diff --git a/libs/flake/KoPathShape.cpp b/libs/flake/KoPathShape.cpp index fb6731bf91..bb955d7e9d 100644 --- a/libs/flake/KoPathShape.cpp +++ b/libs/flake/KoPathShape.cpp @@ -1,1654 +1,1656 @@ /* This file is part of the KDE project Copyright (C) 2006-2008, 2010-2011 Thorsten Zachmann Copyright (C) 2006-2011 Jan Hambrecht Copyright (C) 2007-2009 Thomas Zander Copyright (C) 2011 Jean-Nicolas Artaud This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "KoPathShape.h" #include "KoPathShape_p.h" #include "KoPathSegment.h" #include "KoOdfWorkaround.h" #include "KoPathPoint.h" #include "KoShapeStrokeModel.h" #include "KoViewConverter.h" #include "KoPathShapeLoader.h" #include "KoShapeSavingContext.h" #include "KoShapeLoadingContext.h" #include "KoShapeShadow.h" #include "KoShapeBackground.h" #include "KoShapeContainer.h" #include "KoFilterEffectStack.h" #include "KoMarker.h" #include "KoShapeStroke.h" #include "KoInsets.h" #include #include #include #include #include #include #include #include "KisQPainterStateSaver.h" #include #include #include "kis_global.h" #include // for qIsNaN static bool qIsNaNPoint(const QPointF &p) { return qIsNaN(p.x()) || qIsNaN(p.y()); } KoPathShape::Private::Private() : QSharedData() , fillRule(Qt::OddEvenFill) , autoFillMarkers(false) { } KoPathShape::Private::Private(const Private &rhs) : QSharedData() , fillRule(rhs.fillRule) , markersNew(rhs.markersNew) , autoFillMarkers(rhs.autoFillMarkers) { } QRectF KoPathShape::Private::handleRect(const QPointF &p, qreal radius) const { return QRectF(p.x() - radius, p.y() - radius, 2*radius, 2*radius); } void KoPathShape::Private::applyViewboxTransformation(const KoXmlElement &element) { // apply viewbox transformation const QRect viewBox = KoPathShape::loadOdfViewbox(element); if (! viewBox.isEmpty()) { // load the desired size QSizeF size; size.setWidth(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "width", QString()))); size.setHeight(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "height", QString()))); // load the desired position QPointF pos; pos.setX(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "x", QString()))); pos.setY(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "y", QString()))); // create matrix to transform original path data into desired size and position QTransform viewMatrix; viewMatrix.translate(-viewBox.left(), -viewBox.top()); viewMatrix.scale(size.width() / viewBox.width(), size.height() / viewBox.height()); viewMatrix.translate(pos.x(), pos.y()); // transform the path data map(viewMatrix); } } KoPathShape::KoPathShape() : KoTosContainer() , d(new Private) { } KoPathShape::KoPathShape(const KoPathShape &rhs) : KoTosContainer(rhs) , d(rhs.d) { KoSubpathList subpaths; Q_FOREACH (KoSubpath *subPath, rhs.d->subpaths) { KoSubpath *clonedSubPath = new KoSubpath(); Q_FOREACH (KoPathPoint *point, *subPath) { *clonedSubPath << new KoPathPoint(*point, this); } subpaths << clonedSubPath; } d->subpaths = subpaths; } KoPathShape::~KoPathShape() { clear(); } KoShape *KoPathShape::cloneShape() const { return new KoPathShape(*this); } void KoPathShape::saveContourOdf(KoShapeSavingContext &context, const QSizeF &scaleFactor) const { if (d->subpaths.length() <= 1) { QTransform matrix; matrix.scale(scaleFactor.width(), scaleFactor.height()); QString points; KoSubpath *subPath = d->subpaths.first(); KoSubpath::const_iterator pointIt(subPath->constBegin()); KoPathPoint *currPoint= 0; // iterate over all points for (; pointIt != subPath->constEnd(); ++pointIt) { currPoint = *pointIt; if (currPoint->activeControlPoint1() || currPoint->activeControlPoint2()) { break; } const QPointF p = matrix.map(currPoint->point()); points += QString("%1,%2 ").arg(qRound(1000*p.x())).arg(qRound(1000*p.y())); } if (currPoint && !