } Q_ASSERT(dynamic_cast(dec)); return static_cast(dec); } template T* DeclarationBuilder::visitVariableDeclaration(Ast* node, Declaration* previous, AbstractType::Ptr type, VisitVariableFlags flags) { if ( node->astType == Ast::NameAstType ) { NameAst* currentVariableDefinition = static_cast(node); // those contexts can invoke a variable declaration // this prevents "bar" from being declared in something like "foo = bar" // This is just a sanity check, the code should never request creation of a variable // in such cases. QList declaringContexts; declaringContexts << ExpressionAst::Store << ExpressionAst::Parameter << ExpressionAst::AugStore; if ( ! declaringContexts.contains(currentVariableDefinition->context) ) { return 0; } Identifier* id = currentVariableDefinition->identifier; return visitVariableDeclaration(id, currentVariableDefinition, previous, type, flags); } else if ( node->astType == Ast::IdentifierAstType ) { return visitVariableDeclaration(static_cast(node), nullptr, previous, type, flags); } else { qCWarning(KDEV_PYTHON_DUCHAIN) << "cannot create variable declaration for non-(name|identifier) AST, this is a programming error"; return static_cast(0); } } QList< Declaration* > DeclarationBuilder::existingDeclarationsForNode(Identifier* node) { QList existingDeclarations = currentContext()->findDeclarations( identifierForNode(node).last(), CursorInRevision::invalid(), 0, (DUContext::SearchFlag) (DUContext::DontSearchInParent | DUContext::DontResolveAliases) ); // append arguments context if ( m_mostRecentArgumentsContext ) { QList args = m_mostRecentArgumentsContext->findDeclarations( identifierForNode(node).last(), CursorInRevision::invalid(), 0, DUContext::DontSearchInParent ); existingDeclarations.append(args); } return existingDeclarations; } DeclarationBuilder::FitDeclarationType DeclarationBuilder::kindForType(AbstractType::Ptr type, bool isAlias) { if ( type ) { if ( type->whichType() == AbstractType::TypeFunction ) { return FunctionDeclarationType; } } if ( isAlias ) { return AliasDeclarationType; } return InstanceDeclarationType; } template QList DeclarationBuilder::reopenFittingDeclaration( QList declarations, FitDeclarationType mustFitType, RangeInRevision updateRangeTo, Declaration** ok ) { // Search for a declaration from a previous parse pass which should be re-used QList remainingDeclarations; *ok = 0; foreach ( Declaration* d, declarations ) { Declaration* fitting = dynamic_cast(d); if ( ! fitting ) { // Only use a declaration if the type matches qCDebug(KDEV_PYTHON_DUCHAIN) << "skipping" << d->toString() << "which could not be cast to the requested type"; continue; } // Do not use declarations which have been encountered previously; // this function only handles declarations from previous parser passes which have not // been encountered yet in this pass bool reallyEncountered = wasEncountered(d) && ! m_scheduledForDeletion.contains(d); bool invalidType = false; if ( d && d->abstractType() && mustFitType != NoTypeRequired ) { invalidType = ( ( d->isFunctionDeclaration() ) != ( mustFitType == FunctionDeclarationType ) ); if ( ! invalidType ) { invalidType = ( ( dynamic_cast(d) != 0 ) != ( mustFitType == AliasDeclarationType ) ); } } if ( fitting && ! reallyEncountered && ! invalidType ) { if ( d->topContext() == currentContext()->topContext() ) { openDeclarationInternal(d); d->setRange(updateRangeTo); *ok = d; setEncountered(d); break; } else { qCDebug(KDEV_PYTHON_DUCHAIN) << "Not opening previously existing declaration because it's in another top context"; } } else if ( ! invalidType ) { remainingDeclarations << d; } } return remainingDeclarations; } typedef QPair p; template T* DeclarationBuilder::visitVariableDeclaration(Identifier* node, Ast* originalAst, Declaration* previous, AbstractType::Ptr type, VisitVariableFlags flags) { DUChainWriteLocker lock; Ast* rangeNode = originalAst ? originalAst : node; RangeInRevision range = editorFindRange(rangeNode, rangeNode); // ask the correction file library if there's a user-specified type for this object if ( AbstractType::Ptr hint = m_correctionHelper->hintForLocal(node->value) ) { type = hint; } // If no type is known, display "mixed". if ( ! type ) { type = AbstractType::Ptr(new IntegralType(IntegralType::TypeMixed)); } QList existingDeclarations; if ( previous ) { existingDeclarations << previous; } else { // declarations declared at an earlier range in this top-context existingDeclarations = existingDeclarationsForNode(node); } // declaration existing in a previous version of this top-context Declaration* dec = 0; existingDeclarations = reopenFittingDeclaration(existingDeclarations, kindForType(type), range, &dec); bool declarationOpened = (bool) dec; if ( flags & AbortIfReopenMismatch && previous && ! declarationOpened ) { return nullptr; } // tells whether the declaration found for updating is in the same top context bool inSameTopContext = true; // tells whether there's fitting declarations to update (update is not the same as re-open! one is for // code which uses the same variable twice, the other is for multiple passes of the parser) bool haveFittingDeclaration = false; if ( ! existingDeclarations.isEmpty() && existingDeclarations.last() ) { Declaration* d = Helper::resolveAliasDeclaration(existingDeclarations.last()); DUChainReadLocker lock; if ( d && d->topContext() != topContext() ) { inSameTopContext = false; } if ( dynamic_cast(existingDeclarations.last()) ) { haveFittingDeclaration = true; } } if ( currentContext() && currentContext()->type() == DUContext::Class && ! haveFittingDeclaration ) { // If the current context is a class, then this is a class member variable. if ( ! dec ) { dec = openDeclaration(identifierForNode(node), range); Q_ASSERT(! declarationOpened); declarationOpened = true; } if ( declarationOpened ) { DeclarationBuilderBase::closeDeclaration(); } dec->setType(AbstractType::Ptr(type)); dec->setKind(KDevelop::Declaration::Instance); } else if ( ! haveFittingDeclaration ) { // This name did not previously appear in the user code, so a new variable is declared // check whether a declaration from a previous parser pass must be updated if ( ! dec ) { dec = openDeclaration(identifierForNode(node), range); Q_ASSERT(! declarationOpened); declarationOpened = true; } if ( declarationOpened ) { DeclarationBuilderBase::closeDeclaration(); } AbstractType::Ptr newType; if ( currentContext()->type() == DUContext::Function ) { // check for argument type hints (those are created when calling functions) AbstractType::Ptr hints = Helper::extractTypeHints(dec->abstractType()); qCDebug(KDEV_PYTHON_DUCHAIN) << hints->toString(); if ( hints.cast() || hints.cast() ) { // This only happens when the type hint is a tuple, which means the vararg/kwarg of a function is being processed. newType = hints; } else { newType = Helper::mergeTypes(hints, type); } } else { newType = type; } dec->setType(newType); dec->setKind(KDevelop::Declaration::Instance); } else if ( inSameTopContext ) { // The name appeared previously in the user code, so no new variable is declared, but just // the type is modified accordingly. dec = existingDeclarations.last(); AbstractType::Ptr currentType = dec->abstractType(); AbstractType::Ptr newType = type; if ( newType ) { if ( currentType && currentType->indexed() != newType->indexed() ) { // If the previous and new type are different, use an unsure type dec->setType(Helper::mergeTypes(currentType, newType)); } else { // If no type was set previously, use only the new one. dec->setType(AbstractType::Ptr(type)); } } } T* result = dynamic_cast(dec); if ( ! result ) qCWarning(KDEV_PYTHON_DUCHAIN) << "variable declaration does not have the expected type"; return result; } void DeclarationBuilder::visitCode(CodeAst* node) { Q_ASSERT(currentlyParsedDocument().toUrl().isValid()); m_unresolvedImports.clear(); DeclarationBuilderBase::visitCode(node); } void DeclarationBuilder::visitExceptionHandler(ExceptionHandlerAst* node) { if ( node->name ) { // Python allows to assign the caught exception to a variable; create that variable if required. ExpressionVisitor v(currentContext()); v.visitNode(node->type); visitVariableDeclaration(node->name, 0, v.lastType()); } DeclarationBuilderBase::visitExceptionHandler(node); } void DeclarationBuilder::visitWithItem(WithItemAst* node) { if ( node->optionalVars ) { // For statements like "with open(f) as x", a new variable must be created; do this here. ExpressionVisitor v(currentContext()); v.visitNode(node->contextExpression); visitVariableDeclaration(node->optionalVars, 0, v.lastType()); } Python::AstDefaultVisitor::visitWithItem(node); } void DeclarationBuilder::visitFor(ForAst* node) { if ( node->iterator ) { ExpressionVisitor v(currentContext()); v.visitNode(node->iterator); assignToUnknown(node->target, Helper::contentOfIterable(v.lastType())); } Python::ContextBuilder::visitFor(node); } Declaration* DeclarationBuilder::findDeclarationInContext(QStringList dottedNameIdentifier, TopDUContext* ctx) const { DUChainReadLocker lock(DUChain::lock()); DUContext* currentContext = ctx; // TODO make this a bit faster, it wastes time Declaration* lastAccessedDeclaration = 0; int i = 0; int identifierCount = dottedNameIdentifier.length(); foreach ( const QString& currentIdentifier, dottedNameIdentifier ) { Q_ASSERT(currentContext); i++; QList declarations = currentContext->findDeclarations(QualifiedIdentifier(currentIdentifier).first(), CursorInRevision::invalid(), 0, DUContext::NoFiltering); // break if the list of identifiers is not yet totally worked through and no // declaration with an internal context was found if ( declarations.isEmpty() || ( !declarations.last()->internalContext() && identifierCount != i ) ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Declaration not found: " << dottedNameIdentifier << "in top context" << ctx->url().toUrl().path(); return 0; } else { lastAccessedDeclaration = declarations.last(); currentContext = lastAccessedDeclaration->internalContext(); } } return lastAccessedDeclaration; } QString DeclarationBuilder::buildModuleNameFromNode(ImportFromAst* node, AliasAst* alias, const QString& intermediate) const { QString moduleName = alias->name->value; if ( ! intermediate.isEmpty() ) { moduleName.prepend('.').prepend(intermediate); } if ( node->module ) { moduleName.prepend('.').prepend(node->module->value); } // To handle relative imports correctly, add node level in the beginning of the path // This will allow findModulePath to deduce module search direcotry properly moduleName.prepend(QString(node->level, '.')); return moduleName; } void DeclarationBuilder::visitImportFrom(ImportFromAst* node) { Python::AstDefaultVisitor::visitImportFrom(node); QString moduleName; QString declarationName; foreach ( AliasAst* name, node->names ) { // iterate over all the names that are imported, like "from foo import bar as baz, bang as asdf" Identifier* declarationIdentifier = 0; declarationName.clear(); if ( name->asName ) { // use either the alias ("as foo"), or the object name itself if no "as" is given declarationIdentifier = name->asName; declarationName = name->asName->value; } else { declarationIdentifier = name->name; declarationName = name->name->value; } // This is a bit hackish, it tries to find the specified object twice twice -- once it tries to // import the name from a module's __init__.py file, and once from a "real" python file // TODO improve this code-wise ProblemPointer problem(0); QString intermediate; moduleName = buildModuleNameFromNode(node, name, intermediate); Declaration* success = createModuleImportDeclaration(moduleName, declarationName, declarationIdentifier, problem); if ( ! success && (node->module || node->level) ) { ProblemPointer problem_init(0); intermediate = QString("__init__"); moduleName = buildModuleNameFromNode(node, name, intermediate); success = createModuleImportDeclaration(moduleName, declarationName, declarationIdentifier, problem_init); } if ( ! success && problem ) { DUChainWriteLocker lock; topContext()->addProblem(problem); } } } void spoofNodePosition(Ast* node, int column) { // Ridiculous hack, see next comment. node->startCol = node-> endCol = column; if (node->astType == Ast::TupleAstType) { // Recursion to bodge all declarations, e.g. // [x + y * z for x, (y, z) in foo] foreach(auto elem, static_cast(node)->elements) { spoofNodePosition(elem, column); } } } void DeclarationBuilder::visitComprehension(ComprehensionAst* node) { Python::AstDefaultVisitor::visitComprehension(node); // make the declaration zero chars long; it must appear at the beginning of the context, // because it is actually used *before* its real declaration: [foo for foo in bar] // The DUChain doesn't like this, so for now, the declaration is at the opening bracket, // and both other occurrences are uses of that declaration. // TODO add a special case to the usebuilder to display the second occurrence as a declaration spoofNodePosition(node->target, currentContext()->range().start.column - 1); ExpressionVisitor v(currentContext()); v.visitNode(node->iterator); assignToUnknown(node->target, Helper::contentOfIterable(v.lastType())); } void DeclarationBuilder::visitImport(ImportAst* node) { Python::ContextBuilder::visitImport(node); DUChainWriteLocker lock; foreach ( AliasAst* name, node->names ) { QString moduleName = name->name->value; // use alias if available, name otherwise Identifier* declarationIdentifier = name->asName ? name->asName : name->name; ProblemPointer problem(0); createModuleImportDeclaration(moduleName, declarationIdentifier->value, declarationIdentifier, problem); if ( problem ) { DUChainWriteLocker lock; topContext()->addProblem(problem); } } } void DeclarationBuilder::scheduleForDeletion(DUChainBase* d, bool doschedule) { if ( doschedule ) { m_scheduledForDeletion.append(d); } else { m_scheduledForDeletion.removeAll(d); } } Declaration* DeclarationBuilder::createDeclarationTree(const QStringList& nameComponents, Identifier* declarationIdentifier, const ReferencedTopDUContext& innerCtx, Declaration* aliasDeclaration, const RangeInRevision& range) { // This actually handles two use cases which are very similar -- thus this check: // There might be either one declaration which should be imported from another module, // or there might be a whole context. In "import foo.bar", the "bar" might be either // a single class/function/whatever, or a whole file to import. // NOTE: The former case can't actually happen in python, it's not allowed. However, // it is still handled here, because it's very useful for documentation files (pyQt for example // makes heavy use of that feature). Q_ASSERT( ( innerCtx.data() || aliasDeclaration ) && "exactly one of innerCtx or aliasDeclaration must be provided"); Q_ASSERT( ( !innerCtx.data() || !aliasDeclaration ) && "exactly one of innerCtx or aliasDeclaration must be provided"); qCDebug(KDEV_PYTHON_DUCHAIN) << "creating declaration tree for" << nameComponents; Declaration* lastDeclaration = 0; int depth = 0; // check for already existing trees to update for ( int i = nameComponents.length() - 1; i >= 0; i-- ) { QStringList currentName; for ( int j = 0; j < i; j++ ) { currentName.append(nameComponents.at(j)); } lastDeclaration = findDeclarationInContext(currentName, topContext()); if ( lastDeclaration && (!range.isValid() || lastDeclaration->range() < range) ) { depth = i; break; } } DUContext* extendingPreviousImportCtx = 0; QStringList remainingNameComponents; bool injectingContext = false; if ( lastDeclaration && lastDeclaration->internalContext() ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Found existing import statement while creating declaration for " << declarationIdentifier->value; for ( int i = depth; i < nameComponents.length(); i++ ) { remainingNameComponents.append(nameComponents.at(i)); } extendingPreviousImportCtx = lastDeclaration->internalContext(); injectContext(extendingPreviousImportCtx); injectingContext = true; qCDebug(KDEV_PYTHON_DUCHAIN) << "remaining identifiers:" << remainingNameComponents; } else { remainingNameComponents = nameComponents; extendingPreviousImportCtx = topContext(); } // now, proceed in creating the declaration tree with whatever context QList openedDeclarations; QList openedTypes; QList openedContexts; RangeInRevision displayRange = RangeInRevision::invalid(); DUChainWriteLocker lock; for ( int i = 0; i < remainingNameComponents.length(); i++ ) { // Iterate over all the names, and create a declaration + sub-context for each of them const QString& component = remainingNameComponents.at(i); Identifier temporaryIdentifier(component); Declaration* d = 0; temporaryIdentifier.copyRange(declarationIdentifier); temporaryIdentifier.endCol = temporaryIdentifier.startCol; temporaryIdentifier.startCol += 1; displayRange = editorFindRange(&temporaryIdentifier, &temporaryIdentifier); // TODO fixme bool done = false; if ( aliasDeclaration && i == remainingNameComponents.length() - 1 ) { // it's the last level, so if we have an alias declaration create it and stop if ( aliasDeclaration->isFunctionDeclaration() || dynamic_cast(aliasDeclaration) || dynamic_cast(aliasDeclaration) ) { aliasDeclaration = Helper::resolveAliasDeclaration(aliasDeclaration); AliasDeclaration* adecl = eventuallyReopenDeclaration(&temporaryIdentifier, &temporaryIdentifier, AliasDeclarationType); if ( adecl ) { adecl->setAliasedDeclaration(aliasDeclaration); } d = adecl; closeDeclaration(); } else { d = visitVariableDeclaration(&temporaryIdentifier); d->setAbstractType(aliasDeclaration->abstractType()); } openedDeclarations.append(d); done = true; } if ( ! done ) { // create the next level of the tree hierarchy if not done yet. d = visitVariableDeclaration(&temporaryIdentifier); } if ( d ) { if ( topContext() != currentContext() ) { d->setRange(RangeInRevision(currentContext()->range().start, currentContext()->range().start)); } else { d->setRange(displayRange); } d->setAutoDeclaration(true); currentContext()->createUse(d->ownIndex(), d->range()); qCDebug(KDEV_PYTHON_DUCHAIN) << "really encountered:" << d << "; scheduled:" << m_scheduledForDeletion; qCDebug(KDEV_PYTHON_DUCHAIN) << d->toString(); scheduleForDeletion(d, false); qCDebug(KDEV_PYTHON_DUCHAIN) << "scheduled:" << m_scheduledForDeletion; } if ( done ) break; qCDebug(KDEV_PYTHON_DUCHAIN) << "creating context for " << component; // otherwise, create a new "level" entry (a pseudo type + context + declaration which contains all imported items) StructureType::Ptr moduleType = StructureType::Ptr(new StructureType()); openType(moduleType); // the identifier is needed so the context does not get re-opened if // more contexts are opened for other files with the same range Python::Identifier contextIdentifier(component); auto moduleContext = openContext(declarationIdentifier, KDevelop::DUContext::Other, &contextIdentifier); openedContexts.append(moduleContext); foreach ( Declaration* local, currentContext()->localDeclarations() ) { // keep all the declarations until the builder finished // kdevelop would otherwise delete them as soon as the context is closed if ( ! wasEncountered(local) ) { setEncountered(local); scheduleForDeletion(local, true); } } openedDeclarations.append(d); openedTypes.append(moduleType); if ( i == remainingNameComponents.length() - 1 ) { if ( innerCtx ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "adding imported context to inner declaration"; currentContext()->addImportedParentContext(innerCtx); } else if ( aliasDeclaration ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "setting alias declaration on inner declaration"; } } } for ( int i = openedContexts.length() - 1; i >= 0; i-- ) { // Close all the declarations and contexts opened previosly, and assign the types. qCDebug(KDEV_PYTHON_DUCHAIN) << "closing context"; closeType(); closeContext(); auto d = openedDeclarations.at(i); // because no context will be opened for an alias declaration, this will not happen if there's one if ( d ) { openedTypes[i]->setDeclaration(d); d->setType(openedTypes.at(i)); d->setInternalContext(openedContexts.at(i)); } } if ( injectingContext ) { closeInjectedContext(); } if ( ! openedDeclarations.isEmpty() ) { // return the lowest-level element in the tree, for the caller to do stuff with return openedDeclarations.last(); } else return 0; } Declaration* DeclarationBuilder::createModuleImportDeclaration(QString moduleName, QString declarationName, Identifier* declarationIdentifier, ProblemPointer& problemEncountered, Ast* rangeNode) { // Search the disk for a python file which contains the requested declaration auto moduleInfo = findModulePath(moduleName, currentlyParsedDocument().toUrl()); RangeInRevision range(RangeInRevision::invalid()); if ( rangeNode ) { range = rangeForNode(rangeNode, false); } else { range = rangeForNode(declarationIdentifier, false); } Q_ASSERT(range.isValid()); qCDebug(KDEV_PYTHON_DUCHAIN) << "Found module path [path/path in file]: " << moduleInfo; qCDebug(KDEV_PYTHON_DUCHAIN) << "Declaration identifier:" << declarationIdentifier->value; DUChainWriteLocker lock; const IndexedString modulePath = IndexedString(moduleInfo.first); ReferencedTopDUContext moduleContext = DUChain::self()->chainForDocument(modulePath); lock.unlock(); Declaration* resultingDeclaration = 0; if ( ! moduleInfo.first.isValid() ) { // The file was not found -- this is either an error in the user's code, // a missing module, or a C module (.so) which is unreadable for kdevelop // TODO imrpove error handling in case the module exists as a shared object or .pyc file only qCDebug(KDEV_PYTHON_DUCHAIN) << "invalid or non-existent URL:" << moduleInfo; KDevelop::Problem *p = new Python::MissingIncludeProblem(moduleName, currentlyParsedDocument()); p->setFinalLocation(DocumentRange(currentlyParsedDocument(), range.castToSimpleRange())); p->setSource(KDevelop::IProblem::SemanticAnalysis); p->setSeverity(KDevelop::IProblem::Warning); p->setDescription(i18n("Module \"%1\" not found", moduleName)); m_missingModules.append(IndexedString(moduleName)); problemEncountered = p; return 0; } if ( ! moduleContext ) { // schedule the include file for parsing, and schedule the current one for reparsing after that is done qCDebug(KDEV_PYTHON_DUCHAIN) << "No module context, recompiling"; m_unresolvedImports.append(modulePath); Helper::scheduleDependency(modulePath, m_ownPriority); // parseDocuments() must *not* be called from a background thread! // KDevelop::ICore::self()->languageController()->backgroundParser()->parseDocuments(); return 0; } if ( moduleInfo.second.isEmpty() ) { // import the whole module resultingDeclaration = createDeclarationTree(declarationName.split("."), declarationIdentifier, moduleContext, 0, range); auto initFile = QStringLiteral("/__init__.py"); auto path = moduleInfo.first.path(); if ( path.endsWith(initFile) ) { // if the __init__ file is imported, import all the other files in that directory as well QDir dir(path.left(path.size() - initFile.size())); dir.setNameFilters({"*.py"}); dir.setFilter(QDir::Files); auto files = dir.entryList(); foreach ( const auto& file, files ) { if ( file == QStringLiteral("__init__.py") ) { continue; } const auto filePath = declarationName.split(".") << file.left(file.lastIndexOf(".py")); const auto fileUrl = QUrl::fromLocalFile(dir.path() + "/" + file); ReferencedTopDUContext fileContext; { DUChainReadLocker lock; fileContext = DUChain::self()->chainForDocument(IndexedString(fileUrl)); } if ( fileContext ) { Identifier id = *declarationIdentifier; id.value.append(".").append(filePath.last()); createDeclarationTree(filePath, &id, fileContext, 0); } else { m_unresolvedImports.append(IndexedString(fileUrl)); Helper::scheduleDependency(IndexedString(fileUrl), m_ownPriority); } } } } else { // import a specific declaration from the given file lock.lock(); if ( declarationIdentifier->value == "*" ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Importing * from module"; currentContext()->addImportedParentContext(moduleContext); } else { qCDebug(KDEV_PYTHON_DUCHAIN) << "Got module, importing declaration: " << moduleInfo.second; Declaration* originalDeclaration = findDeclarationInContext(moduleInfo.second, moduleContext); if ( originalDeclaration ) { DUChainWriteLocker lock(DUChain::lock()); resultingDeclaration = createDeclarationTree(declarationName.split("."), declarationIdentifier, ReferencedTopDUContext(0), originalDeclaration, editorFindRange(declarationIdentifier, declarationIdentifier)); } else { KDevelop::Problem *p = new Python::MissingIncludeProblem(moduleName, currentlyParsedDocument()); p->setFinalLocation(DocumentRange(currentlyParsedDocument(), range.castToSimpleRange())); // TODO ok? p->setSource(KDevelop::IProblem::SemanticAnalysis); p->setSeverity(KDevelop::IProblem::Warning); p->setDescription(i18n("Declaration for \"%1\" not found in specified module", moduleInfo.second.join("."))); problemEncountered = p; } } } return resultingDeclaration; } void DeclarationBuilder::visitYield(YieldAst* node) { // Functions containing "yield" statements will return lists in our abstraction. // The content type of that list can be guessed from the yield statements. AstDefaultVisitor::visitYield(node); // Determine the type of the argument to "yield", like "int" in "yield 3" ExpressionVisitor v(currentContext()); v.visitNode(node->value); AbstractType::Ptr encountered = v.lastType(); // In some obscure (or wrong) cases, "yield" might appear outside of a function body, // so check for that here. if ( ! node->value || ! hasCurrentType() ) { return; } TypePtr t = currentType(); if ( ! t ) { return; } if ( auto previous = t->returnType().cast() ) { // If the return type of the function already is set to a list, *add* the encountered type // to its possible content types. previous->addContentType(encountered); t->setReturnType(previous.cast()); } else { // Otherwise, create a new container type, and set it as the function's return type. DUChainWriteLocker lock; auto container = ExpressionVisitor::typeObjectForIntegralType("list"); if ( container ) { openType(container); container->addContentType(encountered); t->setReturnType(Helper::mergeTypes(t->returnType(), container.cast())); closeType(); } } } void DeclarationBuilder::visitLambda(LambdaAst* node) { Python::AstDefaultVisitor::visitLambda(node); DUChainWriteLocker lock; // A context must be opened, because the lamdba's arguments are local to the lambda: // d = lambda x: x*2; print x # <- gives an error openContext(node, editorFindRange(node, node->body), DUContext::Other); foreach ( ArgAst* argument, node->arguments->arguments ) { visitVariableDeclaration(argument->argumentName); } closeContext(); } void DeclarationBuilder::applyDocstringHints(CallAst* node, FunctionDeclaration::Ptr function) { ExpressionVisitor v(currentContext()); v.visitNode(static_cast(node->function)->value); // Don't do anything if the object the function is being called on is not a container. auto container = v.lastType().cast(); if ( ! container || ! function ) { return; } // Don't do updates to pre-defined functions. if ( ! v.lastDeclaration() || v.lastDeclaration()->topContext()->url() == IndexedString(Helper::getDocumentationFile()) ) { return; } // Check for the different types of modifiers such a function can have QStringList args; QHash< QString, std::function > items; items["addsTypeOfArg"] = [&]() { const int offset = ! args.isEmpty() ? args.at(0).toInt() : 0; if ( node->arguments.length() <= offset ) { return; } // Check which type should be added to the list ExpressionVisitor argVisitor(currentContext()); argVisitor.visitNode(node->arguments.at(offset)); // Actually add that type if ( ! argVisitor.lastType() ) { return; } DUChainWriteLocker wlock; qCDebug(KDEV_PYTHON_DUCHAIN) << "Adding content type: " << argVisitor.lastType()->toString(); container->addContentType(argVisitor.lastType()); v.lastDeclaration()->setType(container); }; items["addsTypeOfArgContent"] = [&]() { const int offset = ! args.isEmpty() ? args.at(0).toInt() : 0; if ( node->arguments.length() <= offset ) { return; } ExpressionVisitor argVisitor(currentContext()); argVisitor.visitNode(node->arguments.at(offset)); DUChainWriteLocker wlock; if ( ! argVisitor.lastType() ) { return; } auto sources = Helper::filterType( argVisitor.lastType(), [](AbstractType::Ptr type) { return type.cast(); } ); for ( auto sourceContainer : sources ) { if ( ! sourceContainer->contentType() ) { continue; } container->addContentType(sourceContainer->contentType().abstractType()); v.lastDeclaration()->setType(container); } }; foreach ( const QString& key, items.keys() ) { if ( Helper::docstringContainsHint(function.data(), key, &args) ) { items[key](); } } } void DeclarationBuilder::addArgumentTypeHints(CallAst* node, DeclarationPointer function) { DUChainReadLocker lock; QPair called = Helper::functionDeclarationForCalledDeclaration(function); FunctionDeclaration::Ptr lastFunctionDeclaration = called.first; bool isConstructor = called.second; if ( ! lastFunctionDeclaration ) { return; } if ( lastFunctionDeclaration->topContext()->url() == IndexedString(Helper::getDocumentationFile()) ) { return; } DUContext* args = DUChainUtils::getArgumentContext(lastFunctionDeclaration.data()); FunctionType::Ptr functiontype = lastFunctionDeclaration->type(); if ( ! args || ! functiontype ) { return; } // The declaration which was found is a function declaration, and has a valid arguments list assigned. QVector parameters = args->localDeclarations(); const int specialParamsCount = (lastFunctionDeclaration->vararg() > 0) + (lastFunctionDeclaration->kwarg() > 0); // Look for the "self" in the argument list, the type of that should not be updated. bool hasSelfArgument = false; if ( ( lastFunctionDeclaration->context()->type() == DUContext::Class || isConstructor ) && ! parameters.isEmpty() && ! lastFunctionDeclaration->isStatic() ) { // ... unless for some reason the function only has *vararg, **kwarg as arguments // (this could happen for example if the method is static but kdev-python does not know, // or if the user just made a mistake in his code) if ( specialParamsCount < parameters.size() ) { hasSelfArgument = true; } } int currentParamIndex = hasSelfArgument; int currentArgumentIndex = 0; int indexInVararg = -1; int paramsAvailable = qMin(functiontype->arguments().length(), parameters.size()); int argsAvailable = node->arguments.size(); bool atVararg = false; lock.unlock(); // Iterate over all the arguments, trying to guess the type of the object being // passed as an argument, and update the parameter accordingly. // Stop if more parameters supplied than possible, and we're not at the vararg. for ( ; ( atVararg || currentParamIndex < paramsAvailable ) && currentArgumentIndex < argsAvailable; currentParamIndex++, currentArgumentIndex++ ) { if ( ! atVararg && currentArgumentIndex == lastFunctionDeclaration->vararg() ) { atVararg = true; } qCDebug(KDEV_PYTHON_DUCHAIN) << currentParamIndex << currentArgumentIndex << atVararg << lastFunctionDeclaration->vararg(); ExpressionAst* arg = node->arguments.at(currentArgumentIndex); ExpressionVisitor argumentVisitor(currentContext()); argumentVisitor.visitNode(arg); AbstractType::Ptr argumentType = argumentVisitor.lastType(); // Update the parameter type: change both the type of the function argument, // and the type of the declaration which belongs to that argument HintedType::Ptr addType = HintedType::Ptr(new HintedType()); openType(addType); addType->setType(argumentVisitor.lastType()); addType->setCreatedBy(topContext(), m_futureModificationRevision); closeType(); DUChainWriteLocker wlock; if ( atVararg ) { indexInVararg++; Declaration* parameter = parameters.at(lastFunctionDeclaration->vararg()+hasSelfArgument); IndexedContainer::Ptr varargContainer = parameter->type(); qCDebug(KDEV_PYTHON_DUCHAIN) << "adding" << addType->toString() << "at position" << indexInVararg; if ( ! varargContainer ) continue; if ( varargContainer->typesCount() > indexInVararg ) { AbstractType::Ptr oldType = varargContainer->typeAt(indexInVararg).abstractType(); AbstractType::Ptr newType = Helper::mergeTypes(oldType, addType.cast()); varargContainer->replaceType(indexInVararg, newType); } else { varargContainer->addEntry(addType.cast()); } parameter->setAbstractType(varargContainer.cast()); } else { if ( ! argumentType ) continue; AbstractType::Ptr newType = Helper::mergeTypes(parameters.at(currentParamIndex)->abstractType(), addType.cast()); // TODO this does not correctly update the types in quickopen! Investigate why. functiontype->removeArgument(currentArgumentIndex + hasSelfArgument); functiontype->addArgument(newType, currentArgumentIndex + hasSelfArgument); lastFunctionDeclaration->setAbstractType(functiontype.cast()); parameters.at(currentParamIndex)->setType(newType); } } lock.unlock(); DUChainWriteLocker wlock; if ( lastFunctionDeclaration->kwarg() < 0 || parameters.isEmpty() ) { // no kwarg, stop here. return; } foreach ( KeywordAst* keyword, node->keywords ) { AbstractType::Ptr param = parameters.last()->abstractType(); auto list = param.cast(); if ( ! list ) { continue; } wlock.unlock(); ExpressionVisitor argumentVisitor(currentContext()); argumentVisitor.visitNode(keyword->value); if ( ! argumentVisitor.lastType() ) { continue; } wlock.lock(); HintedType::Ptr addType = HintedType::Ptr(new HintedType()); openType(addType); addType->setType(argumentVisitor.lastType()); addType->setCreatedBy(topContext(), m_futureModificationRevision); closeType(); list->addContentType(addType.cast()); parameters.last()->setAbstractType(list.cast()); } } void DeclarationBuilder::visitCall(CallAst* node) { Python::AstDefaultVisitor::visitCall(node); // Find the function being called; this code also handles cases where non-names // are called, for example: // class myclass(): // def myfun(self): return 3 // l = [myclass()] // x = l[0].myfun() # the called object is actually l[0].myfun // In the above example, this call will be evaluated to "myclass.myfun" in the following statement. ExpressionVisitor functionVisitor(currentContext()); functionVisitor.visitNode(node); if ( node->function && node->function->astType == Ast::AttributeAstType && functionVisitor.lastDeclaration() ) { // Some special functions, like "append", update the content of the object they operate on. // Find the object the function is called on, like for d = [1, 2, 3]; d.append(5), this will give "d" FunctionDeclaration::Ptr function = functionVisitor.lastDeclaration().dynamicCast(); applyDocstringHints(node, function); } if ( ! m_prebuilding ) { return; } // The following code will try to update types of function parameters based on what is passed // for those when the function is used. // In case of this code: // def foo(arg): print arg // foo(3) // the following will change the type of "arg" to be "int" when it processes the second line. addArgumentTypeHints(node, functionVisitor.lastDeclaration()); } void DeclarationBuilder::assignToName(NameAst* target, const DeclarationBuilder::SourceType& element) { if ( element.isAlias ) { DUChainWriteLocker lock; Python::Identifier* identifier = target->identifier; AliasDeclaration* decl = eventuallyReopenDeclaration(identifier, target, AliasDeclarationType); decl->setAliasedDeclaration(element.declaration.data()); closeDeclaration(); } else { DUChainWriteLocker lock; Declaration* dec = visitVariableDeclaration(target, 0, element.type); if ( dec && m_lastComment && ! m_lastComment->usedAsComment ) { dec->setComment(m_lastComment->value); m_lastComment->usedAsComment = true; } /** DEBUG **/ if ( element.type && dec ) { Q_ASSERT(dec->abstractType()); } /** END DEBUG **/ } } void DeclarationBuilder::assignToSubscript(SubscriptAst* subscript, const DeclarationBuilder::SourceType& element) { ExpressionAst* v = subscript->value; if ( ! element.type ) { return; } ExpressionVisitor targetVisitor(currentContext()); targetVisitor.visitNode(v); auto list = ListType::Ptr::dynamicCast(targetVisitor.lastType()); if ( list ) { list->addContentType(element.type); } auto map = MapType::Ptr::dynamicCast(list); if ( map ) { if ( subscript->slice && subscript->slice->astType == Ast::IndexAstType ) { ExpressionVisitor keyVisitor(currentContext()); keyVisitor.visitNode(static_cast(subscript->slice)->value); AbstractType::Ptr key = keyVisitor.lastType(); if ( key ) { map->addKeyType(key); } } } DeclarationPointer lastDecl = targetVisitor.lastDeclaration(); if ( list && lastDecl ) { DUChainWriteLocker lock; lastDecl->setAbstractType(list.cast()); } } void DeclarationBuilder::assignToAttribute(AttributeAst* attrib, const DeclarationBuilder::SourceType& element) { // visit the base expression before the dot ExpressionVisitor checkPreviousAttributes(currentContext()); checkPreviousAttributes.visitNode(attrib->value); DeclarationPointer parentObjectDeclaration = checkPreviousAttributes.lastDeclaration(); DUContextPointer internal(0); if ( ! parentObjectDeclaration ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "No declaration for attribute base, aborting creation of attribute"; return; } // if foo is a class, this is like foo.bar = 3 if ( parentObjectDeclaration->internalContext() ) { internal = parentObjectDeclaration->internalContext(); } // while this is like A = foo(); A.bar = 3 else { DUChainReadLocker lock; StructureType::Ptr structure(parentObjectDeclaration->abstractType().cast()); if ( ! structure || ! structure->declaration(topContext()) ) { return; } parentObjectDeclaration = structure->declaration(topContext()); internal = parentObjectDeclaration->internalContext(); } if ( ! internal ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "No internal context for structure type, aborting creation of attribute declaration"; return; } Declaration* attributeDeclaration = nullptr; { DUChainReadLocker lock; - attributeDeclaration = Helper::accessAttribute(parentObjectDeclaration.data(), + attributeDeclaration = Helper::accessAttribute(parentObjectDeclaration->abstractType(), attrib->attribute->value, currentContext()); } if ( ! attributeDeclaration || ! wasEncountered(attributeDeclaration) ) { // inject a new attribute into the class type DUContext* previousContext = currentContext(); bool isAlreadyOpen = contextAlreayOpen(internal); if ( isAlreadyOpen ) { activateAlreadyOpenedContext(internal); visitVariableDeclaration( attrib->attribute, attrib, attributeDeclaration, element.type, AbortIfReopenMismatch ); closeAlreadyOpenedContext(internal); } else { injectContext(internal.data()); Declaration* dec = visitVariableDeclaration( attrib->attribute, attrib, attributeDeclaration, element.type, AbortIfReopenMismatch ); if ( dec ) { dec->setRange(RangeInRevision(internal->range().start, internal->range().start)); dec->setAutoDeclaration(true); DUChainWriteLocker lock; previousContext->createUse(dec->ownIndex(), editorFindRange(attrib, attrib)); } else qCWarning(KDEV_PYTHON_DUCHAIN) << "No declaration created for " << attrib->attribute << "as parent is not a class"; closeInjectedContext(); } } else { DUChainWriteLocker lock; // the declaration is already there, just update the type if ( ! attributeDeclaration->type() ) { auto newType = Helper::mergeTypes(attributeDeclaration->abstractType(), element.type); attributeDeclaration->setAbstractType(newType); } } } void tryUnpackType(AbstractType::Ptr sourceType, QVector& outTypes, int starred) { // Helper for assignToTuple() below. // If sourceType is a container that can be unpacked into outTypes, do so. if ( const auto indexed = sourceType.cast() ) { int spare = indexed->typesCount() - outTypes.length(); if ( spare < -1 or (starred == -1 and spare != 0) ) { return; // Wrong number of elements to unpack. } for ( int i_out = 0, i_in = 0; i_out < outTypes.length(); ++i_out ) { if ( i_out == starred ) { // PEP-3132. Made into list in assignToTuple(). for (; spare >= 0; --spare, ++i_in ) { auto content = indexed->typeAt(i_in).abstractType(); outTypes[i_out] = Helper::mergeTypes(outTypes.at(i_out), content); } } else { auto content = indexed->typeAt(i_in).abstractType(); outTypes[i_out] = Helper::mergeTypes(outTypes.at(i_out), content); ++i_in; } } } else { auto content = Helper::contentOfIterable(sourceType); if ( !Helper::isUsefulType(content) ) { return; } for (auto out = outTypes.begin(); out != outTypes.end(); ++out) { *out = Helper::mergeTypes(*out, content); } } } void DeclarationBuilder::assignToTuple(TupleAst* tuple, const SourceType& element) { int starred = -1; // Index (if any) of PEP-3132 starred assignment. for (int ii = 0; ii < tuple->elements.length(); ++ii) { if (tuple->elements.at(ii)->astType == Ast::StarredAstType) { starred = ii; break; } } QVector outTypes(tuple->elements.length()); if ( auto unsure = element.type.cast() ) { FOREACH_FUNCTION ( const auto& type, unsure->types ) { tryUnpackType(type.abstractType(), outTypes, starred); } } else { tryUnpackType(element.type, outTypes, starred); } for (int ii = 0; ii < outTypes.length(); ++ii) { const auto sourceType = outTypes.at(ii); auto target = tuple->elements.at(ii); if ( target->astType == Ast::StarredAstType ) { DUChainReadLocker lock; auto listType = ExpressionVisitor::typeObjectForIntegralType("list"); lock.unlock(); if (listType) { listType->addContentType(sourceType); assignToUnknown(static_cast(target)->value, listType); } } else { assignToUnknown(target, sourceType); } } } void DeclarationBuilder::assignToUnknown(ExpressionAst* target, const AbstractType::Ptr type) { auto source = SourceType{ type, DeclarationPointer(), false }; assignToUnknown(target, source); } void DeclarationBuilder::assignToUnknown(ExpressionAst* target, const