(currPoint->activeControlPoint1() || currPoint->activeControlPoint2())) { context.xmlWriter().startElement("draw:contour-polygon"); context.xmlWriter().addAttribute("svg:width", size().width()); context.xmlWriter().addAttribute("svg:height", size().height()); const QSizeF s(size()); QString viewBox = QString("0 0 %1 %2").arg(qRound(1000*s.width())).arg(qRound(1000*s.height())); context.xmlWriter().addAttribute("svg:viewBox", viewBox); context.xmlWriter().addAttribute("draw:points", points); context.xmlWriter().addAttribute("draw:recreate-on-edit", "true"); context.xmlWriter().endElement(); return; } } // if we get here we couldn't save as polygon - let-s try contour-path context.xmlWriter().startElement("draw:contour-path"); saveOdfAttributes(context, OdfViewbox); context.xmlWriter().addAttribute("svg:d", toString()); context.xmlWriter().addAttribute("calligra:nodeTypes", d->nodeTypes()); context.xmlWriter().addAttribute("draw:recreate-on-edit", "true"); context.xmlWriter().endElement(); } void KoPathShape::saveOdf(KoShapeSavingContext & context) const { context.xmlWriter().startElement("draw:path"); saveOdfAttributes(context, OdfAllAttributes | OdfViewbox); context.xmlWriter().addAttribute("svg:d", toString()); context.xmlWriter().addAttribute("calligra:nodeTypes", d->nodeTypes()); saveOdfCommonChildElements(context); saveText(context); context.xmlWriter().endElement(); } bool KoPathShape::loadContourOdf(const KoXmlElement &element, KoShapeLoadingContext &, const QSizeF &scaleFactor) { // first clear the path data from the default path clear(); if (element.localName() == "contour-polygon") { QString points = element.attributeNS(KoXmlNS::draw, "points").simplified(); points.replace(',', ' '); points.remove('\r'); points.remove('\n'); bool firstPoint = true; const QStringList coordinateList = points.split(' '); for (QStringList::ConstIterator it = coordinateList.constBegin(); it != coordinateList.constEnd(); ++it) { QPointF point; point.setX((*it).toDouble()); ++it; point.setY((*it).toDouble()); if (firstPoint) { moveTo(point); firstPoint = false; } else lineTo(point); } close(); } else if (element.localName() == "contour-path") { KoPathShapeLoader loader(this); loader.parseSvg(element.attributeNS(KoXmlNS::svg, "d"), true); d->loadNodeTypes(element); } // apply viewbox transformation const QRect viewBox = KoPathShape::loadOdfViewbox(element); if (! viewBox.isEmpty()) { QSizeF size; size.setWidth(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "width", QString()))); size.setHeight(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "height", QString()))); // create matrix to transform original path data into desired size and position QTransform viewMatrix; viewMatrix.translate(-viewBox.left(), -viewBox.top()); viewMatrix.scale(scaleFactor.width(), scaleFactor.height()); viewMatrix.scale(size.width() / viewBox.width(), size.height() / viewBox.height()); // transform the path data d->map(viewMatrix); } setTransformation(QTransform()); return true; } bool KoPathShape::loadOdf(const KoXmlElement & element, KoShapeLoadingContext &context) { loadOdfAttributes(element, context, OdfMandatories | OdfAdditionalAttributes | OdfCommonChildElements); // first clear the path data from the default path clear(); if (element.localName() == "line") { QPointF