DeclarationBuilder::SourceType& element) { // Must be a nicer way to do this. if ( target->astType == Ast::TupleAstType ) { // Assignments of the form "a, b = 1, 2" or "a, b = c" assignToTuple(static_cast(target), element); } else if ( target->astType == Ast::NameAstType ) { // Assignments of the form "a = 3" assignToName(static_cast(target), element); } else if ( target->astType == Ast::SubscriptAstType ) { // Assignments of the form "a[0] = 3" assignToSubscript(static_cast(target), element); } else if ( target->astType == Ast::AttributeAstType ) { // Assignments of the form "a.b = 3" assignToAttribute(static_cast(target), element); } } void DeclarationBuilder::visitAssignment(AssignmentAst* node) { AstDefaultVisitor::visitAssignment(node); ExpressionVisitor v(currentContext()); v.visitNode(node->value); auto sourceType = SourceType{ v.lastType(), DeclarationPointer(Helper::resolveAliasDeclaration(v.lastDeclaration().data())), v.isAlias() }; foreach(ExpressionAst* target, node->targets) { assignToUnknown(target, sourceType); } } void DeclarationBuilder::visitClassDefinition( ClassDefinitionAst* node ) { const CorrectionHelper::Recursion r(m_correctionHelper->enterClass(node->name->value)); StructureType::Ptr type(new StructureType()); DUChainWriteLocker lock; ClassDeclaration* dec = eventuallyReopenDeclaration(node->name, node->name, NoTypeRequired); lock.unlock(); visitDecorators(node->decorators, dec); lock.lock(); eventuallyAssignInternalContext(); dec->setKind(KDevelop::Declaration::Type); dec->clearBaseClasses(); dec->setClassType(ClassDeclarationData::Class); dec->setComment(getDocstring(node->body)); // check whether this is a type container (list, dict, ...) or just a "normal" class if ( Helper::docstringContainsHint(dec, "TypeContainer") ) { ListType* container = nullptr; if ( Helper::docstringContainsHint(dec, "hasTypedKeys") ) { container = new MapType(); } else { container = new ListType(); } type = StructureType::Ptr(container); } if ( Helper::docstringContainsHint(dec, "IndexedTypeContainer") ) { IndexedContainer* container = new IndexedContainer(); type = StructureType::Ptr(container); } lock.unlock(); foreach ( ExpressionAst* c, node->baseClasses ) { // Iterate over all the base classes, and add them to the duchain. ExpressionVisitor v(currentContext()); v.visitNode(c); if ( v.lastType() && v.lastType()->whichType() == AbstractType::TypeStructure ) { StructureType::Ptr baseClassType = v.lastType().cast(); BaseClassInstance base; base.baseClass = baseClassType->indexed(); base.access = KDevelop::Declaration::Public; lock.lock(); dec->addBaseClass(base); lock.unlock(); } } lock.lock(); // every python class inherits from "object". // We use this to add all the __str__, __get__, ... methods. if ( dec->baseClassesSize() == 0 && node->name->value != "object" ) { DUChainWriteLocker wlock; ReferencedTopDUContext docContext = Helper::getDocumentationFileContext(); if ( docContext ) { QList object = docContext->findDeclarations( QualifiedIdentifier("object") ); if ( ! object.isEmpty() && object.first()->abstractType() ) { Declaration* objDecl = object.first(); BaseClassInstance base; base.baseClass = objDecl->abstractType()->indexed(); // this can be queried from autocompletion or elsewhere to hide the items, if required; // of course, it's not private strictly speaking base.access = KDevelop::Declaration::Private; dec->addBaseClass(base); } } } type->setDeclaration(dec); dec->setType(type); openType(type); m_currentClassType = type; // needs to be done here, so the assignment of the internal context happens before visiting the body openContextForClassDefinition(node); dec->setInternalContext(currentContext()); lock.unlock(); foreach ( Ast* _node, node->body ) { AstDefaultVisitor::visitNode(_node); } lock.lock(); closeContext(); closeType(); closeDeclaration(); } template void DeclarationBuilder::visitDecorators(QList< Python::ExpressionAst* > decorators, T* addTo) { foreach ( ExpressionAst* decorator, decorators ) { AstDefaultVisitor::visitNode(decorator); if ( decorator->astType == Ast::CallAstType ) { CallAst* call = static_cast(decorator); Decorator d; if ( call->function->astType != Ast::NameAstType ) { continue; } d.setName(*static_cast(call->function)->identifier); foreach ( ExpressionAst* arg, call->arguments ) { if ( arg->astType == Ast::NumberAstType ) { d.setAdditionalInformation(QString::number(static_cast(arg)->value)); } else if ( arg->astType == Ast::StringAstType ) { d.setAdditionalInformation(static_cast(arg)->value); } break; // we only need the first argument for documentation analysis } addTo->addDecorator(d); } else if ( decorator->astType == Ast::NameAstType ) { NameAst* name = static_cast(decorator); Decorator d; d.setName(*(name->identifier)); addTo->addDecorator(d); } } } void DeclarationBuilder::visitFunctionDefinition( FunctionDefinitionAst* node ) { const CorrectionHelper::Recursion r(m_correctionHelper->enterFunction(node->name->value)); // Search for an eventual containing class declaration; // if that exists, then this function is a member function DeclarationPointer eventualParentDeclaration(currentDeclaration()); FunctionType::Ptr type(new FunctionType()); DUChainWriteLocker lock; FunctionDeclaration* dec = eventuallyReopenDeclaration(node->name, node->name, FunctionDeclarationType); Q_ASSERT(dec->isFunctionDeclaration()); // check for documentation dec->setComment(getDocstring(node->body)); openType(type); dec->setInSymbolTable(false); dec->setType(type); lock.unlock(); visitDecorators(node->decorators, dec); visitFunctionArguments(node); lock.lock(); const bool isStatic = Helper::findDecoratorByName(dec, "staticmethod"); const bool isClassMethod = Helper::findDecoratorByName(dec, "classmethod"); dec->setStatic(isStatic); // If this is a member function, set the type of the first argument (the "self") to be // an instance of the class. // this must be done here, because the type of self must be known when parsing the body if ( eventualParentDeclaration && currentType()->arguments().length() && currentContext()->type() == DUContext::Class && ! isStatic ) { if ( dec->vararg() != -1 ) { dec->setVararg(dec->vararg() - 1); } if ( dec->kwarg() != -1 ) { dec->setKwarg(dec->kwarg() - 1); } } lock.unlock(); visitFunctionBody(node); lock.lock(); closeDeclaration(); eventuallyAssignInternalContext(); closeType(); // python methods don't have their parents attributes directly inside them if ( eventualParentDeclaration && eventualParentDeclaration->internalContext() && dec->internalContext() ) { dec->internalContext()->removeImportedParentContext(eventualParentDeclaration->internalContext()); } { static IndexedString constructorName("__init__"); DUChainWriteLocker lock(DUChain::lock()); if ( dec->identifier().identifier() == constructorName ) { // the constructor returns an instance of the object, // nice to display it in tooltips etc. type->setReturnType(currentType()); } if ( ! type->returnType() ) { type->setReturnType(AbstractType::Ptr(new IntegralType(IntegralType::TypeVoid))); } dec->setType(type); } if ( ! isStatic ) { DUContext* args = DUChainUtils::getArgumentContext(dec); if ( args ) { QVector parameters = args->localDeclarations(); static IndexedString newMethodName("__new__"); static IndexedString selfArgumentName("self"); static IndexedString clsArgumentName("cls"); if ( currentContext()->type() == DUContext::Class && ! parameters.isEmpty() && ! isClassMethod ) { QString description; if ( dec->identifier().identifier() == newMethodName && parameters[0]->identifier().identifier() != clsArgumentName ) { description = i18n("First argument of __new__ method is not called cls, this is deprecated"); } else if ( dec->identifier().identifier() != newMethodName && parameters[0]->identifier().identifier() != selfArgumentName ) { description = i18n("First argument of class method is not called self, this is deprecated"); } if ( ! description.isEmpty() ) { DUChainWriteLocker lock; KDevelop::Problem *p = new KDevelop::Problem(); p->setDescription(description); p->setFinalLocation(DocumentRange(currentlyParsedDocument(), parameters[0]->range().castToSimpleRange())); p->setSource(KDevelop::IProblem::SemanticAnalysis); p->setSeverity(KDevelop::IProblem::Warning); ProblemPointer ptr(p); topContext()->addProblem(ptr); } } else if ( currentContext()->type() == DUContext::Class && parameters.isEmpty() ) { DUChainWriteLocker lock; KDevelop::Problem *p = new KDevelop::Problem(); // only mark first line p->setFinalLocation(DocumentRange(currentlyParsedDocument(), KTextEditor::Range(node->startLine, node->startCol, node->startLine, 10000))); p->setSource(KDevelop::IProblem::SemanticAnalysis); p->setSeverity(KDevelop::IProblem::Warning); p->setDescription(i18n("Non-static class method without arguments, must have at least one (self)")); ProblemPointer ptr(p); topContext()->addProblem(ptr); } } } if ( AbstractType::Ptr hint = m_correctionHelper->returnTypeHint() ) { type->setReturnType(hint); dec->setType(type); } // check for (python3) function annotations if ( node->returns ) { lock.unlock(); ExpressionVisitor v(currentContext()); v.visitNode(node->returns); lock.lock(); if ( v.lastType() && v.isAlias() ) { type->setReturnType(Helper::mergeTypes(type->returnType(), v.lastType())); qCDebug(KDEV_PYTHON_DUCHAIN) << "updated function return type to " << type->toString(); dec->setType(type); } else if ( ! v.isAlias()) { qCDebug(KDEV_PYTHON_DUCHAIN) << "not updating function return type because expression is not a type object"; } } lock.lock(); dec->setInSymbolTable(true); } QString DeclarationBuilder::getDocstring(QList< Python::Ast* > body) const { if ( ! body.isEmpty() && body.first()->astType == Ast::ExpressionAstType && static_cast(body.first())->value->astType == Ast::StringAstType ) { // If the first statement in a function/class body is a string, then that is the docstring. StringAst* docstring = static_cast(static_cast(body.first())->value); docstring->usedAsComment = true; return docstring->value.trimmed(); } return QString(); } void DeclarationBuilder::visitAssertion(AssertionAst* node) { adjustForTypecheck(node->condition, false); Python::AstDefaultVisitor::visitAssertion(node); } void DeclarationBuilder::visitIf(IfAst* node) { adjustForTypecheck(node->condition, true); Python::AstDefaultVisitor::visitIf(node); } void DeclarationBuilder::adjustForTypecheck(Python::ExpressionAst* check, bool useUnsure) { if ( ! check ) return; if ( check->astType == Ast::UnaryOperationAstType && static_cast(check)->type == Ast::UnaryOperatorNot ) { // It could be something like " if not isinstance(foo, Bar): return None ". check = static_cast(check)->operand; } if ( check->astType == Ast::CallAstType ) { // Is this a call of the form "isinstance(foo, bar)"? CallAst* call = static_cast(check); if ( ! call->function ) { return; } if ( call->function->astType != Ast::NameAstType ) { return; } const QString functionName = static_cast(call->function)->identifier->value; if ( functionName != QLatin1String("isinstance") ) { return; } if ( call->arguments.length() != 2 ) { return; } adjustExpressionsForTypecheck(call->arguments.at(0), call->arguments.at(1), useUnsure); } else if ( check->astType == Ast::CompareAstType ) { // Is this a call of the form "type(ainstance) == a"? CompareAst* compare = static_cast(check); if ( compare->operators.size() != 1 || compare->comparands.size() != 1 ) { return; } if ( compare->operators.first() != Ast::ComparisonOperatorEquals ) { return; } ExpressionAst* c1 = compare->comparands.first(); ExpressionAst* c2 = compare->leftmostElement; if ( ! ( (c1->astType == Ast::CallAstType) ^ (c2->astType == Ast::CallAstType) ) ) { // Exactly one of the two must be a call. TODO: support adjusting function return types return; } CallAst* typecall = static_cast(c1->astType == Ast::CallAstType ? c1 : c2); if ( ! typecall->function || typecall->function->astType != Ast::NameAstType || typecall->arguments.length() != 1 ) { return; } const QString functionName = static_cast(typecall->function)->identifier->value; if ( functionName != QLatin1String("type") ) { return; } adjustExpressionsForTypecheck(typecall->arguments.at(0), c1->astType == Ast::CallAstType ? c2 : c1, useUnsure); } } void DeclarationBuilder::adjustExpressionsForTypecheck(Python::ExpressionAst* adjustExpr, Python::ExpressionAst* from, bool useUnsure) { // Find types of the two arguments ExpressionVisitor first(currentContext()); ExpressionVisitor second(currentContext()); first.visitNode(adjustExpr); second.visitNode(from); AbstractType::Ptr hint; DeclarationPointer adjust; if ( second.isAlias() && second.lastType() ) { hint = second.lastType(); adjust = first.lastDeclaration(); } if ( ! adjust || adjust->isFunctionDeclaration() ) { // no declaration for the thing to verify, can't adjust it. return; } else if ( adjust->topContext() == Helper::getDocumentationFileContext() ) { // do not motify types in the doc context return; } DUChainWriteLocker lock; if ( useUnsure ) { adjust->setAbstractType(Helper::mergeTypes(adjust->abstractType(), hint)); } else { adjust->setAbstractType(hint); } } void DeclarationBuilder::visitReturn(ReturnAst* node) { // Find the type of the object being "return"ed ExpressionVisitor v(currentContext()); v.visitNode(node->value); if ( node->value ) { if ( ! hasCurrentType() ) { DUChainWriteLocker lock; KDevelop::Problem *p = new KDevelop::Problem(); p->setFinalLocation(DocumentRange(currentlyParsedDocument(), node->range())); // only mark first line p->setSource(KDevelop::IProblem::SemanticAnalysis); p->setDescription(i18n("Return statement not within function declaration")); ProblemPointer ptr(p); topContext()->addProblem(ptr); } else { TypePtr t = currentType(); AbstractType::Ptr encountered = v.lastType(); DUChainWriteLocker lock; if ( t ) { // Update the containing function's return type t->setReturnType(Helper::mergeTypes(t->returnType(), encountered)); } } } DeclarationBuilderBase::visitReturn(node); } void DeclarationBuilder::visitArguments( ArgumentsAst* node ) { if ( ! currentDeclaration() || ! currentDeclaration()->isFunctionDeclaration() ) { return; } FunctionDeclaration* workingOnDeclaration = static_cast(Helper::resolveAliasDeclaration(currentDeclaration())); workingOnDeclaration->clearDefaultParameters(); const bool isClassMethod = Helper::findDecoratorByName(workingOnDeclaration, "classmethod"); if ( ! hasCurrentType() || ! currentType() ) { return; } FunctionType::Ptr type = currentType(); bool isFirst = true; int defaultParametersCount = node->defaultValues.length(); int parametersCount = node->arguments.length(); int firstDefaultParameterOffset = parametersCount - defaultParametersCount; int currentIndex = 0; qCDebug(KDEV_PYTHON_DUCHAIN) << "arguments:" << node->arguments.size(); foreach ( ArgAst* arg, node->arguments + node->kwonlyargs ) { // Iterate over all the function's arguments, create declarations, and add the arguments // to the functions FunctionType. currentIndex += 1; if ( ! arg->argumentName ) { continue; } qCDebug(KDEV_PYTHON_DUCHAIN) << "visiting argument:" << arg->argumentName->value; // Create a variable declaration for the parameter, to be used in the function body. Declaration* paramDeclaration = nullptr; if ( currentIndex == 1 && isClassMethod ) { DUChainWriteLocker lock; AliasDeclaration* decl = eventuallyReopenDeclaration(arg->argumentName, arg, AliasDeclarationType); if ( m_currentClassType ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "setting declaration:" << m_currentClassType->declaration(topContext())->toString(); decl->setAliasedDeclaration(m_currentClassType->declaration(currentContext()->topContext())); } paramDeclaration = decl; } else { paramDeclaration = visitVariableDeclaration(arg->argumentName); } if ( ! paramDeclaration ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "could not create parameter declaration!"; continue; } AbstractType::Ptr argumentType(new IntegralType(IntegralType::TypeMixed)); if ( arg->annotation ) { ExpressionVisitor v(currentContext()); v.visitNode(arg->annotation); if ( v.lastType() && v.isAlias() ) { DUChainWriteLocker lock; argumentType = Helper::mergeTypes(paramDeclaration->abstractType(), v.lastType()); } } else if ( currentIndex > firstDefaultParameterOffset && currentIndex <= node->arguments.size() ) { // Handle arguments with default values, like def foo(bar = 3): pass // Find type of given default value, and assign it to the declaration ExpressionVisitor v(currentContext()); v.visitNode(node->defaultValues.at(currentIndex - firstDefaultParameterOffset - 1)); if ( v.lastType() ) { argumentType = v.lastType(); } // TODO add the real expression from the document here as default value workingOnDeclaration->addDefaultParameter(IndexedString("...")); } qCDebug(KDEV_PYTHON_DUCHAIN) << "is first:" << isFirst << hasCurrentDeclaration() << currentDeclaration(); if ( isFirst && hasCurrentDeclaration() && currentContext() && currentContext()->parentContext() ) { DUChainReadLocker lock; if ( currentContext()->parentContext()->type() == DUContext::Class ) { argumentType = m_currentClassType.cast(); isFirst = false; } } DUChainWriteLocker lock; paramDeclaration->setAbstractType(Helper::mergeTypes(paramDeclaration->abstractType(), argumentType)); type->addArgument(argumentType); if ( argumentType ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "creating argument with type" << argumentType->toString(); } } // Handle *args, **kwargs, and assign them a list / dictionary type. if ( node->vararg ) { // inject the vararg at the correct place int atIndex = 0; int useIndex = -1; foreach ( ArgAst* arg, node->arguments ) { if ( node->vararg && workingOnDeclaration->vararg() == -1 && node->vararg->appearsBefore(arg) ) { useIndex = atIndex; } atIndex += 1; } if ( useIndex == -1 ) { // if the vararg does not appear in the middle of the params, place it at the end. // this is new in python3, you can do like def fun(a, b, *c, z): pass useIndex = type->arguments().size(); } DUChainReadLocker lock; IndexedContainer::Ptr tupleType = ExpressionVisitor::typeObjectForIntegralType("tuple"); lock.unlock(); if ( tupleType ) { visitVariableDeclaration(node->vararg->argumentName, 0, tupleType.cast()); workingOnDeclaration->setVararg(atIndex); type->addArgument(tupleType.cast(), useIndex); } } if ( node->kwarg ) { DUChainReadLocker lock; AbstractType::Ptr stringType = ExpressionVisitor::typeObjectForIntegralType("str"); auto dictType = ExpressionVisitor::typeObjectForIntegralType("dict"); lock.unlock(); if ( dictType && stringType ) { dictType->addKeyType(stringType); visitVariableDeclaration(node->kwarg->argumentName, 0, dictType.cast()); type->addArgument(dictType.cast()); workingOnDeclaration->setKwarg(type->arguments().size() - 1); } } } void DeclarationBuilder::visitString(StringAst* node) { if ( node->parent && node->parent->astType == Ast::ExpressionAstType ) { m_lastComment = node; } DeclarationBuilderBase::visitString(node); } void DeclarationBuilder::visitNode(Ast* node) { DeclarationBuilderBase::visitNode(node); if ( node && node->astType >= Ast::StatementAstType && node->astType <= Ast::LastStatementType) { m_lastComment = nullptr; } } void DeclarationBuilder::visitGlobal(GlobalAst* node) { TopDUContext* top = topContext(); foreach ( Identifier *id, node->names ) { QualifiedIdentifier qid = identifierForNode(id); DUChainWriteLocker lock; QList< Declaration* > existing = top->findLocalDeclarations(qid.first()); if ( ! existing.empty() ) { AliasDeclaration* ndec = openDeclaration(id, node); ndec->setAliasedDeclaration(existing.first()); closeDeclaration(); } else { injectContext(top); Declaration* dec = visitVariableDeclaration(id); dec->setRange(editorFindRange(id, id)); dec->setAutoDeclaration(true); closeContext(); AliasDeclaration* ndec = openDeclaration(id, node); ndec->setAliasedDeclaration(dec); closeDeclaration(); } } } } diff --git a/duchain/expressionvisitor.cpp b/duchain/expressionvisitor.cpp index 7ad603d3..1ddcafe6 100644 --- a/duchain/expressionvisitor.cpp +++ b/duchain/expressionvisitor.cpp @@ -1,747 +1,744 @@ /***************************************************************************** * This file is part of KDevelop * * Copyright 2010 Miquel Canes Gonzalez * * Copyright 2011-2013 by Sven Brauch * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License as * * published by the Free Software Foundation; either version 2 of * * the License, or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************** */ #include "expressionvisitor.h" #include "types/indexedcontainer.h" #include "declarations/functiondeclaration.h" #include "pythonduchainexport.h" #include "pythoneditorintegrator.h" #include "helpers.h" #include #include #include #include #include #include #include #include #include #include #include #include #include "duchaindebug.h" #include #include using namespace KDevelop; using namespace Python; using namespace KTextEditor; namespace Python { QHash ExpressionVisitor::m_defaultTypes; AbstractType::Ptr ExpressionVisitor::encounterPreprocess(AbstractType::Ptr type) { return Helper::resolveAliasType(type); } ExpressionVisitor::ExpressionVisitor(const DUContext* ctx) : DynamicLanguageExpressionVisitor(ctx) { ENSURE_CHAIN_NOT_LOCKED if ( m_defaultTypes.isEmpty() ) { m_defaultTypes.insert(NameConstantAst::True, AbstractType::Ptr(new IntegralType(IntegralType::TypeBoolean))); m_defaultTypes.insert(NameConstantAst::False, AbstractType::Ptr(new IntegralType(IntegralType::TypeBoolean))); m_defaultTypes.insert(NameConstantAst::None, AbstractType::Ptr(new IntegralType(IntegralType::TypeVoid))); } Q_ASSERT(context()); Q_ASSERT(context()->topContext()); } ExpressionVisitor::ExpressionVisitor(ExpressionVisitor* parent, const DUContext* overrideContext) : DynamicLanguageExpressionVisitor(parent) , m_forceGlobalSearching(parent->m_forceGlobalSearching) , m_reportUnknownNames(parent->m_reportUnknownNames) , m_scanUntilCursor(parent->m_scanUntilCursor) { ENSURE_CHAIN_NOT_LOCKED if ( overrideContext ) { m_context = overrideContext; } Q_ASSERT(context()); } void ExpressionVisitor::encounter(AbstractType::Ptr type, DeclarationPointer declaration, bool alias) { setLastIsAlias(alias); DynamicLanguageExpressionVisitor::encounter(type, declaration); } void ExpressionVisitor::visitAttribute(AttributeAst* node) { ExpressionAst* accessingAttributeOf = node->value; ExpressionVisitor v(this); v.visitNode(accessingAttributeOf); AbstractType::Ptr accessedType = v.lastType(); QList accessingAttributeOfType = Helper::filterType(accessedType, [](AbstractType::Ptr type) { auto resolved = Helper::resolveAliasType(type); return resolved && resolved->whichType() == AbstractType::TypeStructure; }, [](AbstractType::Ptr type) { return Helper::resolveAliasType(type).cast(); } ); // Step 1: Find all matching declarations which are made inside the type of which the accessed object is. // Like, for A.B.C where B is an instance of foo, when processing C, find all properties of foo which are called C. bool haveOneUsefulType = false; Declaration* foundDeclaration = nullptr; DUChainReadLocker lock; foreach ( StructureType::Ptr current, accessingAttributeOfType ) { if ( Helper::isUsefulType(current.cast()) ) { haveOneUsefulType = true; } - foundDeclaration = Helper::accessAttribute(current->declaration(context()->topContext()), - node->attribute->value, context()); + foundDeclaration = Helper::accessAttribute(current, node->attribute->value, context()); if ( foundDeclaration ) { break; } } if ( ! haveOneUsefulType ) { setConfident(false); } // Step 2: Construct the type of the declaration which was found. if ( foundDeclaration ) { auto d = Helper::resolveAliasDeclaration(foundDeclaration); if ( ! d ) { return encounterUnknown(); } bool isAlias = dynamic_cast(foundDeclaration) || d->isFunctionDeclaration() || dynamic_cast(d); encounter(foundDeclaration->abstractType(), DeclarationPointer(foundDeclaration)); setLastIsAlias(isAlias); } else { return encounterUnknown(); } } void ExpressionVisitor::visitCall(CallAst* node) { foreach ( ExpressionAst* c, node->arguments ) { AstDefaultVisitor::visitNode(c); } ExpressionVisitor v(this); v.visitNode(node->function); Declaration* actualDeclaration = 0; FunctionType::Ptr unidentifiedFunctionType; if ( ! v.m_isAlias && v.lastType() && v.lastType()->whichType() == AbstractType::TypeFunction ) { unidentifiedFunctionType = v.lastType().cast(); } else if ( ! v.m_isAlias && v.lastType() && v.lastType()->whichType() == AbstractType::TypeStructure ) { // use __call__ DUChainReadLocker lock; auto c = v.lastType().cast()->internalContext(topContext()); if ( c ) { auto decls = c->findDeclarations(QualifiedIdentifier("__call__")); if ( ! decls.isEmpty() ) { auto decl = dynamic_cast(decls.first()); if ( decl ) { unidentifiedFunctionType = decl->abstractType().cast(); } } } } else { actualDeclaration = v.lastDeclaration().data(); } if ( unidentifiedFunctionType ) { encounter(unidentifiedFunctionType->returnType()); return; } else if ( !actualDeclaration ) { setConfident(false); return encounterUnknown(); } DUChainReadLocker lock; actualDeclaration = Helper::resolveAliasDeclaration(actualDeclaration); ClassDeclaration* classDecl = dynamic_cast(actualDeclaration); QPair d = Helper::functionDeclarationForCalledDeclaration( DeclarationPointer(actualDeclaration)); FunctionDeclaration* funcDecl = d.first.data(); bool isConstructor = d.second; lock.unlock(); if ( funcDecl && funcDecl->type() ) { // try to deduce type from a decorator checkForDecorators(node, funcDecl, classDecl, isConstructor); } else if ( classDecl ) { return encounter(classDecl->abstractType(), DeclarationPointer(classDecl)); } else { if ( actualDeclaration ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Declaraton is not a class or function declaration"; } return encounterUnknown(); } } void ExpressionVisitor::checkForDecorators(CallAst* node, FunctionDeclaration* funcDecl, ClassDeclaration* classDecl, bool isConstructor) { AbstractType::Ptr type; Declaration* useDeclaration = nullptr; if ( isConstructor && classDecl ) { type = classDecl->abstractType(); useDeclaration = classDecl; } else { type = funcDecl->type()->returnType(); useDeclaration = funcDecl; } auto listOfTuples = [&](AbstractType::Ptr key, AbstractType::Ptr value) { auto newType = typeObjectForIntegralType("list"); IndexedContainer::Ptr newContents = typeObjectForIntegralType("tuple"); if ( ! newType || ! newContents ) { return AbstractType::Ptr(new IntegralType(IntegralType::TypeMixed)); } if ( ! key ) { key = AbstractType::Ptr(new IntegralType(IntegralType::TypeMixed)); } if ( ! value ) { value = AbstractType::Ptr(new IntegralType(IntegralType::TypeMixed)); } newContents->addEntry(key); newContents->addEntry(value); newType->addContentType(AbstractType::Ptr::staticCast(newContents)); AbstractType::Ptr resultingType = AbstractType::Ptr::staticCast(newType); return resultingType; }; QHash< QString, std::function > knownDecoratorHints; qCDebug(KDEV_PYTHON_DUCHAIN) << "Got function declaration with decorators, checking for list content type..."; knownDecoratorHints["getsType"] = [&](QStringList /*arguments*/, QString /*currentHint*/) { if ( node->function->astType != Ast::AttributeAstType ) { return false; } ExpressionVisitor baseTypeVisitor(this); // when calling foo.bar[3].baz.iteritems(), find the type of "foo.bar[3].baz" baseTypeVisitor.visitNode(static_cast(node->function)->value); if ( auto t = baseTypeVisitor.lastType().cast() ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Found container, using type"; AbstractType::Ptr newType = t->contentType().abstractType(); encounter(newType, DeclarationPointer(useDeclaration)); return true; } return false; }; knownDecoratorHints["getsList"] = [&](QStringList /*arguments*/, QString currentHint) { if ( node->function->astType != Ast::AttributeAstType ) { return false; } ExpressionVisitor baseTypeVisitor(this); // when calling foo.bar[3].baz.iteritems(), find the type of "foo.bar[3].baz" baseTypeVisitor.visitNode(static_cast(node->function)->value); DUChainWriteLocker lock; if ( auto t = baseTypeVisitor.lastType().cast() ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Got container:" << t->toString(); auto newType = typeObjectForIntegralType("list"); if ( ! newType ) { return false; } AbstractType::Ptr contentType; if ( currentHint == "getsList" ) { contentType = t->contentType().abstractType(); } else if ( auto map = MapType::Ptr::dynamicCast(t) ) { contentType = map->keyType().abstractType(); } newType->addContentType(contentType); AbstractType::Ptr resultingType = newType.cast(); encounter(resultingType, DeclarationPointer(useDeclaration)); return true; } return false; }; knownDecoratorHints["getListOfKeys"] = knownDecoratorHints["getsList"]; knownDecoratorHints["enumerate"] = [&](QStringList /*arguments*/, QString /*currentHint*/) { if ( node->function->astType != Ast::NameAstType || node->arguments.size() < 1 ) { return false; } ExpressionVisitor enumeratedTypeVisitor(this); enumeratedTypeVisitor.visitNode(node->arguments.first()); DUChainWriteLocker lock; auto intType = typeObjectForIntegralType("int"); auto enumerated = enumeratedTypeVisitor.lastType(); auto result = listOfTuples(intType, Helper::contentOfIterable(enumerated)); encounter(result, DeclarationPointer(useDeclaration)); return true; }; knownDecoratorHints["getsListOfBoth"] = [&](QStringList /*arguments*/, QString /*currentHint*/) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Got getsListOfBoth decorator, checking container"; if ( node->function->astType != Ast::AttributeAstType ) { return false; } ExpressionVisitor baseTypeVisitor(this); // when calling foo.bar[3].baz.iteritems(), find the type of "foo.bar[3].baz" baseTypeVisitor.visitNode(static_cast(node->function)->value); DUChainWriteLocker lock; if ( auto t = baseTypeVisitor.lastType().cast() ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Got container:" << t->toString(); auto resultingType = listOfTuples(t->keyType().abstractType(), t->contentType().abstractType()); encounter(resultingType, DeclarationPointer(useDeclaration)); return true; } return false; }; knownDecoratorHints["returnContentEqualsContentOf"] = [&](QStringList arguments, QString /*currentHint*/) { int argNum = ! arguments.isEmpty() ? arguments.at(0).toInt() : 0; qCDebug(KDEV_PYTHON_DUCHAIN) << "Found argument dependent decorator, checking argument type" << argNum; if ( argNum >= node->arguments.length() ) { return false; } ExpressionAst* relevantArgument = node->arguments.at(argNum); ExpressionVisitor v(this); v.visitNode(relevantArgument); if ( ! v.lastType() ) { return false; } ListType::Ptr realTarget; if ( auto target = ListType::Ptr::dynamicCast(type) ) { realTarget = target; } if ( auto source = ListType::Ptr::dynamicCast(v.lastType()) ) { if ( ! realTarget ) { // if the function does not force a return type, just copy the source (like for reversed()) realTarget = source; } auto newType = ListType::Ptr::staticCast(AbstractType::Ptr(realTarget->clone())); Q_ASSERT(newType); newType->addContentType(source->contentType().abstractType()); encounter(AbstractType::Ptr::staticCast(newType), DeclarationPointer(useDeclaration)); return true; } return false; }; foreach ( const QString& currentHint, knownDecoratorHints.keys() ) { QStringList arguments; if ( ! Helper::docstringContainsHint(funcDecl, currentHint, &arguments) ) { continue; } // If the hint word appears in the docstring, run the evaluation function. if ( knownDecoratorHints[currentHint](arguments, currentHint) ) { // We indeed found something, so we're done. return; } } // if none of the above decorator-finding methods worked, just use the ordinary return type. return encounter(type, DeclarationPointer(useDeclaration)); } void ExpressionVisitor::visitSubscript(SubscriptAst* node) { AstDefaultVisitor::visitNode(node->value); if ( node->slice && node->slice->astType == Ast::IndexAstType ) { DUChainReadLocker lock; auto indexedTypes = Helper::filterType(lastType(), [](AbstractType::Ptr toFilter) { return toFilter.cast(); }); for ( IndexedContainer::Ptr indexed: indexedTypes ) { // TODO This loop currently only uses the first result, it could construct // an unsure from all the matches. IndexAst* sliceIndexAst = static_cast(node->slice); NumberAst* number = nullptr; bool invert = false; if ( sliceIndexAst->value && sliceIndexAst->value->astType == Ast::UnaryOperationAstType ) { // might be -3 UnaryOperationAst* unary = static_cast(sliceIndexAst->value); if ( unary->type == Ast::UnaryOperatorSub && unary->operand->astType == Ast::NumberAstType ) { number = static_cast(unary->operand); invert = true; } } else if ( sliceIndexAst->value->astType == Ast::NumberAstType ) { number = static_cast(sliceIndexAst->value); } if ( number ) { int sliceIndex = number->value * ( invert ? -1 : 1 ); if ( sliceIndex < 0 && sliceIndex + indexed->typesCount() > 0 ) { sliceIndex += indexed->typesCount(); } if ( sliceIndex < indexed->typesCount() && sliceIndex >= 0 ) { return encounter(indexed->typeAt(sliceIndex).abstractType()); } } // the exact index is unknown, use unsure return encounter(indexed->asUnsureType().cast()); } auto variableTypes = Helper::filterType(lastType(), [](AbstractType::Ptr toFilter) { return toFilter.cast(); }); if ( ! variableTypes.isEmpty() ) { AbstractType::Ptr result(new IntegralType(IntegralType::TypeMixed)); for ( auto variable: variableTypes ) { result = Helper::mergeTypes(result, variable->contentType().abstractType()); } return encounter(result); } } // If that does not work and we have a slice like [3:5], guess it will remain the same type. // That is an approximation we have to make now, should optimally be corrected later. // The reason is that we'd need to parse decorators from the __getitem__ method to support // list/dict/etc properly otherwise, which requires a bit of refactoring first. TODO do this if ( node->slice && node->slice->astType != Ast::IndexAstType ) { return; } // Otherwise, try to use __getitem__. - ExpressionVisitor v(context()); - v.visitNode(node->value); DUChainReadLocker lock; - Declaration* function = Helper::accessAttribute(v.lastDeclaration().data(), "__getitem__", context()); + Declaration* function = Helper::accessAttribute(lastType(), "__getitem__", context()); if ( function && function->isFunctionDeclaration() ) { if ( FunctionType::Ptr functionType = function->type() ) { return encounter(functionType->returnType()); } } // Otherwise, give up return encounterUnknown(); } void ExpressionVisitor::visitList(ListAst* node) { DUChainReadLocker lock; auto type = typeObjectForIntegralType("list"); lock.unlock(); ExpressionVisitor contentVisitor(this); if ( type ) { foreach ( ExpressionAst* content, node->elements ) { contentVisitor.visitNode(content); type->addContentType(contentVisitor.lastType()); } } else { encounterUnknown(); qCWarning(KDEV_PYTHON_DUCHAIN) << " [ !!! ] did not get a typetrack container object when expecting one! Fix code / setup."; } encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitDictionaryComprehension(DictionaryComprehensionAst* node) { DUChainReadLocker lock; auto type = typeObjectForIntegralType("dict"); if ( type ) { DUContext* comprehensionContext = context()->findContextAt(CursorInRevision(node->startLine, node->startCol)); lock.unlock(); Q_ASSERT(comprehensionContext); DUContext* ctx = m_forceGlobalSearching ? context()->topContext() : comprehensionContext; ExpressionVisitor v(this, ctx); v.visitNode(node->value); if ( v.lastType() ) { type->addContentType(v.lastType()); } ExpressionVisitor k(this, ctx); k.visitNode(node->key); if ( k.lastType() ) { type->addKeyType(k.lastType()); } } else { return encounterUnknown(); } encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitSetComprehension(SetComprehensionAst* node) { Python::AstDefaultVisitor::visitSetComprehension(node); DUChainReadLocker lock; auto type = typeObjectForIntegralType("set"); if ( type ) { DUContext* comprehensionContext = context()->findContextAt(CursorInRevision(node->startLine, node->startCol), true); lock.unlock(); auto ctx = m_forceGlobalSearching ? context()->topContext() : comprehensionContext; ExpressionVisitor v(this, ctx); v.visitNode(node->element); if ( v.lastType() ) { type->addContentType(v.lastType()); } } encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitListComprehension(ListComprehensionAst* node) { AstDefaultVisitor::visitListComprehension(node); DUChainReadLocker lock; auto type = typeObjectForIntegralType("list"); if ( type && ! m_forceGlobalSearching ) { // TODO fixme DUContext* comprehensionContext = context()->findContextAt(CursorInRevision(node->startLine, node->startCol), true); lock.unlock(); ExpressionVisitor v(this, comprehensionContext); Q_ASSERT(comprehensionContext); v.visitNode(node->element); if ( v.lastType() ) { type->addContentType(v.lastType()); } } else { return encounterUnknown(); } encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitTuple(TupleAst* node) { DUChainReadLocker lock; IndexedContainer::Ptr type = typeObjectForIntegralType("tuple"); if ( type ) { lock.unlock(); foreach ( ExpressionAst* expr, node->elements ) { ExpressionVisitor v(this); v.visitNode(expr); if ( v.lastType() ) { type->addEntry(v.lastType()); } else { type->addEntry(AbstractType::Ptr(new IntegralType(IntegralType::TypeMixed))); } } encounter(AbstractType::Ptr::staticCast(type)); } else { qCWarning(KDEV_PYTHON_DUCHAIN) << "tuple type object is not available"; return encounterUnknown(); } } void ExpressionVisitor::visitIfExpression(IfExpressionAst* node) { AstDefaultVisitor::visitIfExpression(node); if ( node->body && node->orelse ) { ExpressionVisitor v(this); v.visitNode(node->body); AbstractType::Ptr first = v.lastType(); v.visitNode(node->orelse); AbstractType::Ptr second = v.lastType(); encounter(Helper::mergeTypes(first, second)); } } void ExpressionVisitor::visitSet(SetAst* node) { DUChainReadLocker lock; auto type = typeObjectForIntegralType("set"); lock.unlock(); ExpressionVisitor contentVisitor(this); if ( type ) { foreach ( ExpressionAst* content, node->elements ) { contentVisitor.visitNode(content); type->addContentType(contentVisitor.lastType()); } } encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitDict(DictAst* node) { DUChainReadLocker lock; auto type = typeObjectForIntegralType("dict"); lock.unlock(); ExpressionVisitor contentVisitor(this); ExpressionVisitor keyVisitor(this); if ( type ) { foreach ( ExpressionAst* content, node->values ) { contentVisitor.visitNode(content); type->addContentType(contentVisitor.lastType()); } foreach ( ExpressionAst* key, node->keys ) { keyVisitor.visitNode(key); type->addKeyType(keyVisitor.lastType()); } } encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitNumber(Python::NumberAst* number) { AbstractType::Ptr type; DUChainReadLocker lock; if ( number->isInt ) { type = typeObjectForIntegralType("int"); } else { type = typeObjectForIntegralType("float"); } encounter(type); } void ExpressionVisitor::visitString(Python::StringAst* ) { DUChainReadLocker lock; StructureType::Ptr type = typeObjectForIntegralType("str"); encounter(AbstractType::Ptr::staticCast(type)); } void ExpressionVisitor::visitBytes(Python::BytesAst* ) { DUChainReadLocker lock; auto type = typeObjectForIntegralType("bytes"); encounter(AbstractType::Ptr::staticCast(type)); } RangeInRevision nodeRange(Python::Ast* node) { return RangeInRevision(node->startLine, node->startCol, node->endLine,node->endCol); } void ExpressionVisitor::addUnknownName(const QString& name) { if ( m_parentVisitor ) { static_cast(m_parentVisitor)->addUnknownName(name); } else if ( ! m_unknownNames.contains(name) ) { m_unknownNames.insert(name); } } void ExpressionVisitor::visitNameConstant(NameConstantAst* node) { // handles "True", "False", "None" auto defId = m_defaultTypes.constFind(node->value); if ( defId != m_defaultTypes.constEnd() ) { return encounter(*defId); } } void ExpressionVisitor::visitName(Python::NameAst* node) { RangeInRevision range; if ( m_scanUntilCursor.isValid() ) { range = RangeInRevision(CursorInRevision(0, 0), m_scanUntilCursor); } else if ( m_forceGlobalSearching ) { range = RangeInRevision::invalid(); } else { range = RangeInRevision(0, 0, node->endLine, node->endCol); } DUChainReadLocker lock; Declaration* d = Helper::declarationForName(QualifiedIdentifier(node->identifier->value), range, DUChainPointer(context())); if ( d ) { bool isAlias = dynamic_cast(d) || d->isFunctionDeclaration() || dynamic_cast(d); return encounter(d->abstractType(), DeclarationPointer(d), isAlias); } else { if ( m_reportUnknownNames ) { addUnknownName(node->identifier->value); } return encounterUnknown(); } } void ExpressionVisitor::visitCompare(CompareAst* node) { Python::AstDefaultVisitor::visitCompare(node); encounter(AbstractType::Ptr(new IntegralType(IntegralType::TypeBoolean))); } AbstractType::Ptr ExpressionVisitor::fromBinaryOperator(AbstractType::Ptr lhs, AbstractType::Ptr rhs, const QString& op) { DUChainReadLocker lock; auto operatorReturnType = [&op, this](const AbstractType::Ptr& p) { StructureType::Ptr type = p.cast(); if ( ! type ) { return AbstractType::Ptr(); } - Declaration* func = Helper::accessAttribute(type->declaration(context()->topContext()), op, context()); + Declaration* func = Helper::accessAttribute(type, op, context()); if ( ! func ) { return AbstractType::Ptr(); } auto operatorFunctionType = func->type(); DUChainReadLocker lock; auto context = Helper::getDocumentationFileContext(); if ( context ) { auto object_decl = context->findDeclarations(QualifiedIdentifier("object")); if ( ! object_decl.isEmpty() && object_decl.first()->internalContext() == func->context() ) { // if the operator is only declared in object(), do not include its type (which is void). return AbstractType::Ptr(); } } return operatorFunctionType ? operatorFunctionType->returnType() : AbstractType::Ptr(); }; return Helper::mergeTypes(operatorReturnType(lhs), operatorReturnType(rhs)); } void ExpressionVisitor::visitBinaryOperation(Python::BinaryOperationAst* node) { ExpressionVisitor lhsVisitor(this); ExpressionVisitor rhsVisitor(this); AbstractType::Ptr result; lhsVisitor.visitNode(node->lhs); rhsVisitor.visitNode(node->rhs); if ( lhsVisitor.lastType() && lhsVisitor.lastType()->whichType() == AbstractType::TypeUnsure ) { KDevelop::UnsureType::Ptr unsure = lhsVisitor.lastType().cast(); const IndexedType* types = unsure->types(); for( uint i = 0; i < unsure->typesSize(); i++ ) { result = Helper::mergeTypes(result, fromBinaryOperator(types[i].abstractType(), rhsVisitor.lastType(), node->methodName())); } } else { result = fromBinaryOperator(lhsVisitor.lastType(), rhsVisitor.lastType(), node->methodName()); } if ( ! Helper::isUsefulType(result) ) { result = Helper::mergeTypes(lhsVisitor.lastType(), rhsVisitor.lastType()); } return encounter(result); } void ExpressionVisitor::visitUnaryOperation(Python::UnaryOperationAst* node) { // Only visit the value, and use that as the result. Unary operators usually // don't change the type of the object (i.e. -a has the same type as a) visitNode(node->operand); } void ExpressionVisitor::visitBooleanOperation(Python::BooleanOperationAst* node) { foreach (ExpressionAst* expression, node->values) { visitNode(expression); } encounter(AbstractType::Ptr(new IntegralType(IntegralType::TypeBoolean))); } } diff --git a/duchain/helpers.cpp b/duchain/helpers.cpp index 9a825690..6296eead 100644 --- a/duchain/helpers.cpp +++ b/duchain/helpers.cpp @@ -1,542 +1,542 @@ /***************************************************************************** * This file is part of KDevelop * * Copyright 2011-2013 Sven Brauch * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License as * * published by the Free Software Foundation; either version 2 of * * the License, or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************** */ #include "helpers.h" #include #include #include #include #include #include "duchaindebug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ast.h" #include "types/hintedtype.h" #include "types/unsuretype.h" #include "types/indexedcontainer.h" #include "kdevpythonversion.h" #include "expressionvisitor.h" using namespace KDevelop; namespace Python { QMap> Helper::cachedCustomIncludes; QMap> Helper::cachedSearchPaths; QVector Helper::projectSearchPaths; QStringList Helper::dataDirs; QString Helper::documentationFile; DUChainPointer Helper::documentationFileContext = DUChainPointer(0); QStringList Helper::correctionFileDirs; QString Helper::localCorrectionFileDir; QMutex Helper::cacheMutex; QMutex Helper::projectPathLock; void Helper::scheduleDependency(const IndexedString& dependency, int betterThanPriority) { BackgroundParser* bgparser = KDevelop::ICore::self()->languageController()->backgroundParser(); bool needsReschedule = true; if ( bgparser->isQueued(dependency) ) { const auto priority= bgparser->priorityForDocument(dependency); if ( priority > betterThanPriority - 1 ) { bgparser->removeDocument(dependency); } else { needsReschedule = false; } } if ( needsReschedule ) { bgparser->addDocument(dependency, TopDUContext::ForceUpdate, betterThanPriority - 1, 0, ParseJob::FullSequentialProcessing); } } IndexedDeclaration Helper::declarationUnderCursor(bool allowUse) { KDevelop::IDocument* doc = ICore::self()->documentController()->activeDocument(); const auto view = static_cast(ICore::self()->partController())->activeView(); if ( doc && doc->textDocument() && view ) { DUChainReadLocker lock; const auto cursor = view->cursorPosition(); if ( allowUse ) { return IndexedDeclaration(DUChainUtils::itemUnderCursor(doc->url(), cursor).declaration); } else { return DUChainUtils::declarationInLine(cursor, DUChainUtils::standardContextForUrl(doc->url())); } } return KDevelop::IndexedDeclaration(); } -Declaration* Helper::accessAttribute(Declaration* accessed, const QString& attribute, const DUContext* current) +Declaration* Helper::accessAttribute(const AbstractType::Ptr accessed, const QString& attribute, const DUContext* current) { - if ( ! accessed || ! accessed->abstractType() ) { + if ( ! accessed ) { return 0; } // if the type is unsure, search all the possibilities - auto structureTypes = Helper::filterType(accessed->abstractType(), + auto structureTypes = Helper::filterType(accessed, [](AbstractType::Ptr toFilter) { auto type = Helper::resolveAliasType(toFilter); return type && type->whichType() == AbstractType::TypeStructure; } ); for ( auto type: structureTypes ) { QList searchContexts = Helper::internalContextsForClass(type, current->topContext()); for ( DUContext* c: searchContexts ) { auto found = c->findDeclarations(KDevelop::Identifier(attribute), CursorInRevision::invalid(), current->topContext(), DUContext::DontSearchInParent); std::reverse(found.begin(), found.end()); // never consider decls from the builtins if ( ! found.isEmpty() && ( found.first()->topContext() != Helper::getDocumentationFileContext() || c->topContext() == Helper::getDocumentationFileContext() ) ) { return found.first(); } } } return nullptr; } AbstractType::Ptr Helper::resolveAliasType(const AbstractType::Ptr eventualAlias) { return TypeUtils::resolveAliasType(eventualAlias); } AbstractType::Ptr Helper::extractTypeHints(AbstractType::Ptr type) { return Helper::foldTypes(Helper::filterType(type, [](AbstractType::Ptr t) -> bool { auto hint = t.cast(); return !hint || hint->isValid(); })); } Helper::FuncInfo Helper::functionDeclarationForCalledDeclaration(DeclarationPointer ptr) { if ( ! ptr ) { return FuncInfo(); } bool isConstructor = false; DeclarationPointer calledDeclaration = ptr; if ( ! calledDeclaration->isFunctionDeclaration() ) { // not a function -- try looking for a constructor StructureType::Ptr classType = calledDeclaration->type(); auto contexts = Helper::internalContextsForClass(classType, ptr->topContext()); for ( DUContext* context: contexts ) { static KDevelop::Identifier initIdentifier("__init__"); QList constructors = context->findDeclarations(initIdentifier); if ( ! constructors.isEmpty() ) { calledDeclaration = dynamic_cast(constructors.first()); isConstructor = true; break; } } } FunctionDeclarationPointer lastFunctionDeclaration; if ( calledDeclaration ) { // It was a class -- use the constructor lastFunctionDeclaration = calledDeclaration.dynamicCast(); } else { // Use the original declaration lastFunctionDeclaration = ptr.dynamicCast(); } return QPair(lastFunctionDeclaration, isConstructor); } Declaration* Helper::declarationForName(const QualifiedIdentifier& identifier, const RangeInRevision& nodeRange, KDevelop::DUChainPointer context) { QList declarations; QList localDeclarations; QList importedLocalDeclarations; { DUChainReadLocker lock(DUChain::lock()); if ( context.data() == context->topContext() && nodeRange.isValid() ) { declarations = context->topContext()->findDeclarations(identifier, nodeRange.end); } else { declarations = context->topContext()->findDeclarations(identifier, CursorInRevision::invalid()); } localDeclarations = context->findLocalDeclarations(identifier.last(), nodeRange.end, 0, AbstractType::Ptr(0), DUContext::DontResolveAliases); importedLocalDeclarations = context->findDeclarations(identifier.last(), nodeRange.end); } Declaration* declaration = 0; if ( localDeclarations.length() ) { declaration = localDeclarations.last(); } else if ( importedLocalDeclarations.length() ) { // don't use declarations from class decls, they must be referenced through "self." do { declaration = importedLocalDeclarations.last(); importedLocalDeclarations.pop_back(); if ( !declaration || (declaration->context()->type() == DUContext::Class && context->type() != DUContext::Function) ) { declaration = 0; } if ( importedLocalDeclarations.isEmpty() ) { break; } } while ( ! importedLocalDeclarations.isEmpty() ); } if ( !declaration && declarations.length() ) { declaration = declarations.last(); } return declaration; } QList< DUContext* > Helper::internalContextsForClass(StructureType::Ptr klassType, TopDUContext* context, ContextSearchFlags flags, int depth) { QList searchContexts; if ( ! klassType ) { return searchContexts; } if ( auto c = klassType->internalContext(context) ) { searchContexts << c; } Declaration* decl = Helper::resolveAliasDeclaration(klassType->declaration(context)); ClassDeclaration* klass = dynamic_cast(decl); if ( klass ) { FOREACH_FUNCTION ( const BaseClassInstance& base, klass->baseClasses ) { if ( flags == PublicOnly && base.access == KDevelop::Declaration::Private ) { continue; } StructureType::Ptr baseClassType = base.baseClass.type(); // recursive call, because the base class will have more base classes eventually if ( depth < 10 ) { searchContexts.append(Helper::internalContextsForClass(baseClassType, context, flags, depth + 1)); } } } return searchContexts; } Declaration* Helper::resolveAliasDeclaration(Declaration* decl) { AliasDeclaration* alias = dynamic_cast(decl); if ( alias ) { DUChainReadLocker lock; return alias->aliasedDeclaration().data(); } else return decl; } QStringList Helper::getDataDirs() { if ( Helper::dataDirs.isEmpty() ) { Helper::dataDirs = QStandardPaths::locateAll(QStandardPaths::GenericDataLocation, "kdevpythonsupport/documentation_files", QStandardPaths::LocateDirectory); } return Helper::dataDirs; } QString Helper::getDocumentationFile() { if ( Helper::documentationFile.isNull() ) { Helper::documentationFile = QStandardPaths::locate(QStandardPaths::GenericDataLocation, "kdevpythonsupport/documentation_files/builtindocumentation.py"); } return Helper::documentationFile; } ReferencedTopDUContext Helper::getDocumentationFileContext() { if ( Helper::documentationFileContext ) { return ReferencedTopDUContext(Helper::documentationFileContext.data()); } else { DUChainReadLocker lock; auto file = IndexedString(Helper::getDocumentationFile()); ReferencedTopDUContext ctx = ReferencedTopDUContext(DUChain::self()->chainForDocument(file)); Helper::documentationFileContext = DUChainPointer(ctx.data()); return ctx; } return ReferencedTopDUContext(0); // c++... } // stolen from KUrl. duh. static QString _relativePath(const QString &base_dir, const QString &path) { QString _base_dir(QDir::cleanPath(base_dir)); QString _path(QDir::cleanPath(path.isEmpty() || QDir::isRelativePath(path) ? _base_dir+QLatin1Char('/')+path : path)); if (_base_dir.isEmpty()) return _path; if (_base_dir[_base_dir.length()-1] != QLatin1Char('/')) _base_dir.append(QLatin1Char('/') ); const QStringList list1 = _base_dir.split(QLatin1Char('/'), QString::SkipEmptyParts); const QStringList list2 = _path.split(QLatin1Char('/'), QString::SkipEmptyParts); // Find where they meet int level = 0; int maxLevel = qMin(list1.count(), list2.count()); while((level < maxLevel) && (list1[level] == list2[level])) level++; QString result; // Need to go down out of the first path to the common branch. for(int i = level; i < list1.count(); i++) result.append(QLatin1String("../")); // Now up up from the common branch to the second path. for(int i = level; i < list2.count(); i++) result.append(list2[i]).append(QLatin1Char('/')); if ((level < list2.count()) && (path[path.length()-1] != QLatin1Char('/'))) result.truncate(result.length()-1); return result; } QUrl Helper::getCorrectionFile(const QUrl& document) { if ( Helper::correctionFileDirs.isEmpty() ) { Helper::correctionFileDirs = QStandardPaths::locateAll(QStandardPaths::GenericDataLocation, "kdevpythonsupport/correction_files/", QStandardPaths::LocateDirectory); } foreach (QString correctionFileDir, correctionFileDirs) { foreach ( const QUrl& basePath, Helper::getSearchPaths(QUrl()) ) { if ( ! basePath.isParentOf(document) ) { continue; } auto base = basePath.path(); auto doc = document.path(); auto relative = _relativePath(base, doc); auto fullPath = correctionFileDir + "/" + relative; if ( QFile::exists(fullPath) ) { return QUrl::fromLocalFile(fullPath).adjusted(QUrl::NormalizePathSegments); } } } return {}; } QUrl Helper::getLocalCorrectionFile(const QUrl& document) { if ( Helper::localCorrectionFileDir.isNull() ) { Helper::localCorrectionFileDir = QStandardPaths::writableLocation(QStandardPaths::GenericDataLocation) + QLatin1Char('/') + "kdevpythonsupport/correction_files/"; } auto absolutePath = QUrl(); foreach ( const auto& basePath, Helper::getSearchPaths(QUrl()) ) { if ( ! basePath.isParentOf(document) ) { continue; } auto path = QDir(basePath.path()).relativeFilePath(document.path()); absolutePath = QUrl::fromLocalFile(Helper::localCorrectionFileDir + path); break; } return absolutePath; } QString getPythonExecutablePath(IProject* project) { if ( project ) { auto interpreter = project->projectConfiguration()->group("pythonsupport").readEntry("interpreter"); if ( !interpreter.isEmpty() ) { // we have a user-configured interpreter, try using it QFile f(interpreter); if ( f.exists() ) { return interpreter; } qCWarning(KDEV_PYTHON_DUCHAIN) << "Custom python interpreter" << interpreter << "configured for project" << project->name() << "is invalid, using default"; } } // Find python 3 (https://www.python.org/dev/peps/pep-0394/) auto result = QStandardPaths::findExecutable("python" PYTHON_VERSION_MAJOR "." PYTHON_VERSION_MINOR); if ( ! result.isEmpty() ) { return result; } result = QStandardPaths::findExecutable("python" PYTHON_VERSION_MAJOR); if ( ! result.isEmpty() ) { return result; } result = QStandardPaths::findExecutable("python"); if ( ! result.isEmpty() ) { return result; } #ifdef Q_OS_WIN QStringList extraPaths; // Check for default CPython installation path, because the // installer does not add the path to $PATH. QStringList keys = { "HKEY_LOCAL_MACHINE\\Software\\Python\\PythonCore\\PYTHON_VERSION\\InstallPath", "HKEY_LOCAL_MACHINE\\Software\\Python\\PythonCore\\PYTHON_VERSION-32\\InstallPath", "HKEY_CURRENT_USER\\Software\\Python\\PythonCore\\PYTHON_VERSION\\InstallPath", "HKEY_CURRENT_USER\\Software\\Python\\PythonCore\\PYTHON_VERSION-32\\InstallPath" }; auto version = QString(PYTHON_VERSION_MAJOR) + "." + PYTHON_VERSION_MINOR; foreach ( QString key, keys ) { key.replace("PYTHON_VERSION", version); QSettings base(key.left(key.indexOf("Python")), QSettings::NativeFormat); if ( ! base.childGroups().contains("Python") ) { continue; } QSettings keySettings(key, QSettings::NativeFormat); auto path = keySettings.value("Default").toString(); if ( ! path.isEmpty() ) { extraPaths << path; break; } } result = QStandardPaths::findExecutable("python", extraPaths); if ( ! result.isEmpty() ) { return result; } #endif // fallback return PYTHON_EXECUTABLE; } QVector Helper::getSearchPaths(const QUrl& workingOnDocument) { QMutexLocker lock(&Helper::cacheMutex); QVector searchPaths; // search in the projects, as they're packages and likely to be installed or added to PYTHONPATH later // and also add custom include paths that are defined in the projects auto project = ICore::self()->projectController()->findProjectForUrl(workingOnDocument); { QMutexLocker lock(&Helper::projectPathLock); searchPaths << Helper::projectSearchPaths; searchPaths << Helper::cachedCustomIncludes.value(project); } foreach ( const QString& path, getDataDirs() ) { searchPaths.append(QUrl::fromLocalFile(path)); } if ( !cachedSearchPaths.contains(project) ) { QVector cachedForProject; qCDebug(KDEV_PYTHON_DUCHAIN) << "*** Collecting search paths..."; QStringList getpath; getpath << "-c" << "import sys; sys.stdout.write('$|$'.join(sys.path))"; QProcess python; python.start(getPythonExecutablePath(project), getpath); python.waitForFinished(1000); QString pythonpath = QString::fromUtf8(python.readAllStandardOutput()); auto paths = pythonpath.split("$|$"); paths.removeAll(""); if ( ! pythonpath.isEmpty() ) { foreach ( const QString& path, paths ) { cachedForProject.append(QUrl::fromLocalFile(path)); } } else { qCWarning(KDEV_PYTHON_DUCHAIN) << "Could not get search paths! Defaulting to stupid stuff."; searchPaths.append(QUrl::fromLocalFile("/usr/lib/python3.5")); searchPaths.append(QUrl::fromLocalFile("/usr/lib/python3.5/site-packages")); QString path = qgetenv("PYTHONPATH"); QStringList paths = path.split(':'); foreach ( const QString& path, paths ) { cachedForProject.append(QUrl::fromLocalFile(path)); } } qCDebug(KDEV_PYTHON_DUCHAIN) << " *** Done. Got search paths: " << cachedSearchPaths; cachedSearchPaths.insert(project, cachedForProject); } else { qCDebug(KDEV_PYTHON_DUCHAIN) << " --- Search paths from cache: " << cachedSearchPaths; } searchPaths.append(cachedSearchPaths.value(project)); auto dir = workingOnDocument.adjusted(QUrl::RemoveFilename); if ( ! dir.isEmpty() ) { // search in the current packages searchPaths.append(dir); } return searchPaths; } bool Helper::isUsefulType(AbstractType::Ptr type) { return TypeUtils::isUsefulType(type); } AbstractType::Ptr Helper::contentOfIterable(const AbstractType::Ptr iterable) { auto items = filterType(iterable, [](AbstractType::Ptr t) { return ListType::Ptr::dynamicCast(t) || IndexedContainer::Ptr::dynamicCast(t); }, [](AbstractType::Ptr t) { if (auto map = MapType::Ptr::dynamicCast(t)) { // Iterating over dicts gets keys, not values return map->keyType().abstractType(); } else if ( auto variable = ListType::Ptr::dynamicCast(t) ) { return AbstractType::Ptr(variable->contentType().abstractType()); } else { auto indexed = t.cast(); return indexed->asUnsureType(); } } ); if ( items.size() == 1 ) { return items.first(); } auto unsure = AbstractType::Ptr(new UnsureType); for ( auto type: items ) { Helper::mergeTypes(unsure, type); } return unsure; } AbstractType::Ptr Helper::mergeTypes(AbstractType::Ptr type, const AbstractType::Ptr newType) { UnsureType::Ptr ret; return TypeUtils::mergeTypes(type, newType); } } diff --git a/duchain/helpers.h b/duchain/helpers.h index 8a5d1132..0c9226b5 100644 --- a/duchain/helpers.h +++ b/duchain/helpers.h @@ -1,216 +1,216 @@ /***************************************************************************** * This file is part of KDevelop * * Copyright 2011-2012 Sven Brauch * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License as * * published by the Free Software Foundation; either version 2 of * * the License, or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************** */ #ifndef GLOBALHELPERS_H #define GLOBALHELPERS_H #include "declarations/classdeclaration.h" #include "pythonduchainexport.h" #include "types/unsuretype.h" #include "ast.h" #include #include #include #include #include #include #include #include #include #include #include "pythonduchainexport.h" #include "types/unsuretype.h" #include "declarations/functiondeclaration.h" #include "ast.h" using namespace KDevelop; namespace Python { class KDEVPYTHONDUCHAIN_EXPORT Helper { public: /** get search paths for python files **/ static QVector getSearchPaths(const QUrl& workingOnDocument); static QStringList dataDirs; static QString documentationFile; static QStringList correctionFileDirs; static QString localCorrectionFileDir; static DUChainPointer documentationFileContext; static QStringList getDataDirs(); static QString getDocumentationFile(); static ReferencedTopDUContext getDocumentationFileContext(); static QUrl getCorrectionFile(const QUrl& document); static QUrl getLocalCorrectionFile(const QUrl& document); static QMutex cacheMutex; static QMap> cachedCustomIncludes; static QMap> cachedSearchPaths; static QMutex projectPathLock; static QVector projectSearchPaths; static AbstractType::Ptr extractTypeHints(AbstractType::Ptr type); - static Declaration* accessAttribute(Declaration* accessed, const QString& attribute, const DUContext* current); + static Declaration* accessAttribute(const AbstractType::Ptr accessed, const QString& attribute, const DUContext* current); static AbstractType::Ptr resolveAliasType(const AbstractType::Ptr eventualAlias); /** * @brief Get the content type(s) of something that is an iterable. * * @param iterable Type to get the contents of. Can be an unsure. * @return KDevelop::AbstractType::Ptr Content type. Might be an unsure. */ static AbstractType::Ptr contentOfIterable(const AbstractType::Ptr iterable); /** * @brief Get a list of types inside the passed type which match the specified filter. * The filter will be matched against the type only if it is not an unsure type, * or else against all types inside that unsure type. * @param type The type to search * @param accept Filter function, return true if you want the type. * @return QList< KDevelop::AbstractType::Ptr > list of types accepted by the filter. */ template static QList filterType(AbstractType::Ptr type, std::function accept, std::function map = std::function()) { QList types; if ( ! type ) { return types; } if ( type->whichType() == KDevelop::AbstractType::TypeUnsure ) { UnsureType::Ptr unsure(type.cast()); for ( unsigned int i = 0; i < unsure->typesSize(); i++ ) { AbstractType::Ptr t = unsure->types()[i].abstractType(); if ( accept(t) ) { types << ( map ? map(t) : t.cast() ); } } } else if ( accept(type) ) { types << ( map ? map(type) : type.cast() ); } return types; } static void scheduleDependency(const IndexedString& dependency, int betterThanPriority); static KDevelop::IndexedDeclaration declarationUnderCursor(bool allowUse = true); /** * @brief Finds whether the specified called declaration is a function declaration, and if not, * checks for a class declaration; then returns the constructor * * @param ptr the declaration to check * @return the function pointer which was found, or an invalid pointer, and a bool * which is true when it is a constructor **/ using FuncInfo = QPair; static FuncInfo functionDeclarationForCalledDeclaration(DeclarationPointer ptr); template static const Decorator* findDecoratorByName(T* inDeclaration, const QString& name) { const int count = inDeclaration->decoratorsSize(); const IndexedString indexedName = IndexedString(name); for ( int i = 0; i < count; i++ ) { if ( inDeclaration->decorators()[i].fastName() == indexedName ) return &(inDeclaration->decorators()[i]); } return 0; }; static bool docstringContainsHint(Declaration* declaration, const QString& hintName, QStringList* args = 0) { // TODO cache types! this is horribly inefficient const QString& comment = declaration->comment(); const QString search = "! " + hintName + " !"; int index = comment.indexOf(search); if ( index >= 0 ) { if ( args ) { int eol = comment.indexOf('\n', index); int start = index+search.size()+1; QString decl = comment.mid(start, eol-start); *args = decl.split(' '); } return true; } return false; } /** * @copydoc TypeUtils::mergeTypes */ static AbstractType::Ptr mergeTypes(AbstractType::Ptr type, const AbstractType::Ptr newType); /** * @brief Like mergeTypes(), but merges a list of types into a newly allocated type. * Returns mixed if the list is empty. * @return KDevelop::AbstractType::Ptr an unsure type consisting of all types in the list. */ template static AbstractType::Ptr foldTypes(QList types, std::function transform = std::function()) { AbstractType::Ptr result(new IntegralType(IntegralType::TypeMixed)); for ( T type : types ) { result = Helper::mergeTypes(result, transform ? transform(type) : AbstractType::Ptr::staticCast(type)); } return result; }; /** check whether the argument is a null, mixed, or none integral type **/ static bool isUsefulType(AbstractType::Ptr type); enum ContextSearchFlags { NoFlags, PublicOnly }; /** * @brief Find all internal contexts for this class and its base classes recursively * * @param klass Type object for the class to search contexts * @param context TopContext for finding the declarations for types * @return list of contexts which were found **/ static QList internalContextsForClass(KDevelop::StructureType::Ptr klassType, TopDUContext* context, ContextSearchFlags flags = NoFlags, int depth = 0); /** * @brief Resolve the given declaration if it is an alias declaration. * * @param decl the declaration to resolve * @return :Declaration* decl if not an alias declaration, decl->aliasedDeclaration().data otherwise * DUChain must be read locked **/ static Declaration* resolveAliasDeclaration(Declaration* decl); static Declaration* declarationForName(const QualifiedIdentifier& identifier, const RangeInRevision& nodeRange, DUChainPointer context); }; } #endif diff --git a/duchain/tests/pyduchaintest.cpp b/duchain/tests/pyduchaintest.cpp index 50ca117e..62545e40 100644 --- a/duchain/tests/pyduchaintest.cpp +++ b/duchain/tests/pyduchaintest.cpp @@ -1,1481 +1,1490 @@ /***************************************************************************** * Copyright 2010 (c) Miquel Canes Gonzalez * * Copyright 2012 (c) Sven Brauch * * * * Permission is hereby granted, free of charge, to any person obtaining * * a copy of this software and associated documentation files (the * * "Software"), to deal in the Software without restriction, including * * without limitation the rights to use, copy, modify, merge, publish, * * distribute, sublicense, and/or sell copies of the Software, and to * * permit persons to whom the Software is furnished to do so, subject to * * the following conditions: * * * * The above copyright notice and this permission notice shall be * * included in all copies or substantial portions of the Software. * * * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * *****************************************************************************/ #include #include "duchaindebug.h" #include "pyduchaintest.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "parsesession.h" #include "pythoneditorintegrator.h" #include "declarationbuilder.h" #include "usebuilder.h" #include "astdefaultvisitor.h" #include "expressionvisitor.h" #include "contextbuilder.h" #include "astbuilder.h" #include "duchain/helpers.h" QTEST_MAIN(PyDUChainTest) using namespace KDevelop; using namespace Python; PyDUChainTest::PyDUChainTest(QObject* parent): QObject(parent) { assetsDir = QDir(DUCHAIN_PY_DATA_DIR); if (!assetsDir.cd("data")) { qFatal("Failed find data directory for test files. Aborting"); } testDir = QDir(testDirOwner.path()); qputenv("PYTHONPATH", assetsDir.absolutePath().toUtf8()); initShell(); } QList PyDUChainTest::FindPyFiles(QDir& rootDir) { QList foundfiles; rootDir.setFilter(QDir::Files | QDir::Dirs | QDir::NoDot | QDir::NoDotDot); rootDir.setNameFilters(QStringList() << "*.py"); // We only want .py files QDirIterator it(rootDir, QDirIterator::Subdirectories); while(it.hasNext()) { foundfiles.append(it.next()); } return foundfiles; } void PyDUChainTest::init() { QString currentTest = QString(QTest::currentTestFunction()); if (lastTest == currentTest) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Already prepared assets for " << currentTest << ", skipping"; return; } else { lastTest = currentTest; } qCDebug(KDEV_PYTHON_DUCHAIN) << "Preparing assets for test " << currentTest; QDir assetModuleDir = QDir(assetsDir.absolutePath()); if (!assetModuleDir.cd(currentTest)) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Asset directory " << currentTest << " does not exist under " << assetModuleDir.absolutePath() << ". Skipping it."; return; } qCDebug(KDEV_PYTHON_DUCHAIN) << "Searching for python files in " << assetModuleDir.absolutePath(); QList foundfiles = FindPyFiles(assetModuleDir); QString correctionFileDir = QStandardPaths::locate(QStandardPaths::GenericDataLocation, "kdevpythonsupport/correction_files", QStandardPaths::LocateDirectory); auto correctionFileUrl = QUrl(QDir::cleanPath(correctionFileDir + "/testCorrectionFiles/example.py")); foundfiles.prepend(correctionFileUrl.path()); for ( int i = 0; i < 2; i++ ) { // Parse each file twice, to ensure no parsing-order related bugs appear. // Such bugs will need separate unit tests and should not influence these. foreach(const QString filename, foundfiles) { qCDebug(KDEV_PYTHON_DUCHAIN) << "Parsing asset: " << filename; DUChain::self()->updateContextForUrl(IndexedString(filename), KDevelop::TopDUContext::AllDeclarationsContextsAndUses); ICore::self()->languageController()->backgroundParser()->parseDocuments(); } foreach(const QString filename, foundfiles) { DUChain::self()->waitForUpdate(IndexedString(filename), KDevelop::TopDUContext::AllDeclarationsContextsAndUses); } while ( ICore::self()->languageController()->backgroundParser()->queuedCount() > 0 ) { // make sure to wait for all parsejobs to finish QTest::qWait(10); } } } void PyDUChainTest::initShell() { AutoTestShell::init(); TestCore* core = new TestCore(); core->initialize(KDevelop::Core::NoUi); auto doc_url = QStandardPaths::locate(QStandardPaths::GenericDataLocation, "kdevpythonsupport/documentation_files/builtindocumentation.py"); qCDebug(KDEV_PYTHON_DUCHAIN) << doc_url; DUChain::self()->updateContextForUrl(IndexedString(doc_url), KDevelop::TopDUContext::AllDeclarationsContextsAndUses); ICore::self()->languageController()->backgroundParser()->parseDocuments(); DUChain::self()->waitForUpdate(IndexedString(doc_url), KDevelop::TopDUContext::AllDeclarationsContextsAndUses); DUChain::self()->disablePersistentStorage(); KDevelop::CodeRepresentation::setDiskChangesForbidden(true); } ReferencedTopDUContext PyDUChainTest::parse(const QString& code) { TestFile* testfile = new TestFile(code + "\n", "py", 0, testDir.absolutePath().append("/")); createdFiles << testfile; testfile->parse((TopDUContext::Features) (TopDUContext::ForceUpdate | TopDUContext::AST) ); testfile->waitForParsed(2000); if ( testfile->isReady() ) { Q_ASSERT(testfile->topContext()); m_ast = static_cast(testfile->topContext()->ast().data())->ast; return testfile->topContext(); } else Q_ASSERT(false && "Timed out waiting for parser results, aborting all tests"); return 0; } PyDUChainTest::~PyDUChainTest() { foreach ( TestFile* f, createdFiles ) { delete f; } testDir.rmdir(testDir.absolutePath()); } void PyDUChainTest::testMultiFromImport() { QFETCH(QString, code); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock; QList a = ctx->findDeclarations(QualifiedIdentifier("a")); QList b = ctx->findDeclarations(QualifiedIdentifier("b")); QVERIFY(! a.isEmpty()); QVERIFY(! b.isEmpty()); QVERIFY(a.first()->abstractType()->toString().endsWith("int")); QVERIFY(b.first()->abstractType()->toString().endsWith("int")); } void PyDUChainTest::testMultiFromImport_data() { QTest::addColumn("code"); QTest::newRow("multiimport") << "import testMultiFromImport.i.localvar1\n" "import testMultiFromImport.i.localvar2\n" "a = testMultiFromImport.i.localvar1\n" "b = testMultiFromImport.i.localvar2\n"; } void PyDUChainTest::testRelativeImport() { QFETCH(QString, code); QFETCH(QString, token); QFETCH(QString, type); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock; QList t = ctx->findDeclarations(QualifiedIdentifier(token)); QVERIFY(! t.isEmpty()); QVERIFY(t.first()->abstractType()->toString().endsWith(type)); } void PyDUChainTest::testRelativeImport_data() { QTest::addColumn("code"); QTest::addColumn("token"); QTest::addColumn("type"); QTest::newRow(".local") << "from testRelativeImport.m.sm1.go import i1" << "i1" << "int"; QTest::newRow(".init") << "from testRelativeImport.m.sm1.go import i2" << "i2" << "int"; QTest::newRow("..local") << "from testRelativeImport.m.sm1.go import i3" << "i3" << "int"; QTest::newRow("..init") << "from testRelativeImport.m.sm1.go import i4" << "i4" << "int"; QTest::newRow("..sub.local") << "from testRelativeImport.m.sm1.go import i5" << "i5" << "int"; QTest::newRow("..sub.init") << "from testRelativeImport.m.sm1.go import i6" << "i6" << "int"; } void PyDUChainTest::testImportFiles() { QString code = "import testImportFiles\nk = testImportFiles.fromInit()\np = testImportFiles.other.fromOther()"; ReferencedTopDUContext ctx = parse(code.toUtf8()); DUChainReadLocker lock; QVERIFY(ctx); auto k = ctx->findDeclarations(QualifiedIdentifier("k")); auto p = ctx->findDeclarations(QualifiedIdentifier("p")); QCOMPARE(k.size(), 1); QCOMPARE(p.size(), 1); QVERIFY(k.first()->abstractType()); QCOMPARE(k.first()->abstractType()->toString(), QString("fromInit")); QCOMPARE(p.first()->abstractType()->toString(), QString("fromOther")); } void PyDUChainTest::testCrashes() { QFETCH(QString, code); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); QVERIFY(m_ast); QVERIFY(! m_ast->body.isEmpty()); } void PyDUChainTest::testCrashes_data() { QTest::addColumn("code"); QTest::newRow("unicode_char") << "a = \"í\""; QTest::newRow("unicode escape char") << "print(\"\\xe9\")"; QTest::newRow("augassign") << "a = 3\na += 5"; QTest::newRow("delete") << "a = 3\ndel a"; QTest::newRow("double_comprehension") << "q = [[x for x in a] + [x for x in a] for y in b]"; QTest::newRow("for_else") << "for i in range(3): pass\nelse: pass"; QTest::newRow("for_while") << "while i < 4: pass\nelse: pass"; QTest::newRow("ellipsis") << "a[...]"; QTest::newRow("tuple_assign_unknown") << "foo = (unknown, unknown, unknown)"; QTest::newRow("for_assign_unknown") << "for foo, bar, baz in unknown: pass"; QTest::newRow("negative slice index") << "t = (1, 2, 3)\nd = t[-1]"; QTest::newRow("decorator_with_args") << "@foo('bar', 'baz')\ndef myfunc(): pass"; QTest::newRow("non_name_decorator") << "@foo.crazy_decorators\ndef myfunc(): pass"; QTest::newRow("static_method") << "class c:\n @staticmethod\n def method(): pass"; QTest::newRow("vararg_in_middle") << "def func(a, *b, c): pass\nfunc(1, 2, 3, 4, 5)"; QTest::newRow("whatever") << "for attr in updated:\n " " getattr.update"; QTest::newRow("return_outside_function") << "return 3"; QTest::newRow("return_context_outside_function") << "return [x for x in range(3)]"; QTest::newRow("paren_attrib_access") << "a = (xxx or yyy).zzz"; QTest::newRow("func_call") << "a = xxx.func(yyy.zzz)"; QTest::newRow("comprehension_attrib") << "a = [foo for foo in bar].baz"; QTest::newRow("comprehension_attrib2") << "a = [foo.bar for foo in bar]"; QTest::newRow("attrib") << "(sep or ' ').join(xxxx.capitalize() for xxxx in ssss.split(sep))"; QTest::newRow("attrib2") << "(sep or ' ').join(x.capitalize() for x in s.split(sep))"; QTest::newRow("attrib3") << "known_threads = {line.strip()}"; QTest::newRow("attrib4") << "known_threads = {line.strip() for line in [\"foo\"] if line.strip()}"; QTest::newRow("stacked_lambdas") << "l4 = lambda x = lambda y = lambda z=1 : z : y() : x()"; QTest::newRow("newline_attrib2") << "raise TypeError(\"argument should be a bound method, not {}\"\n" ".format(type(meth))) from None"; QTest::newRow("newline_attrib") << "some_instance \\\n" ". attr1 \\\n" ".funcfunc(argarg, arg2arg) \\\n" ".foo"; QTest::newRow("fancy generator context range") << "c1_list = sorted(letter for (letter, meanings) \\\n" "in ambiguous_nucleotide_values.iteritems() \\\n" "if set([codon[0] for codon in codons]).issuperset(set(meanings)))"; QTest::newRow("fancy class range") << "class SchemeLexer(RegexLexer):\n" " valid_name = r'[a-zA-Z0-9!$%&*+,/:<=>?@^_~|-]+'\n" "\n" " tokens = {\n" " 'root' : [\n" " # the comments - always starting with semicolon\n" " # and going to the end of the line\n" " (r';.*$', Comment.Single),\n" "\n" " # whitespaces - usually not relevant\n" " (r'\\s+', Text),\n" "\n" " # numbers\n" " (r'-?\\d+\\.\\d+', Number.Float),\n" " (r'-?\\d+', Number.Integer)\n" " ],\n" " }\n"; QTest::newRow("another fancy range") << "setup_args['data_files'] = [\n" " (os.path.dirname(os.path.join(install_base_dir, pattern)),\n" " [ f for f in glob.glob(pattern) ])\n" " for pattern in patterns\n" "]\n"; QTest::newRow("kwarg_empty_crash") << "def myfun(): return\ncheckme = myfun(kw=something)"; QTest::newRow("stacked_tuple_hang") << "tree = (1,(2,(3,(4,(5,'Foo')))))"; QTest::newRow("stacked_tuple_hang2") << "tree = (257," "(264," "(285," "(259," "(272," "(275," "(1, 'return')))))))"; QTest::newRow("very_large_tuple_hang") << "tree = " "(257," "(264," "(285," "(259," "(1, 'def')," "(1, 'f')," "(260, (7, '('), (8, ')'))," "(11, ':')," "(291," "(4, '')," "(5, '')," "(264," "(265," "(266," "(272," "(275," "(1, 'return')," "(313," "(292," "(293," "(294," "(295," "(297," "(298," "(299," "(300," "(301," "(302, (303, (304, (305, (2, '1'))))))))))))))))))," "(264," "(265," "(266," "(272," "(276," "(1, 'yield')," "(313," "(292," "(293," "(294," "(295," "(297," "(298," "(299," "(300," "(301," "(302," "(303, (304, (305, (2, '1'))))))))))))))))))," "(4, '')))," "(6, '')))))," "(4, '')," "(0, ''))))"; QTest::newRow("attribute_hang") << "s = \"123\"\n" "s = s.replace(u'ł', 'l').\\\n" "replace(u'ó', 'o').\\\n" "replace(u'ą', 'a').\\\n" "replace(u'ę', 'e').\\\n" "replace(u'ś', 's').\\\n" "replace(u'ż', 'z').\\\n" "replace(u'ź', 'z').\\\n" "replace(u'ć', 'c').\\\n" "replace(u'ń', 'n').\\\n" "replace(u'б', 'b').\\\n" "replace(u'в', 'v').\\\n" "replace(u'г', 'g').\\\n" "replace(u'д', 'd').\\\n" "replace(u'ё', 'yo').\\\n" "replace(u'ć', 'c').\\\n" "replace(u'ń', 'n').\\\n" "replace(u'б', 'b').\\\n" "replace(u'в', 'v').\\\n" "replace(u'г', 'g').\\\n" "replace(u'д', 'd').\\\n" "replace(u'ё', 'yo').\\\n" "replace(u'ć', 'c').\\\n" "replace(u'ń', 'n').\\\n" "replace(u'б', 'b').\\\n" "replace(u'в', 'v').\\\n" "replace(u'г', 'g').\\\n" "replace(u'д', 'd').\\\n" "replace(u'ё', 'yo')\n"; QTest::newRow("function context range crash") << "def myfunc(arg):\n foo = 3 + \\\n[x for x in range(20)]"; QTest::newRow("decorator comprehension crash") << "@implementer_only(interfaces.ISSLTransport,\n" " *[i for i in implementedBy(tcp.Client)\n" " if i != interfaces.ITLSTransport])\n" "class Client(tcp.Client):\n" " pass\n"; QTest::newRow("comprehension_as_default_crash") << "def foo(bar = [item for (_, item) in items()]):\n return"; QTest::newRow("try_except") << "try: pass\nexcept: pass"; QTest::newRow("try_except_type") << "try: pass\nexcept FooException: pass"; QTest::newRow("try_except_type_as") << "try: pass\nexcept FooException as bar: pass"; QTest::newRow("import_missing") << "from this_does_not_exist import nor_does_this"; QTest::newRow("list_append_missing") << "foo = []\nfoo.append(missing)"; QTest::newRow("list_append_missing_arg") << "foo = []\nfoo.append()"; QTest::newRow("list_extend_missing") << "foo = []\nfoo.extend(missing)"; QTest::newRow("list_extend_missing_arg") << "foo = []\nfoo.extend()"; } void PyDUChainTest::testClassVariables() { ReferencedTopDUContext ctx = parse("class c():\n myvar = 3;\n def meth(self):\n print(myvar)"); QVERIFY(ctx.data()); DUChainWriteLocker lock(DUChain::lock()); CursorInRevision relevantPosition(3, 10); DUContext* c = ctx->findContextAt(relevantPosition); QVERIFY(c); int useIndex = c->findUseAt(relevantPosition); if ( useIndex != -1 ) { QVERIFY(useIndex < c->usesCount()); const Use* u = &(c->uses()[useIndex]); QVERIFY(!u->usedDeclaration(c->topContext())); } } void PyDUChainTest::testWarnNewNotCls() { QFETCH(QString, code); QFETCH(int, probs); ReferencedTopDUContext ctx = parse(code); DUChainReadLocker lock; QCOMPARE(ctx->problems().count(), probs); } void PyDUChainTest::testWarnNewNotCls_data() { QTest::addColumn("code"); QTest::addColumn("probs"); QTest::newRow("check_for_new_first_arg_cls") << "class c():\n def __new__(clf, other):\n pass" << 1; QTest::newRow("check_for_new_first_arg_cls_0") << "class c():\n def __new__(cls, other):\n pass" << 0; QTest::newRow("check_first_arg_class_self") << "class c():\n def test(seff, masik):\n pass" << 1; QTest::newRow("check_first_arg_class_self_0") << "class c():\n def test(self, masik):\n pass" << 0; } void PyDUChainTest::testBinaryOperatorsUnsure() { QFETCH(QString, code); QFETCH(QString, type); ReferencedTopDUContext ctx = parse(code); DUChainWriteLocker lock; QList ds = ctx->findDeclarations(QualifiedIdentifier("checkme")); QVERIFY(!ds.isEmpty()); Declaration* d = ds.first(); QVERIFY(d); QVERIFY(d->abstractType()); QCOMPARE(d->abstractType()->toString(), type); } void PyDUChainTest::testBinaryOperatorsUnsure_data() { QTest::addColumn("code"); QTest::addColumn("type"); QTest::newRow("check_unsure_type_0") << "class c():\n def __mul__(self, other):\n return int();\nx = c();\nx = 3.5;\ny = 3;\ncheckme = x * y;" << "unsure (float, int)"; QTest::newRow("check_unsure_type_1") << "class c():\n def __mul__(self, other):\n return int();\nx = c();\nx = 3;\ny = 3;\ncheckme = x * y;" << "int"; QTest::newRow("check_unsure_type_2") << "class c():\n pass;\nx = c();\nx = 3;\ny = 3;\ncheckme = x * y;" << "int"; QTest::newRow("check_unsure_type_3") << "class c():\n pass;\nclass d():\n pass;\nx = c();\nx = d();\ny = 3;\ncheckme = x * y;" << "int"; } void PyDUChainTest::testFlickering() { QFETCH(QStringList, code); QFETCH(int, before); QFETCH(int, after); TestFile f(code[0], "py"); f.parse(TopDUContext::ForceUpdate); f.waitForParsed(500); ReferencedTopDUContext ctx = f.topContext(); QVERIFY(ctx); DUChainWriteLocker lock(DUChain::lock()); int count = ctx->localDeclarations().size(); qDebug() << "Declaration count before: " << count; QVERIFY(count == before); lock.unlock(); f.setFileContents(code[1]); f.parse(TopDUContext::ForceUpdate); f.waitForParsed(500); ctx = f.topContext(); QVERIFY(ctx); lock.lock(); count = ctx->localDeclarations().size(); qDebug() << "Declaration count afterwards: " << count; QVERIFY(count == after); foreach(Declaration* dec, ctx->localDeclarations()) { qDebug() << dec->toString() << dec->range(); qDebug() << dec->uses().size(); } } void PyDUChainTest::testFlickering_data() { QTest::addColumn("code"); QTest::addColumn("before"); QTest::addColumn("after"); QTest::newRow("declaration_flicker") << ( QStringList() << "a=2\n" << "b=3\na=2\n" ) << 