start; start.setX(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "x1", ""))); start.setY(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "y1", ""))); QPointF end; end.setX(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "x2", ""))); end.setY(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "y2", ""))); moveTo(start); lineTo(end); } else if (element.localName() == "polyline" || element.localName() == "polygon") { QString points = element.attributeNS(KoXmlNS::draw, "points").simplified(); points.replace(',', ' '); points.remove('\r'); points.remove('\n'); bool firstPoint = true; const QStringList coordinateList = points.split(' '); for (QStringList::ConstIterator it = coordinateList.constBegin(); it != coordinateList.constEnd(); ++it) { QPointF point; point.setX((*it).toDouble()); ++it; point.setY((*it).toDouble()); if (firstPoint) { moveTo(point); firstPoint = false; } else lineTo(point); } if (element.localName() == "polygon") close(); } else { // path loading KoPathShapeLoader loader(this); loader.parseSvg(element.attributeNS(KoXmlNS::svg, "d"), true); d->loadNodeTypes(element); } d->applyViewboxTransformation(element); QPointF pos = normalize(); setTransformation(QTransform()); if (element.hasAttributeNS(KoXmlNS::svg, "x") || element.hasAttributeNS(KoXmlNS::svg, "y")) { pos.setX(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "x", QString()))); pos.setY(KoUnit::parseValue(element.attributeNS(KoXmlNS::svg, "y", QString()))); } setPosition(pos); loadOdfAttributes(element, context, OdfTransformation); // now that the correct transformation is set up // apply that matrix to the path geometry so that // we don't transform the stroke d->map(transformation()); setTransformation(QTransform()); normalize(); loadText(element, context); return true; } QString KoPathShape::saveStyle(KoGenStyle &style, KoShapeSavingContext &context) const { style.addProperty("svg:fill-rule", d->fillRule == Qt::OddEvenFill ? "evenodd" : "nonzero"); QSharedPointer lineBorder = qSharedPointerDynamicCast(stroke()); qreal lineWidth = 0; if (lineBorder) { lineWidth = lineBorder->lineWidth(); } Q_UNUSED(lineWidth) return KoTosContainer::saveStyle(style, context); } void KoPathShape::loadStyle(const KoXmlElement & element, KoShapeLoadingContext &context) { KoTosContainer::loadStyle(element, context); KoStyleStack &styleStack = context.odfLoadingContext().styleStack(); styleStack.setTypeProperties("graphic"); if (styleStack.hasProperty(KoXmlNS::svg, "fill-rule")) { QString rule = styleStack.property(KoXmlNS::svg, "fill-rule"); d->fillRule = (rule == "nonzero") ? Qt::WindingFill : Qt::OddEvenFill; } else { d->fillRule = Qt::WindingFill; #ifndef NWORKAROUND_ODF_BUGS KoOdfWorkaround::fixMissingFillRule(d->fillRule, context); #endif } QSharedPointer lineBorder = qSharedPointerDynamicCast(stroke()); qreal lineWidth = 0; if (lineBorder) { lineWidth = lineBorder->lineWidth(); } Q_UNUSED(lineWidth); } QRect KoPathShape::loadOdfViewbox(const KoXmlElement & element) { QRect viewbox; QString data = element.attributeNS(KoXmlNS::svg, QLatin1String("viewBox")); if (! data.isEmpty()) { data.replace(QLatin1Char(','), QLatin1Char(' ')); const QStringList coordinates = data.simplified().split(QLatin1Char(' '), QString::SkipEmptyParts); if (coordinates.count() == 4) { viewbox.setRect(coordinates.at(0).toInt(), coordinates.at(1).toInt(), coordinates.at(2).toInt(), coordinates.at(3).toInt()); } } return viewbox; } void KoPathShape::clear() { Q_FOREACH (KoSubpath *subpath, d->subpaths) { Q_FOREACH (KoPathPoint *point, *subpath) delete point; delete subpath; } d->subpaths.clear(); notifyPointsChanged(); } void KoPathShape::paint(QPainter &painter, const KoViewConverter &converter, KoShapePaintingContext &paintContext) { KisQPainterStateSaver saver(&painter); applyConversion(painter, converter); QPainterPath path(outline()); path.setFillRule(d->fillRule); if (background()) { background()->paint(painter, converter, paintContext, path); } //d->paintDebug(painter); } #ifndef NDEBUG void KoPathShape::Private::paintDebug(QPainter &painter) { KoSubpathList::const_iterator pathIt(subpaths.constBegin()); int i = 0; QPen pen(Qt::black, 0); painter.save(); painter.setPen(pen); for (; pathIt != subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it) { ++i; KoPathPoint *point = (*it); QRectF r(point->point(), QSizeF(5, 5)); r.translate(-2.5, -2.5); QPen pen(Qt::black, 0); painter.setPen(pen); if (point->activeControlPoint1() && point->activeControlPoint2()) { QBrush b(Qt::red); painter.setBrush(b); } else if (point->activeControlPoint1()) { QBrush b(Qt::yellow); painter.setBrush(b); } else if (point->activeControlPoint2()) { QBrush b(Qt::darkYellow); painter.setBrush(b); } painter.drawEllipse(r); } } painter.restore(); debugFlake << "nop =" << i; } void KoPathShape::Private::debugPath() const { KoSubpathList::const_iterator pathIt(subpaths.constBegin()); for (; pathIt != subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it) { debugFlake << "p:" << (*pathIt) << "," << *it << "," << (*it)->point() << "," << (*it)->properties(); } } } #endif void KoPathShape::paintPoints(KisHandlePainterHelper &handlesHelper) { KoSubpathList::const_iterator pathIt(d->subpaths.constBegin()); for (; pathIt != d->subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it) (*it)->paint(handlesHelper, KoPathPoint::Node); } } QRectF KoPathShape::outlineRect() const { return outline().boundingRect(); } QPainterPath KoPathShape::outline() const { QPainterPath path; - Q_FOREACH (KoSubpath * subpath, d->subpaths) { - KoPathPoint * lastPoint = subpath->first(); + for (auto subpathIt = d->subpaths.constBegin(); subpathIt != d->subpaths.constEnd(); ++subpathIt) { + const KoSubpath * subpath = *subpathIt; + const KoPathPoint * lastPoint = subpath->constFirst(); bool activeCP = false; - Q_FOREACH (KoPathPoint * currPoint, *subpath) { + for (auto pointIt = subpath->constBegin(); pointIt != subpath->constEnd(); ++pointIt) { + const KoPathPoint * currPoint = *pointIt; KoPathPoint::PointProperties currProperties = currPoint->properties(); - if (currPoint == subpath->first()) { + if (currPoint == subpath->constFirst()) { if (currProperties & KoPathPoint::StartSubpath) { Q_ASSERT(!qIsNaNPoint(currPoint->point())); path.moveTo(currPoint->point()); } } else if (activeCP && currPoint->activeControlPoint1()) { Q_ASSERT(!qIsNaNPoint(lastPoint->controlPoint2())); Q_ASSERT(!qIsNaNPoint(currPoint->controlPoint1())); Q_ASSERT(!qIsNaNPoint(currPoint->point())); path.cubicTo( lastPoint->controlPoint2(), currPoint->controlPoint1(), currPoint->point()); } else if (activeCP || currPoint->activeControlPoint1()) { Q_ASSERT(!qIsNaNPoint(lastPoint->controlPoint2())); Q_ASSERT(!qIsNaNPoint(currPoint->controlPoint1())); path.quadTo( activeCP ? lastPoint->controlPoint2() : currPoint->controlPoint1(), currPoint->point()); } else { Q_ASSERT(!qIsNaNPoint(currPoint->point())); path.lineTo(currPoint->point()); } if (currProperties & KoPathPoint::CloseSubpath && currProperties & KoPathPoint::StopSubpath) { // add curve when there is a curve on the way to the first point KoPathPoint * firstPoint = subpath->first(); Q_ASSERT(!qIsNaNPoint(firstPoint->point())); if (currPoint->activeControlPoint2() && firstPoint->activeControlPoint1()) { path.cubicTo( currPoint->controlPoint2(), firstPoint->controlPoint1(), firstPoint->point()); } else if (currPoint->activeControlPoint2() || firstPoint->activeControlPoint1()) { Q_ASSERT(!qIsNaNPoint(currPoint->point())); Q_ASSERT(!qIsNaNPoint(currPoint->controlPoint1())); path.quadTo( currPoint->activeControlPoint2() ? currPoint->controlPoint2() : firstPoint->controlPoint1(), firstPoint->point()); } path.closeSubpath(); } if (currPoint->activeControlPoint2()) { activeCP = true; } else { activeCP = false; } lastPoint = currPoint; } } return path; } QRectF KoPathShape::boundingRect() const { const QTransform transform = absoluteTransformation(0); /** * First we approximate the insets of the stroke by rendering a fat bezier curve * with width set to the maximum inset of miters and markers. The are swept by this * curve will be a good approximation of the real curve bounding rect. */ qreal outlineSweepWidth = 0; const QSharedPointer lineBorder = qSharedPointerDynamicCast(stroke()); if (lineBorder) { outlineSweepWidth = lineBorder->lineWidth(); } if (stroke()) { KoInsets inset; stroke()->strokeInsets(this, inset); const qreal maxInset = std::max({inset.left, inset.top, inset.right, inset.bottom}); // insets extend outside the shape, but width extends both inside and outside, // so we should multiply insets by 2.0 outlineSweepWidth = std::max({outlineSweepWidth, 2.0 * maxInset, 2.0 * stroke()->strokeMaxMarkersInset(this)}); } QPen pen(Qt::black, outlineSweepWidth); // select round joins and caps to ensure it sweeps exactly // 'outlineSweepWidth' pixels in every possible pen.setJoinStyle(Qt::RoundJoin); pen.setCapStyle(Qt::RoundCap); QRectF bb = transform.map(pathStroke(pen)).boundingRect(); if (shadow()) { KoInsets insets; shadow()->insets(insets); bb.adjust(-insets.left, -insets.top, insets.right, insets.bottom); } if (filterEffectStack()) { QRectF clipRect = filterEffectStack()->clipRectForBoundingRect(QRectF(QPointF(), size())); bb |= transform.mapRect(clipRect); } return bb; } QSizeF KoPathShape::size() const { // don't call boundingRect here as it uses absoluteTransformation // which itself uses size() -> leads to infinite recursion return outlineRect().size(); } void KoPathShape::setSize(const QSizeF &newSize) { QTransform matrix(resizeMatrix(newSize)); KoShape::setSize(newSize); d->map(matrix); } QTransform KoPathShape::resizeMatrix(const QSizeF & newSize) const { QSizeF oldSize = size(); if (oldSize.width() == 0.0) { oldSize.setWidth(0.000001); } if (oldSize.height() == 0.0) { oldSize.setHeight(0.000001); } QSizeF sizeNew(newSize); if (sizeNew.width() == 0.0) { sizeNew.setWidth(0.000001); } if (sizeNew.height() == 0.0) { sizeNew.setHeight(0.000001); } return QTransform(sizeNew.width() / oldSize.width(), 0, 0, sizeNew.height() / oldSize.height(), 0, 0); } KoPathPoint * KoPathShape::moveTo(const QPointF &p) { KoPathPoint * point = new KoPathPoint(this, p, KoPathPoint::StartSubpath | KoPathPoint::StopSubpath); KoSubpath * path = new KoSubpath; path->push_back(point); d->subpaths.push_back(path); notifyPointsChanged(); return point; } KoPathPoint * KoPathShape::lineTo(const QPointF &p) { if (d->subpaths.empty()) { moveTo(QPointF(0, 0)); } KoPathPoint * point = new KoPathPoint(this, p, KoPathPoint::StopSubpath); KoPathPoint * lastPoint = d->subpaths.last()->last(); updateLastPriv(&lastPoint); d->subpaths.last()->push_back(point); notifyPointsChanged(); return