1 << 2; } void PyDUChainTest::testCannotOverwriteBuiltins() { QFETCH(QString, code); QFETCH(QString, expectedType); ReferencedTopDUContext ctx = parse(code); DUChainWriteLocker lock; QList ds = ctx->findDeclarations(QualifiedIdentifier("checkme")); QVERIFY(!ds.isEmpty()); Declaration* d = ds.first(); QVERIFY(d); QVERIFY(d->abstractType()); QCOMPARE(d->abstractType()->toString(), expectedType); } void PyDUChainTest::testCannotOverwriteBuiltins_data() { QTest::addColumn("code"); QTest::addColumn("expectedType"); QTest::newRow("list_assign") << "class list(): pass\ncheckme = []\ncheckme.append(3)" << "list of int"; QTest::newRow("str_assign") << "str = 5; checkme = 'Foo'" << "str"; QTest::newRow("str_assign2") << "class Foo: pass\nstr = Foo; checkme = 'Foo'" << "str"; QTest::newRow("str_assign3") << "from testCannotOverwriteBuiltins.i import Foo as str\ncheckme = 'Foo'" << "str"; QTest::newRow("for") << "for str in [1, 2, 3]: pass\ncheckme = 'Foo'" << "str"; QTest::newRow("assert") << "assert isinstance(str, int)\ncheckme = 'Foo'" << "str"; QTest::newRow("assert2") << "assert isinstance(str, int)\ncheckme = 3" << "int"; QTest::newRow("can_have_custom") << "from testCannotOverwriteBuiltins import mod\ncheckme = mod.open()" << "int"; QTest::newRow("can_have_custom2") << "from testCannotOverwriteBuiltins import mod\ncheckme = open().read()" << "str"; QTest::newRow("can_have_custom3") << "from testCannotOverwriteBuiltins import mod\ncheckme = mod.open().read()" << "mixed"; } void PyDUChainTest::testVarKWArgs() { ReferencedTopDUContext ctx = parse("def myfun(arg, *vararg, **kwarg):\n pass\n pass"); DUChainWriteLocker lock; QVERIFY(ctx); DUContext* func = ctx->findContextAt(CursorInRevision(1, 0)); QVERIFY(func); QVERIFY(! func->findDeclarations(QualifiedIdentifier("arg")).isEmpty()); QVERIFY(! func->findDeclarations(QualifiedIdentifier("vararg")).isEmpty()); QVERIFY(! func->findDeclarations(QualifiedIdentifier("kwarg")).isEmpty()); QVERIFY(func->findDeclarations(QualifiedIdentifier("vararg")).first()->abstractType()->toString().startsWith("tuple")); QCOMPARE(func->findDeclarations(QualifiedIdentifier("kwarg")).first()->abstractType()->toString(), QString("dict of str : unknown")); } void PyDUChainTest::testSimple() { QFETCH(QString, code); QFETCH(int, decls); QFETCH(int, uses); ReferencedTopDUContext ctx = parse(code); DUChainWriteLocker lock(DUChain::lock()); QVERIFY(ctx); QVector< Declaration* > declarations = ctx->localDeclarations(); QCOMPARE(declarations.size(), decls); int usesCount = 0; foreach(Declaration* d, declarations) { usesCount += d->uses().size(); QVERIFY(d->abstractType()); } QCOMPARE(usesCount, uses); } void PyDUChainTest::testSimple_data() { QTest::addColumn("code"); QTest::addColumn("decls"); QTest::addColumn("uses"); QTest::newRow("assign") << "b = 2;" << 1 << 0; QTest::newRow("assign_str") << "b = 'hola';" << 1 << 0; QTest::newRow("op") << "a = 3; b = a+2;" << 2 << 1; QTest::newRow("bool") << "a = True" << 1 << 0; QTest::newRow("op") << "a = True and True;" << 1 << 0; } class AttributeRangeTestVisitor : public AstDefaultVisitor { public: bool found; KTextEditor::Range searchingForRange; QString searchingForIdentifier; void visitAttribute(AttributeAst* node) override { auto r = KTextEditor::Range(0, node->startCol, 0, node->endCol); qDebug() << "Found attr: " << r << node->attribute->value << ", looking for: " << searchingForRange << searchingForIdentifier; if ( r == searchingForRange && node->attribute->value == searchingForIdentifier ) { found = true; return; } AstDefaultVisitor::visitAttribute(node); } void visitFunctionDefinition(FunctionDefinitionAst* node) override { auto r = KTextEditor::Range(0, node->name->startCol, 0, node->name->endCol); qDebug() << "Found func: " << r << node->name->value << ", looking for: " << searchingForRange << searchingForIdentifier; qDebug() << node->arguments->vararg << node->arguments->kwarg; if ( r == searchingForRange && node->name->value == searchingForIdentifier ) { found = true; return; } if ( node->arguments->vararg ) { auto r = KTextEditor::Range(0, node->arguments->vararg->startCol, 0, node->arguments->vararg->startCol+node->arguments->vararg->argumentName->value.length()); qDebug() << "Found vararg: " << node->arguments->vararg->argumentName->value << r; if ( r == searchingForRange && node->arguments->vararg->argumentName->value == searchingForIdentifier ) { found = true; return; } } if ( node->arguments->kwarg ) { auto r = KTextEditor::Range(0, node->arguments->kwarg->startCol, 0, node->arguments->kwarg->startCol+node->arguments->kwarg->argumentName->value.length()); qDebug() << "Found kwarg: " << node->arguments->kwarg->argumentName->value << r; if ( r == searchingForRange && node->arguments->kwarg->argumentName->value == searchingForIdentifier ) { found = true; return; } } AstDefaultVisitor::visitFunctionDefinition(node); } void visitClassDefinition(ClassDefinitionAst* node) override { auto r = KTextEditor::Range(0, node->name->startCol, 0, node->name->endCol); qDebug() << "Found cls: " << r << node->name->value << ", looking for: " << searchingForRange << searchingForIdentifier; if ( r == searchingForRange && node->name->value == searchingForIdentifier ) { found = true; return; } AstDefaultVisitor::visitClassDefinition(node); } void visitImport(ImportAst* node) override { foreach ( const AliasAst* name, node->names ) { if ( name->name ) { qDebug() << "found import" << name->name->value << name->name->range(); } if ( name->name && name->name->value == searchingForIdentifier && name->name->range() == searchingForRange ) { found = true; return; } if ( name->asName ) { qDebug() << "found import" << name->asName->value << name->asName->range(); } if ( name->asName && name->asName->value == searchingForIdentifier && name->asName->range() == searchingForRange ) { found = true; return; } } } }; void PyDUChainTest::testRanges() { QFETCH(QString, code); QFETCH(int, expected_amount_of_variables); Q_UNUSED(expected_amount_of_variables); QFETCH(QStringList, column_ranges); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); QVERIFY(m_ast); for ( int i = 0; i < column_ranges.length(); i++ ) { int scol = column_ranges.at(i).split(",")[0].toInt(); int ecol = column_ranges.at(i).split(",")[1].toInt(); QString identifier = column_ranges.at(i).split(",")[2]; auto r = KTextEditor::Range(0, scol, 0, ecol); AttributeRangeTestVisitor* visitor = new AttributeRangeTestVisitor(); visitor->searchingForRange = r; visitor->searchingForIdentifier = identifier; visitor->visitCode(m_ast.data()); QCOMPARE(visitor->found, true); delete visitor; } } void PyDUChainTest::testRanges_data() { QTest::addColumn("code"); QTest::addColumn("expected_amount_of_variables"); QTest::addColumn("column_ranges"); QTest::newRow("attr_two_attributes") << "base.attr" << 2 << ( QStringList() << "5,8,attr" ); QTest::newRow("attr_binary") << "base.attr + base.attr" << 4 << ( QStringList() << "5,8,attr" << "17,20,attr" ); QTest::newRow("attr_same") << "aaa.aaa.aaa + aaa.aaa.aaa" << 6 << ( QStringList() << "4,6,aaa" << "8,10,aaa" << "18,20,aaa" << "22,24,aaa" ); QTest::newRow("attr_three_attributes") << "base.attr.subattr" << 3 << ( QStringList() << "5,8,attr" << "10,16,subattr" ); QTest::newRow("attr_functionCall") << "base.attr().subattr" << 3 << ( QStringList() << "5,8,attr" << "12,18,subattr" ); QTest::newRow("attr_stringSubscript") << "base.attr[\"a.b.c..de\"].subattr" << 3 << ( QStringList() << "5,8,attr" << "23,29,subattr" ); QTest::newRow("attr_functionCallWithArguments") << "base.attr(arg1, arg2).subattr" << 5 << ( QStringList() << "5,8,attr" << "22,28,subattr" ); QTest::newRow("attr_functionCallWithArgument_withInner") << "base.attr(arg1.parg2).subattr" << 5 << ( QStringList() << "5,8,attr" << "22,28,subattr" << "15,19,parg2" ); QTest::newRow("attr_complicated") << "base.attr(arg1.arg2(arg4.arg5, [func(a.b)]).arg3(arg6.arg7)).subattr" << 5 << ( QStringList() << "5,8,attr" << "15,18,arg2" << "25,28,arg5" << "39,39,b" << "44,47,arg3" << "54,57,arg7" << "61,67,subattr"); QTest::newRow("attr_two_in_call") << "func(inst.aaa, inst.bbbb)" << 2 << ( QStringList() << "10,12,aaa" << "20,23,bbbb" ); QTest::newRow("attr_two_in_call_same") << "func(inst.aaa, inst.aaaa)" << 2 << ( QStringList() << "10,12,aaa" << "20,23,aaaa" ); QTest::newRow("attr_two_in_call_same2") << "func(inst.aaa, inst.aaa)" << 2 << ( QStringList() << "10,12,aaa" << "20,22,aaa" ); QTest::newRow("attr_of_string_slash") << "'/'.join(a)" << 1 << ( QStringList() << "4,7,join" ); QTest::newRow("attr_of_string_in_list") << "[\"*{0}*\".format(foo)]" << 1 << ( QStringList() << "9,14,format" ); QTest::newRow("attr_of_call_in_list") << "[foo().format(foo)]" << 1 << ( QStringList() << "7,12,format" ); QTest::newRow("attr_parentheses") << "(\"foo\" + \"foo\").capitalize()" << 1 << ( QStringList() << "16,25,capitalize" ); QTest::newRow("string_parentheses") << "(\"asdf\".join())" << 1 << ( QStringList() << "8,11,join" ); QTest::newRow("string_parentheses2") << "(\"asdf\").join()" << 1 << ( QStringList() << "9,12,join" ); QTest::newRow("string_parentheses3") << "(\"asdf\".join()).join()" << 2 << ( QStringList() << "8,11,join" << "16,19,join" ); QTest::newRow("string_parentheses4") << "(\"asdf\".join()+2).join()" << 2 << ( QStringList() << "8,11,join" << "18,21,join" ); QTest::newRow("string_parentheses_call") << "f(\"asdf\".join())" << 1 << ( QStringList() << "9,12,join" ); QTest::newRow("funcrange_def") << "def func(): pass" << 1 << ( QStringList() << "4,7,func" ); QTest::newRow("funcrange_spaces_def") << "def func(): pass" << 1 << ( QStringList() << "7,10,func" ); QTest::newRow("classdef_range") << "class cls(): pass" << 1 << ( QStringList() << "6,8,cls" ); QTest::newRow("classdef_range_inheritance") << "class cls(parent1, parent2): pass" << 1 << ( QStringList() << "6,8,cls" ); QTest::newRow("classdef_range_inheritance_spaces") << "class cls( parent1, parent2 ):pass" << 1 << ( QStringList() << "12,14,cls" ); QTest::newRow("vararg_kwarg") << "def func(*vararg, **kwargs): pass" << 2 << ( QStringList() << "10,16,vararg" << "20,26,kwargs" ); QTest::newRow("import") << "import sys" << 1 << ( QStringList() << "7,10,sys" ); QTest::newRow("import2") << "import i.localvar1" << 1 << ( QStringList() << "7,18,i.localvar1" ); QTest::newRow("import3") << "import sys as a" << 1 << ( QStringList() << "13,14,a" ); } class TypeTestVisitor : public AstDefaultVisitor { public: QString searchingForType; TopDUContextPointer ctx; bool found; void visitName(NameAst* node) override { if ( node->identifier->value != "checkme" ) return; QList decls = ctx->findDeclarations(QualifiedIdentifier(node->identifier->value)); if ( ! decls.length() ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "No declaration found for " << node->identifier->value; return; } Declaration* d = decls.last(); QVERIFY(d->abstractType()); qCDebug(KDEV_PYTHON_DUCHAIN) << "found: " << node->identifier->value << "is" << d->abstractType()->toString() << "should be" << searchingForType; if ( d->abstractType()->toString().replace("__kdevpythondocumentation_builtin_", "").startsWith(searchingForType) ) { found = true; return; } }; }; void PyDUChainTest::testTypes() { QFETCH(QString, code); QFETCH(QString, expectedType); ReferencedTopDUContext ctx = parse(code.toUtf8()); QVERIFY(ctx); QVERIFY(m_ast); DUChainReadLocker lock(DUChain::lock()); TypeTestVisitor* visitor = new TypeTestVisitor(); visitor->ctx = TopDUContextPointer(ctx.data()); visitor->searchingForType = expectedType; visitor->visitCode(m_ast.data()); QEXPECT_FAIL("lambda", "not implemented: aliasing lambdas", Continue); QCOMPARE(visitor->found, true); } void PyDUChainTest::testTypes_data() { QTest::addColumn("code"); QTest::addColumn("expectedType"); QTest::newRow("listtype") << "checkme = []" << "list"; QTest::newRow("listtype_func") << "checkme = list()" << "list"; QTest::newRow("listtype_with_contents") << "checkme = [1, 2, 3, 4, 5]" << "list of int"; QTest::newRow("listtype_extended") << "some_misc_var = []; checkme = some_misc_var" << "list"; QTest::newRow("dicttype") << "checkme = {}" << "dict"; QTest::newRow("dicttype_get") << "d = {0.4:5}; checkme = d.get(0)" << "int"; QTest::newRow("dicttype_func") << "checkme = dict()" << "dict"; QTest::newRow("dicttype_extended") << "some_misc_var = {}; checkme = some_misc_var" << "dict"; QTest::newRow("bool") << "checkme = True" << "bool"; QTest::newRow("float") << "checkme = 3.7" << "float"; QTest::newRow("int") << "checkme = 3" << "int"; QTest::newRow("str") << "checkme = \"foo\"" << "str"; QTest::newRow("bytes") << "checkme = b\"foo\"" << "bytes"; QTest::newRow("function_arg_scope") << "class Foo:\n" " a = 3\n" " def func(self, x=a):\n" " return x\n" "f = Foo()\n" "checkme = f.func()" << "int"; QTest::newRow("with") << "with open('foo') as f: checkme = f.read()" << "str"; QTest::newRow("arg_after_vararg") << "def func(x, y, *, z:int): return z\ncheckme = func()" << "int"; QTest::newRow("arg_after_vararg_with_default") << "def func(x=5, y=3, *, z:int): return z\ncheckme = func()" << "int"; QTest::newRow("list_access_right_open_slice") << "some_list = []; checkme = some_list[2:]" << "list"; QTest::newRow("list_access_left_open_slice") << "some_list = []; checkme = some_list[:2]" << "list"; QTest::newRow("list_access_closed_slice") << "some_list = []; checkme = some_list[2:17]" << "list"; QTest::newRow("list_access_step") << "some_list = []; checkme = some_list[::2]" << "list"; QTest::newRow("list_access_singleItem") << "some_list = []; checkme = some_list[42]" << "mixed"; QTest::newRow("funccall_number") << "def foo(): return 3; \ncheckme = foo();" << "int"; QTest::newRow("funccall_string") << "def foo(): return 'a'; \ncheckme = foo();" << "str"; QTest::newRow("funccall_list") << "def foo(): return []; \ncheckme = foo();" << "list"; QTest::newRow("funccall_dict") << "def foo(): return {}; \ncheckme = foo();" << "dict"; QTest::newRow("tuple1") << "checkme, foo = 3, \"str\"" << "int"; QTest::newRow("tuple2") << "foo, checkme = 3, \"str\"" << "str"; QTest::newRow("tuple2_negative_index") << "foo = (1, 2, 'foo')\ncheckme = foo[-1]" << "str"; QTest::newRow("tuple_type") << "checkme = 1, 2" << "tuple"; QTest::newRow("dict_iteritems") << "d = {1:2, 3:4}\nfor checkme, k in d.iteritems(): pass" << "int"; QTest::newRow("enumerate_key") << "d = [str(), str()]\nfor checkme, value in enumerate(d): pass" << "int"; QTest::newRow("enumerate_value") << "d = [str(), str()]\nfor key, checkme in enumerate(d): pass" << "str"; QTest::newRow("dict_enumerate") << "d = {1:2, 3:4}\nfor key, checkme in enumerate(d.values()): pass" << "int"; QTest::newRow("dict_assign_twice") << "d = dict(); d[''] = 0; d = dict(); d[''] = 0; checkme = d" << "unsure (dict of str : int, dict)"; QTest::newRow("class_method_import") << "class c:\n attr = \"foo\"\n def m():\n return attr;\n return 3;\ni=c()\ncheckme=i.m()" << "int"; QTest::newRow("getsListDecorator") << "foo = [1, 2, 3]\ncheckme = foo.reverse()" << "list of int"; QTest::newRow("fromAssertIsinstance") << "class c(): pass\ncheckme = mixed()\nassert isinstance(checkme, c)\n" << "c"; QTest::newRow("fromAssertIsinstanceInvalid") << "class c(): pass\ncheckme = mixed()\nassert isinstance(c, checkme)\n" << "mixed"; QTest::newRow("fromAssertIsinstanceInvalid2") << "class c(): pass\ncheckme = mixed()\nassert isinstance(D, c)\n" << "mixed"; QTest::newRow("fromAssertIsinstanceInvalid3") << "checkme = int()\nassert isinstance(checkme, X)\n" << "int"; QTest::newRow("fromAssertIsinstanceInvalid4") << "checkme = int()\nassert isinstance(checkme)\n" << "int"; QTest::newRow("fromAssertType") << "class c(): pass\ncheckme = mixed()\nassert type(checkme) == c\n" << "c"; QTest::newRow("fromIfType") << "class c(): pass\ncheckme = mixed()\nif type(checkme) == c: pass\n" << "c"; QTest::newRow("fromIfIsinstance") << "class c(): pass\ncheckme = mixed()\nif isinstance(checkme, c): pass\n" << "c"; QTest::newRow("diff_local_classattr") << "class c(): attr = 1\ninst=c()\ncheckme = c.attr" << "int"; QTest::newRow("diff_local_classattr2") << "local=3\nclass c(): attr = 1\ninst=c()\ncheckme = c.local" << "mixed"; QTest::newRow("diff_local_classattr3") << "attr=3.5\nclass c(): attr = 1\ninst=c()\ncheckme = c.attr" << "int"; // QTest::newRow("class_method_self") << "class c:\n def func(checkme, arg, arg2):\n pass\n" << "c"; // QTest::newRow("funccall_dict") << "def foo(): return foo; checkme = foo();" << (uint) IntegralType::TypeFunction; QTest::newRow("tuple_simple") << "mytuple = 3, 5.5\ncheckme, foobar = mytuple" << "int"; QTest::newRow("tuple_simple2") << "mytuple = 3, 5.5\nfoobar, checkme = mytuple" << "float"; QTest::newRow("tuple_simple3") << "mytuple = 3, 5.5, \"str\", 3, \"str\"\na, b, c, d, checkme = mytuple" << "str"; QTest::newRow("tuple_single") << "checkme = 4," << "tuple"; QTest::newRow("tuple_single2") << "checkme, = 4," << "int"; QTest::newRow("tuple_single3") << "mytuple = 4,\ncheckme, = mytuple" << "int"; QTest::newRow("tuple_ext_unpack") << "mytuple = 3, 5.5\nfoobar, *starred, checkme = mytuple" << "float"; QTest::newRow("tuple_ext_unpack2") << "mytuple = 3, 5.5\nfoobar, *checkme, another = mytuple" << "list"; QTest::newRow("tuple_ext_unpack3") << "mytuple = 3, 5.5\nfoobar, *checkme = mytuple" << "list of float"; QTest::newRow("tuple_ext_unpack4") << "mytuple = 3, 5.5\n*checkme, = mytuple" << "list of unsure (int, float)"; QTest::newRow("tuple_nested") << "mytuple = 3, ('foo', 5.5)\ncheckme, foobar = mytuple" << "int"; QTest::newRow("tuple_nested2") << "mytuple = 3, ('foo', 5.5)\nfoobar, (checkme, other) = mytuple" << "str"; QTest::newRow("tuple_nested3") << "mytuple = ((7, 'foo'), 5.5), 3\n((baz, checkme), other), foo = mytuple" << "str"; QTest::newRow("tuple_nested_ext") << "mytuple = (2, ('foo', 'bar', 6), 7)\na, (b, *checkme, c), *d = mytuple" << "list of str"; QTest::newRow("tuple_multi_assign") << "mytuple = 2, 'foo'\ncheckme = a = mytuple" << "tuple"; QTest::newRow("tuple_multi_assign2") << "mytuple = 2, 'foo'\ncheckme, a = b = mytuple" << "int"; QTest::newRow("list_unpack") << "mylist = [1, 2, 3]\ncheckme, b, c = mylist" << "int"; QTest::newRow("list_unpack2") << "mylist = [1, 'x', 3]\ncheckme, b, c = mylist" << "unsure (int, str)"; QTest::newRow("list_ext_unpack") << "mylist = [1, 2, 3]\n*checkme, foo = mylist" << "list of int"; QTest::newRow("list_ext_unpack2") << "mylist = [1, 'x', 3]\n*checkme, foo = mylist" << "list of unsure (int, str)"; QTest::newRow("if_expr_sure") << "checkme = 3 if 7 > 9 else 5" << "int"; QTest::newRow("unary_op") << "checkme = -42" << "int"; QTest::newRow("tuple_funcret") << "def myfun(): return 3, 5\ncheckme, a = myfun()" << "int"; QTest::newRow("tuple_funcret2") << "def myfun():\n t = 3, 5\n return t\ncheckme, a = myfun()" << "int"; QTest::newRow("yield") << "def myfun():\n yield 3\ncheckme = myfun()" << "list of int"; QTest::newRow("yield_twice") << "def myfun():\n yield 3\n yield 'foo'\ncheckme = myfun()" << "list of unsure (int, str)"; // this is mostly a check that it doesn't crash QTest::newRow("yield_return") << "def myfun():\n return 3\n yield 'foo'\ncheckme = myfun()" << "unsure (int, list of str)"; QTest::newRow("lambda") << "x = lambda t: 3\ncheckme = x()" << "int"; QTest::newRow("lambda_failure") << "x = lambda t: 3\ncheckme = t" << "mixed"; QTest::newRow("function_arg_tuple") << "def func(*arg):\n foo, bar = arg\n return bar\ncheckme = func(3, 5)" << "int"; QTest::newRow("function_arg_tuple2") << "def func(*arg):\n return arg[-1]\ncheckme = func(3, \"Foo\")" << "str"; QTest::newRow("tuple_indexaccess") << "t = 3, 5.5\ncheckme = t[0]" << "int"; QTest::newRow("tuple_indexaccess2") << "t = 3, 5.5\ncheckme = t[1]" << "float"; QTest::newRow("tuple_indexaccess3") << "t = 3, 4\ncheckme = t[1]" << "int"; QTest::newRow("dict_unsure") << "t = dict(); t = {3: str()}\ncheckme = t[1].capitalize()" << "str"; QTest::newRow("unsure_attr_access") << "d = str(); d = 3; checkme = d.capitalize()" << "str"; QTest::newRow("class_create_var") << "class c: pass\nd = c()\nd.foo = 3\ncheckme = d.foo" << "int"; QTest::newRow("tuple_loop") << "t = [(1, \"str\")]\nfor checkme, a in t: pass" << "int"; QTest::newRow("no_hints_type") << "def myfun(arg): arg = 3; return arg\ncheckme = myfun(3)" << "int"; QTest::newRow("hints_type") << "def myfun(arg): return arg\ncheckme = myfun(3)" << "int"; QTest::newRow("args_type") << "def myfun(*args): return args[0]\ncheckme = myfun(3)" << "int"; QTest::newRow("kwarg_type") << "def myfun(**args): return args[0]\ncheckme = myfun(a=3)" << "int"; QTest::newRow("tuple_unsure") << "q = (3, str())\nq=(str(), 3)\ncheckme, _ = q" << "unsure (int, str)"; QTest::newRow("call_class") << "class Foo:\n" " def __call__(self):\n" " return 0\n" "f = Foo()\n" "checkme = f()\n" << "int"; QTest::newRow("classmethod") << "class Foo:\n" " @classmethod\n" " def foo(cls):\n" " k = cls()\n" " return k\n" "f = Foo.foo()\n" "checkme = f\n" << "Foo"; QTest::newRow("tuple_listof") << "l = [(1, 2), (3, 4)]\ncheckme = l[1][0]" << "int"; QTest::newRow("getitem") << "class c:\n def __getitem__(self, slice): return 3.14\na = c()\ncheckme = a[2]" << "float"; QTest::newRow("constructor_type_deduction") << "class myclass:\n" "\tdef __init__(self, param): self.foo=param\n" "checkme = myclass(3).foo" << "int"; QTest::newRow("simpe_type_deduction") << "def myfunc(arg): return arg\n" "checkme = myfunc(3)" << "int"; QTest::newRow("functionCall_functionArg_part1") << "def getstr(): return \"foo\"\n" "def identity(f): return f\n" "f1 = getstr\n" "checkme = f1()" << "str"; QTest::newRow("functionCall_functionArg_part2") << "def getstr(): return \"foo\"\n" "def identity(f): return f\n" "f1 = identity(getstr)\n" "checkme = f1()\n" << "str"; QTest::newRow("functionCall_functionArg_full") << "def getstr(): return \"foo\"\n" "def identity(f): return f\n" "f1 = getstr\n" "f2 = identity(getstr)\n" "a = getstr()\n" "b = f1()\n" "checkme = f2()\n" << "str"; QTest::newRow("vararg_before_other_args") << "def myfun(a, b, *z, x): return z[0]\n" "checkme = myfun(False, False, 1, x = False)" << "int"; QTest::newRow("vararg_before_other_args2") << "def myfun(a, b, *z, x): return z[3]\n" "checkme = myfun(False, False, 1, 2, 3, \"str\", x = False)" << "str"; QTest::newRow("vararg_constructor") << "class myclass():\n" " def __init__(self, *arg): self.prop = arg[0]\n" "obj = myclass(3, 5); checkme = obj.prop" << "int"; QTest::newRow("global_variable") << "a = 3\n" "def f1():\n" " global a\n" " return a\n" "checkme = f1()\n" << "int"; QTest::newRow("global_variable2") << "a = 3\n" "def f1():\n" " global a\n" " a = \"str\"\n" " return a\n" "checkme = f1()\n" << "str"; QTest::newRow("global_scope_variable") << "a = 3\n" "def f1():\n" " return a\n" "checkme = f1()\n" << "int"; QTest::newRow("global_no_toplevel_dec") << "def f1():\n" " global a\n a = 3\n" " return a\n" "checkme = f1()\n" << "int"; QTest::newRow("top_level_vs_class_member") << "var = 3\n" "class myclass:\n" " def __init__(self): self.var = \"str\"\n" " def f1(): return var\n" "checkme = myclass.f1()" << "int"; } typedef QPair pair; void PyDUChainTest::testImportDeclarations() { QFETCH(QString, code); QFETCH(QStringList, expectedDecls); QFETCH(bool, shouldBeAliased); ReferencedTopDUContext ctx = parse(code.toUtf8()); QVERIFY(ctx); QVERIFY(m_ast); DUChainReadLocker lock(DUChain::lock()); foreach ( const QString& expected, expectedDecls ) { bool found = false; QString name = expected; QList decls = ctx->allDeclarations(CursorInRevision::invalid(), ctx->topContext(), false); qCDebug(KDEV_PYTHON_DUCHAIN) << "FOUND DECLARATIONS:"; foreach ( const pair& current, decls ) { qCDebug(KDEV_PYTHON_DUCHAIN) << current.first->toString() << current.first->identifier().identifier().byteArray() << name; } foreach ( const pair& current, decls ) { if ( ! ( current.first->identifier().identifier().byteArray() == name ) ) continue; qCDebug(KDEV_PYTHON_DUCHAIN) << "Found: " << current.first->toString() << " for " << name; AliasDeclaration* isAliased = dynamic_cast(current.first); if ( isAliased && shouldBeAliased ) { found = true; // TODO fixme } else if ( ! isAliased && ! shouldBeAliased ) { found = true; } } QVERIFY(found); } } void PyDUChainTest::testProblemCount() { QFETCH(QString, code); QFETCH(int, problemsCount); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock; QCOMPARE(ctx->problems().size(), problemsCount); } void PyDUChainTest::testProblemCount_data() { QTest::addColumn("code"); QTest::addColumn("problemsCount"); QTest::newRow("list_comp") << "[foo for foo in range(3)]" << 0; QTest::newRow("list_comp_wrong") << "[bar for foo in range(3)]" << 1; QTest::newRow("list_comp_staticmethod") << "class A:\n @staticmethod\n def func(cls):\n" " [a for a in [1, 2, 3]]" << 0; QTest::newRow("list_comp_other_decorator") << "def decorate(): pass\nclass A:\n @decorate\n def func(self):\n" " [a for a in [1, 2, 3]]" << 0; QTest::newRow("list_comp_other_wrong") << "def decorate(): pass\nclass A:\n @decorate\n def func(self):\n" " [x for a in [1, 2, 3]]" << 1; QTest::newRow("list_comp_staticmethod_wrong") << "class A:\n @staticmethod\n def func(cls):\n" " [x for a in [1, 2, 3]]" << 1; } void PyDUChainTest::testImportDeclarations_data() { QTest::addColumn("code"); QTest::addColumn("expectedDecls"); QTest::addColumn("shouldBeAliased"); QTest::newRow("from_import") << "from testImportDeclarations.i import checkme" << ( QStringList() << "checkme" ) << true; QTest::newRow("import") << "import testImportDeclarations.i" << ( QStringList() << "testImportDeclarations" ) << false; QTest::newRow("import_as") << "import testImportDeclarations.i as checkme" << ( QStringList() << "checkme" ) << false; QTest::newRow("from_import_as") << "from testImportDeclarations.i import checkme as checkme" << ( QStringList() << "checkme" ) << true; QTest::newRow("from_import_missing") << "from testImportDeclarations.i import missing as checkme" << ( QStringList() ) << true; } typedef QPair p; void PyDUChainTest::testAutocompletionFlickering() { TestFile f("foo = 3\nfoo2 = 2\nfo", "py"); f.parse(TopDUContext::ForceUpdate); f.waitForParsed(500); ReferencedTopDUContext ctx1 = f.topContext(); DUChainWriteLocker lock(DUChain::lock()); QVERIFY(ctx1); QList

decls1 = ctx1->allDeclarations(CursorInRevision::invalid(), ctx1->topContext()); QList declIds; foreach ( p d, decls1 ) { declIds << d.first->id(); } lock.unlock(); f.setFileContents("foo = 3\nfoo2 = 2\nfoo"); f.parse(TopDUContext::ForceUpdate); f.waitForParsed(500); ReferencedTopDUContext ctx2 = f.topContext(); QVERIFY(ctx2); lock.lock(); QList

decls2 = ctx2->allDeclarations(CursorInRevision::invalid(), ctx2->topContext()); foreach ( p d2, decls2 ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "@1: " << d2.first->toString() << "::" << d2.first->id().hash() << "<>" << declIds.first().hash(); QVERIFY(d2.first->id() == declIds.first()); declIds.removeFirst(); } lock.unlock(); qDebug() << "========================="; TestFile g("def func():\n\tfoo = 3\n\tfoo2 = 2\n\tfo", "py"); g.parse(TopDUContext::ForceUpdate); g.waitForParsed(500); ctx1 = g.topContext(); lock.lock(); QVERIFY(ctx1); decls1 = ctx1->allDeclarations(CursorInRevision::invalid(), ctx1->topContext(), false).first().first->internalContext() ->allDeclarations(CursorInRevision::invalid(), ctx1->topContext()); declIds.clear(); foreach ( p d, decls1 ) { declIds << d.first->id(); } lock.unlock(); g.setFileContents("def func():\n\tfoo = 3\n\tfoo2 = 2\n\tfoo"); g.parse(TopDUContext::ForceUpdate); g.waitForParsed(500); ctx2 = g.topContext(); QVERIFY(ctx2); lock.lock(); decls2 = ctx2->allDeclarations(CursorInRevision::invalid(), ctx2->topContext(), false).first().first->internalContext() ->allDeclarations(CursorInRevision::invalid(), ctx2->topContext()); foreach ( p d2, decls2 ) { qCDebug(KDEV_PYTHON_DUCHAIN) << "@2: " << d2.first->toString() << "::" << d2.first->id().hash() << "<>" << declIds.first().hash(); QVERIFY(d2.first->id() == declIds.first()); declIds.removeFirst(); } lock.unlock(); } void PyDUChainTest::testFunctionHints() { QFETCH(QString, code); QFETCH(QString, expectedType); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainWriteLocker lock; QList< Declaration* > decls = ctx->findDeclarations(KDevelop::Identifier("checkme")); QVERIFY(! decls.isEmpty()); Declaration* d = decls.first(); QVERIFY(d->abstractType()); QCOMPARE(d->abstractType()->toString(), expectedType); } void PyDUChainTest::testFunctionHints_data() { QTest::addColumn("code"); QTest::addColumn("expectedType"); QTest::newRow("func_return_type") << "def myfun(arg) -> int: pass\ncheckme = myfun(\"3\")" << "unsure (void, int)"; QTest::newRow("argument_type") << "def myfun(arg : int): return arg\ncheckme = myfun(foobar)" << "int"; QTest::newRow("argument_type_only_if_typeof") << "def myfun(arg : 3): return arg\ncheckme = myfun(foobar)" << "mixed"; } void PyDUChainTest::testHintedTypes() { QFETCH(QString, code); QFETCH(QString, expectedType); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainWriteLocker lock; QList< Declaration* > decls = ctx->findDeclarations(KDevelop::Identifier("checkme")); QVERIFY(! decls.isEmpty()); Declaration* d = decls.first(); QVERIFY(d->abstractType()); QCOMPARE(d->abstractType()->toString(), expectedType); } void PyDUChainTest::testHintedTypes_data() { QTest::addColumn("code"); QTest::addColumn("expectedType"); QTest::newRow("simple_hint") << "def myfunc(x): return x\ncheckme = myfunc(3)" << "int"; QTest::newRow("hint_unsure") << "def myfunc(x): return x\nmyfunc(3.5)\ncheckme = myfunc(3)" << "unsure (float, int)"; QTest::newRow("unsure_attribute") << "def myfunc(x): return x.capitalize()\nmyfunc(3.5)\ncheckme = myfunc(str())" << "str"; } void PyDUChainTest::testDecorators() { QFETCH(QString, code); // QFETCH(int, amountOfDecorators); QFETCH(QStringList, names); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock(DUChain::lock()); Python::FunctionDeclaration* decl = dynamic_cast( ctx->allDeclarations(CursorInRevision::invalid(), ctx->topContext()).first().first); QVERIFY(decl); foreach ( const QString& decoratorName, names ) { QVERIFY(Helper::findDecoratorByName(decl, decoratorName)); } } void PyDUChainTest::testDecorators_data() { QTest::addColumn("code"); QTest::addColumn("amountOfDecorators"); QTest::addColumn("names"); QTest::newRow("one_decorator") << "@foo\ndef func(): pass" << 1 << ( QStringList() << "foo" ); QTest::newRow("decorator_with_args") << "@foo(2, \"bar\")\ndef func(): pass" << 1 << ( QStringList() << "foo"); QTest::newRow("two_decorators") << "@foo\n@bar(17)\ndef func(): pass" << 2 << ( QStringList() << "foo" << "bar" ); } void PyDUChainTest::testOperators() { QFETCH(QString, code); QFETCH(QString, expectedType); code.prepend("from testOperators.example import *\n\n"); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock(DUChain::lock()); TypeTestVisitor* visitor = new TypeTestVisitor(); visitor->ctx = TopDUContextPointer(ctx.data()); visitor->searchingForType = expectedType; visitor->visitCode(m_ast.data()); QVERIFY(visitor->found); } void PyDUChainTest::testOperators_data() { QTest::addColumn("code"); QTest::addColumn("expectedType"); QTest::newRow("add") << "checkme = Example() + Example()" << "Add"; QTest::newRow("sub") << "checkme = Example() - Example()" << "Sub"; QTest::newRow("mul") << "checkme = Example() * Example()" << "Mul"; QTest::newRow("floordiv") << "checkme = Example() // Example()" << "Floordiv"; QTest::newRow("mod") << "checkme = Example() % Example()" << "Mod"; QTest::newRow("pow") << "checkme = Example() ** Example()" << "Pow"; QTest::newRow("lshift") << "checkme = Example() << Example()" << "Lshift"; QTest::newRow("rshift") << "checkme = Example() >> Example()" << "Rshift"; QTest::newRow("and") << "checkme = Example() & Example()" << "And"; QTest::newRow("xor") << "checkme = Example() ^ Example()" << "Xor"; QTest::newRow("or") << "checkme = Example() | Example()" << "Or"; } void PyDUChainTest::testFunctionArgs() { ReferencedTopDUContext ctx = parse("def ASDF(arg1, arg2):\n" " arg1 = arg2"); DUChainWriteLocker lock(DUChain::lock()); QVERIFY(ctx); QVERIFY(m_ast); // dumpDUContext(ctx); QCOMPARE(ctx->childContexts().size(), 2); DUContext* funcArgCtx = ctx->childContexts().first(); QCOMPARE(funcArgCtx->type(), DUContext::Function); QCOMPARE(funcArgCtx->localDeclarations().size(), 2); QVERIFY(!funcArgCtx->owner()); Python::FunctionDeclaration* decl = dynamic_cast( ctx->allDeclarations(CursorInRevision::invalid(), ctx->topContext()).first().first); QVERIFY(decl); QCOMPARE(decl->type()->arguments().length(), 2); qDebug() << decl->type()->arguments().length() << 2; DUContext* funcBodyCtx = ctx->childContexts().last(); QCOMPARE(funcBodyCtx->type(), DUContext::Other); QVERIFY(funcBodyCtx->owner()); QVERIFY(funcBodyCtx->localDeclarations().isEmpty()); } void PyDUChainTest::testInheritance() { QFETCH(QString, code); QFETCH(int, expectedBaseClasses); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock(DUChain::lock()); QList

decls = ctx->allDeclarations(CursorInRevision::invalid(), ctx->topContext(), false); bool found = false; bool classDeclFound = false; foreach ( const p& item, decls ) { if ( item.first->identifier().toString() == "B" ) { auto klass = dynamic_cast(item.first); QVERIFY(klass); QCOMPARE(klass->baseClassesSize(), static_cast(expectedBaseClasses)); classDeclFound = true; } if ( item.first->identifier().toString() == "checkme" ) { QCOMPARE(item.first->abstractType()->toString(), QString("int")); found = true; } } QVERIFY(found); QVERIFY(classDeclFound); } void PyDUChainTest::testInheritance_data() { QTest::addColumn("code"); QTest::addColumn("expectedBaseClasses"); QTest::newRow("simple") << "class A():\n\tattr = 3\n\nclass B(A):\n\tpass\n\ninst=B()\ncheckme = inst.attr" << 1; QTest::newRow("context_import_prereq") << "import testInheritance.i\ninst=testInheritance.i.testclass()\n" "checkme = inst.attr\nclass B(): pass" << 1; // 1 because object QTest::newRow("context_import") << "import testInheritance.i\n\nclass B(testInheritance.i.testclass):\n" "\ti = 4\n\ninst=B()\ncheckme = inst.attr" << 1; } void PyDUChainTest::testClassContextRanges() { QString code = "class my_class():\n pass\n \n \n \n \n"; ReferencedTopDUContext ctx = parse(code); DUChainWriteLocker lock; DUContext* classContext = ctx->findContextAt(CursorInRevision(5, 0)); QVERIFY(classContext); QVERIFY(classContext->type() == DUContext::Class); } void PyDUChainTest::testContainerTypes() { QFETCH(QString, code); QFETCH(QString, contenttype); QFETCH(bool, use_type); ReferencedTopDUContext ctx = parse(code); QVERIFY(ctx); DUChainReadLocker lock(DUChain::lock()); QList decls = ctx->findDeclarations(QualifiedIdentifier("checkme")); QVERIFY(decls.length() > 0); QVERIFY(decls.first()->abstractType()); if ( ! use_type ) { auto type = ListType::Ptr::dynamicCast(decls.first()->abstractType()); QVERIFY(type); QVERIFY(type->contentType()); QCOMPARE(type->contentType().abstractType()->toString(), contenttype); } else { QVERIFY(decls.first()->abstractType()); QCOMPARE(decls.first()->abstractType()->toString(), contenttype); } } void PyDUChainTest::testContainerTypes_data() { QTest::addColumn("code"); QTest::addColumn("contenttype"); QTest::addColumn("use_type"); QTest::newRow("list_of_int") << "checkme = [1, 2, 3]" << "int" << false; QTest::newRow("list_of_int_call") << "checkme = list([1, 2, 3])" << "int" << false; QTest::newRow("generator") << "checkme = [i for i in [1, 2, 3]]" << "int" << false; QTest::newRow("list_access") << "list = [1, 2, 3]\ncheckme = list[0]" << "int" << true; QTest::newRow("set_of_int") << "checkme = {1, 2, 3}" << "int" << false; QTest::newRow("set_of_int_call") << "checkme = set({1, 2, 3})" << "int" << false; QTest::newRow("set_generator") << "checkme = {i for i in [1, 2, 3]}" << "int" << false; QTest::newRow("dict_of_int") << "checkme = {a:1, b:2, c:3}" << "int" << false; QTest::newRow("dict_of_int_call") << "checkme = dict({a:1, b:2, c:3})" << "int" << false; QTest::newRow("dict_generator") << "checkme = {\"Foo\":i for i in [1, 2, 3]}" << "int" << false; QTest::newRow("dict_access") << "list = {a:1, b:2, c:3}\ncheckme = list[0]" << "int" << true; QTest::newRow("generator_attribute") << "checkme = [item.capitalize() for item in ['foobar']]" << "str" << false; QTest::newRow("cannot_change_type") << "checkme = [\"Foo\", \"Bar\"]" << "str" << false; QTest::newRow("cannot_change_type2") << "[1, 2, 3].append(5)\ncheckme = [\"Foo\", \"Bar\"]" << "str" << false; QTest::newRow("list_append") << "d = []\nd.append(3)\ncheckme = d[0]" << "int" << true; QTest::newRow("list_extend") << "d = []; q = [int()]\nd.extend(q)\ncheckme = d[0]" << "int" << true; QTest::newRow("for_loop") << "d = [3]\nfor item in d:\n checkme = item" << "int" << true; QTest::newRow("for_loop_unsure") << "d = [3, \"foo\"]\nfor item in d:\n checkme = item" << "unsure (int, str)" << true; QTest::newRow("for_loop_tuple_1") << "d = [(3, 3.5)]\nfor a, b in d:\n checkme = a" << "int" << true; QTest::newRow("for_loop_tuple_2") << "d = [(3, 3.5)]\nfor a, b in d:\n checkme = b" << "float" << true; QTest::newRow("for_loop_tuple_unsure") << "d = [(3, 3.5), (3.5, 3)]\nfor a, b in d:\n checkme = b" << "unsure (float, int)" << true; // Proposed by Nicolás Alvarez; why not? https://bugs.kde.org/show_bug.cgi?id=359915 QTest::newRow("comprehension_messy") << "users = {'a':19, 'b':42, 'c':35}\n" "sorted_list = sorted(users.items(), key=lambda kv: (-kv[1], kv[0]))\n" "checkme = [k for r,(k,v) in enumerate(sorted_list, 1)]" << "list of str" << true; + // From https://bugs.kde.org/show_bug.cgi?id=359912 + QTest::newRow("subscript_multi") << + "class Middle:\n def __getitem__(self, key):\n return str()\n" + "class Outer:\n def __getitem__(self, key):\n return Middle()\n" + "aaa = Outer()\ncheckme = aaa[0][0]" << "str" << true; + QTest::newRow("subscript_func_call") << + "class Foo:\n def __getitem__(self, key):\n return str()\n" + "def bar():\n return Foo()\n" + "checkme = bar()[0]" << "str" << true; } void PyDUChainTest::testVariableCreation() { QFETCH(QString, code); QFETCH(QStringList, expected_local_declarations); QFETCH(QStringList, expected_types); ReferencedTopDUContext top = parse(code); QVERIFY(top); DUChainReadLocker lock; auto localDecls = top->localDeclarations(); QVector localDeclNames; for ( const Declaration* d: localDecls ) { localDeclNames.append(d->identifier().toString()); } Q_ASSERT(expected_types.size() == expected_local_declarations.size()); int offset = 0; for ( const QString& expected : expected_local_declarations ) { int index = localDeclNames.indexOf(expected); QVERIFY(index != -1); QVERIFY(localDecls[index]->abstractType()); QCOMPARE(localDecls[index]->abstractType()->toString(), expected_types[offset]); offset++; } } void PyDUChainTest::testVariableCreation_data() { QTest::addColumn("code"); QTest::addColumn("expected_local_declarations"); QTest::addColumn("expected_types"); QTest::newRow("simple") << "a = 3" << QStringList{"a"} << QStringList{"int"}; QTest::newRow("tuple_wrong") << "a, b = 3" << QStringList{"a", "b"} << QStringList{"mixed", "mixed"}; QTest::newRow("tuple_unpack_inplace") << "a, b = 3, 5.5" << QStringList{"a", "b"} << QStringList{"int", "float"}; QTest::newRow("tuple_unpack_indirect") << "c = 3, 3.5\na, b = c" << QStringList{"a", "b"} << QStringList{"int", "float"}; QTest::newRow("tuple_unpack_stacked_inplace") << "a, (b, c) = 1, (2, 3.5)" << QStringList{"a", "b", "c"} << QStringList{"int", "int", "float"}; QTest::newRow("tuple_unpack_stacked_indirect") << "d = 3.5, (3, 1)\na, (b, c) = d" << QStringList{"a", "b", "c"} << QStringList{"float", "int", "int"}; QTest::newRow("unpack_from_list_inplace") << "a, b = [1, 2, 3]" << QStringList{"a", "b"} << QStringList{"int", "int"}; QTest::newRow("unpack_from_list_indirect") << "c = [1, 2, 3]\na, b = c" << QStringList{"a", "b"} << QStringList{"int", "int"}; QTest::newRow("for_loop_simple") << "for i in range(3): pass" << QStringList{"i"} << QStringList{"int"}; QTest::newRow("for_loop_unpack") << "for a, b in [(3, 5.1)]: pass" << QStringList{"a", "b"} << QStringList{"int", "float"}; QTest::newRow("for_loop_stacked") << "for a, (b, c) in [(1, (2, 3.5))]: pass" << QStringList{"a", "b", "c"} << QStringList{"int", "int", "float"}; QTest::newRow("for_loop_tuple") << "for a in 1, 2: pass" << QStringList{"a"} << QStringList{"int"}; QTest::newRow("for_loop_dict") << "for a in {'foo': 1}: pass" << QStringList{"a"} << QStringList{"str"}; } void PyDUChainTest::testCleanupMultiplePasses() { for ( int j = 0; j < 20; j++ ) { ReferencedTopDUContext top = parse("from testCleanupMultiplePasses import foo\ndef fonc(): return 3+2j\nfoo.foo.func = fonc"); } } void PyDUChainTest::testManyDeclarations() { ReferencedTopDUContext top = parse("from testManyDeclarations import test\nk=test.Foo()"); } void PyDUChainTest::testComments() { QFETCH(QString, code); auto top = parse(code); QVERIFY(top); DUChainReadLocker lock; auto decls = top->findDeclarations(QualifiedIdentifier("a")); QCOMPARE(decls.size(), 1); auto a = decls.first(); QCOMPARE(a->comment(), QByteArray("comment")); decls = top->findDeclarations(QualifiedIdentifier("b")); if ( decls.isEmpty() ) { decls = top->childContexts().last()->findDeclarations(QualifiedIdentifier("b")); } auto b = decls.first(); QCOMPARE(b->comment(), QByteArray()); } void PyDUChainTest::testComments_data() { QTest::addColumn("code"); QTest::newRow("variable") << "b=5\n\"\"\"comment\"\"\"\na=5\nb=5"; QTest::newRow("function") << "def a():\n \"\"\"comment\"\"\"\n b=5"; QTest::newRow("class") << "class a:\n \"\"\"comment\"\"\"\n b=5"; }