point; } KoPathPoint * KoPathShape::curveTo(const QPointF &c1, const QPointF &c2, const QPointF &p) { if (d->subpaths.empty()) { moveTo(QPointF(0, 0)); } KoPathPoint * lastPoint = d->subpaths.last()->last(); updateLastPriv(&lastPoint); lastPoint->setControlPoint2(c1); KoPathPoint * point = new KoPathPoint(this, p, KoPathPoint::StopSubpath); point->setControlPoint1(c2); d->subpaths.last()->push_back(point); notifyPointsChanged(); return point; } KoPathPoint * KoPathShape::curveTo(const QPointF &c, const QPointF &p) { if (d->subpaths.empty()) moveTo(QPointF(0, 0)); KoPathPoint * lastPoint = d->subpaths.last()->last(); updateLastPriv(&lastPoint); lastPoint->setControlPoint2(c); KoPathPoint * point = new KoPathPoint(this, p, KoPathPoint::StopSubpath); d->subpaths.last()->push_back(point); notifyPointsChanged(); return point; } KoPathPoint * KoPathShape::arcTo(qreal rx, qreal ry, qreal startAngle, qreal sweepAngle) { if (d->subpaths.empty()) { moveTo(QPointF(0, 0)); } KoPathPoint * lastPoint = d->subpaths.last()->last(); if (lastPoint->properties() & KoPathPoint::CloseSubpath) { lastPoint = d->subpaths.last()->first(); } QPointF startpoint(lastPoint->point()); KoPathPoint * newEndPoint = lastPoint; QPointF curvePoints[12]; int pointCnt = arcToCurve(rx, ry, startAngle, sweepAngle, startpoint, curvePoints); for (int i = 0; i < pointCnt; i += 3) { newEndPoint = curveTo(curvePoints[i], curvePoints[i+1], curvePoints[i+2]); } return newEndPoint; } int KoPathShape::arcToCurve(qreal rx, qreal ry, qreal startAngle, qreal sweepAngle, const QPointF & offset, QPointF * curvePoints) const { int pointCnt = 0; // check Parameters if (sweepAngle == 0.0) return pointCnt; sweepAngle = qBound(-360.0, sweepAngle, 360.0); if (rx == 0 || ry == 0) { //TODO } // split angles bigger than 90° so that it gives a good approximation to the circle qreal parts = ceil(qAbs(sweepAngle / 90.0)); qreal sa_rad = startAngle * M_PI / 180.0; qreal partangle = sweepAngle / parts; qreal endangle = startAngle + partangle; qreal se_rad = endangle * M_PI / 180.0; qreal sinsa = sin(sa_rad); qreal cossa = cos(sa_rad); qreal kappa = 4.0 / 3.0 * tan((se_rad - sa_rad) / 4); // startpoint is at the last point is the path but when it is closed // it is at the first point QPointF startpoint(offset); //center berechnen QPointF center(startpoint - QPointF(cossa * rx, -sinsa * ry)); //debugFlake <<"kappa" << kappa <<"parts" << parts; for (int part = 0; part < parts; ++part) { // start tangent curvePoints[pointCnt++] = QPointF(startpoint - QPointF(sinsa * rx * kappa, cossa * ry * kappa)); qreal sinse = sin(se_rad); qreal cosse = cos(se_rad); // end point QPointF endpoint(center + QPointF(cosse * rx, -sinse * ry)); // end tangent curvePoints[pointCnt++] = QPointF(endpoint - QPointF(-sinse * rx * kappa, -cosse * ry * kappa)); curvePoints[pointCnt++] = endpoint; // set the endpoint as next start point startpoint = endpoint; sinsa = sinse; cossa = cosse; endangle += partangle; se_rad = endangle * M_PI / 180.0; } return pointCnt; } void KoPathShape::close() { if (d->subpaths.empty()) { return; } closeSubpathPriv(d->subpaths.last()); } void KoPathShape::closeMerge() { if (d->subpaths.empty()) { return; } closeMergeSubpathPriv(d->subpaths.last()); } QPointF KoPathShape::normalize() { QPointF tl(outline().boundingRect().topLeft()); QTransform matrix; matrix.translate(-tl.x(), -tl.y()); d->map(matrix); // keep the top left point of the object applyTransformation(matrix.inverted()); shapeChangedPriv(ContentChanged); return tl; } void KoPathShape::Private::map(const QTransform &matrix) { KoSubpathList::const_iterator pathIt(subpaths.constBegin()); for (; pathIt != subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it) { // It's possible there are null points in the map... if (*it) { (*it)->map(matrix); } } } } void KoPathShape::updateLastPriv(KoPathPoint **lastPoint) { // check if we are about to add a new point to a closed subpath if ((*lastPoint)->properties() & KoPathPoint::StopSubpath && (*lastPoint)->properties() & KoPathPoint::CloseSubpath) { // get the first point of the subpath KoPathPoint *subpathStart = d->subpaths.last()->first(); // clone the first point of the subpath... KoPathPoint * newLastPoint = new KoPathPoint(*subpathStart, this); // ... and make it a normal point newLastPoint->setProperties(KoPathPoint::Normal); // now start a new subpath with the cloned start point KoSubpath *path = new KoSubpath; path->push_back(newLastPoint); d->subpaths.push_back(path); *lastPoint = newLastPoint; } else { // the subpath was not closed so the formerly last point // of the subpath is no end point anymore (*lastPoint)->unsetProperty(KoPathPoint::StopSubpath); } (*lastPoint)->unsetProperty(KoPathPoint::CloseSubpath); } QList KoPathShape::pointsAt(const QRectF &r) const { QList result; KoSubpathList::const_iterator pathIt(d->subpaths.constBegin()); for (; pathIt != d->subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it) { if (r.contains((*it)->point())) result.append(*it); else if ((*it)->activeControlPoint1() && r.contains((*it)->controlPoint1())) result.append(*it); else if ((*it)->activeControlPoint2() && r.contains((*it)->controlPoint2())) result.append(*it); } } return result; } QList KoPathShape::segmentsAt(const QRectF &r) const { QList segments; int subpathCount = d->subpaths.count(); for (int subpathIndex = 0; subpathIndex < subpathCount; ++subpathIndex) { KoSubpath * subpath = d->subpaths[subpathIndex]; int pointCount = subpath->count(); bool subpathClosed = isClosedSubpath(subpathIndex); for (int pointIndex = 0; pointIndex < pointCount; ++pointIndex) { if (pointIndex == (pointCount - 1) && ! subpathClosed) break; KoPathSegment s(subpath->at(pointIndex), subpath->at((pointIndex + 1) % pointCount)); QRectF controlRect = s.controlPointRect(); if (! r.intersects(controlRect) && ! controlRect.contains(r)) continue; QRectF bound = s.boundingRect(); if (! r.intersects(bound) && ! bound.contains(r)) continue; segments.append(s); } } return segments; } KoPathPointIndex KoPathShape::pathPointIndex(const KoPathPoint *point) const { for (int subpathIndex = 0; subpathIndex < d->subpaths.size(); ++subpathIndex) { KoSubpath * subpath = d->subpaths.at(subpathIndex); for (int pointPos = 0; pointPos < subpath->size(); ++pointPos) { if (subpath->at(pointPos) == point) { return KoPathPointIndex(subpathIndex, pointPos); } } } return KoPathPointIndex(-1, -1); } KoPathPoint * KoPathShape::pointByIndex(const KoPathPointIndex &pointIndex) const { KoSubpath *subpath = d->subPath(pointIndex.first); if (subpath == 0 || pointIndex.second < 0 || pointIndex.second >= subpath->size()) return 0; return subpath->at(pointIndex.second); } KoPathSegment KoPathShape::segmentByIndex(const KoPathPointIndex &pointIndex) const { KoPathSegment segment(0, 0); KoSubpath *subpath = d->subPath(pointIndex.first); if (subpath != 0 && pointIndex.second >= 0 && pointIndex.second < subpath->size()) { KoPathPoint * point = subpath->at(pointIndex.second); int index = pointIndex.second; // check if we have a (closing) segment starting from the last point if ((index == subpath->size() - 1) && point->properties() & KoPathPoint::CloseSubpath) index = 0; else ++index; if (index < subpath->size()) { segment = KoPathSegment(point, subpath->at(index)); } } return segment; } int KoPathShape::pointCount() const { int i = 0; KoSubpathList::const_iterator pathIt(d->subpaths.constBegin()); for (; pathIt != d->subpaths.constEnd(); ++pathIt) { i += (*pathIt)->size(); } return i; } int KoPathShape::subpathCount() const { return d->subpaths.count(); } int KoPathShape::subpathPointCount(int subpathIndex) const { KoSubpath *subpath = d->subPath(subpathIndex); if (subpath == 0) return -1; return subpath->size(); } bool KoPathShape::isClosedSubpath(int subpathIndex) const { KoSubpath *subpath = d->subPath(subpathIndex); if (subpath == 0) return false; const bool firstClosed = subpath->first()->properties() & KoPathPoint::CloseSubpath; const bool lastClosed = subpath->last()->properties() & KoPathPoint::CloseSubpath; return firstClosed && lastClosed; } bool KoPathShape::insertPoint(KoPathPoint* point, const KoPathPointIndex &pointIndex) { KoSubpath *subpath = d->subPath(pointIndex.first); if (subpath == 0 || pointIndex.second < 0 || pointIndex.second > subpath->size()) return false; KoPathPoint::PointProperties properties = point->properties(); properties &= ~KoPathPoint::StartSubpath; properties &= ~KoPathPoint::StopSubpath; properties &= ~KoPathPoint::CloseSubpath; // check if new point starts subpath if (pointIndex.second == 0) { properties |= KoPathPoint::StartSubpath; // subpath was closed if (subpath->last()->properties() & KoPathPoint::CloseSubpath) { // keep the path closed properties |= KoPathPoint::CloseSubpath; } // old first point does not start the subpath anymore subpath->first()->unsetProperty(KoPathPoint::StartSubpath); } // check if new point stops subpath else if (pointIndex.second == subpath->size()) { properties |= KoPathPoint::StopSubpath; // subpath was closed if (subpath->last()->properties() & KoPathPoint::CloseSubpath) { // keep the path closed properties = properties | KoPathPoint::CloseSubpath; } // old last point does not end subpath anymore subpath->last()->unsetProperty(KoPathPoint::StopSubpath); } point->setProperties(properties); point->setParent(this); subpath->insert(pointIndex.second , point); notifyPointsChanged(); return true; } KoPathPoint * KoPathShape::removePoint(const KoPathPointIndex &pointIndex) { KoSubpath *subpath = d->subPath(pointIndex.first); if (subpath == 0 || pointIndex.second < 0 || pointIndex.second >= subpath->size()) return 0; KoPathPoint * point = subpath->takeAt(pointIndex.second); point->setParent(0); //don't do anything (not even crash), if there was only one point if (pointCount()==0) { return point; } // check if we removed the first point else if (pointIndex.second == 0) { // first point removed, set new StartSubpath subpath->first()->setProperty(KoPathPoint::StartSubpath); // check if path was closed if (subpath->last()->properties() & KoPathPoint::CloseSubpath) { // keep path closed subpath->first()->setProperty(KoPathPoint::CloseSubpath); } } // check if we removed the last point else if (pointIndex.second == subpath->size()) { // use size as point is already removed // last point removed, set new StopSubpath subpath->last()->setProperty(KoPathPoint::StopSubpath); // check if path was closed if (point->properties() & KoPathPoint::CloseSubpath) { // keep path closed subpath->last()->setProperty(KoPathPoint::CloseSubpath); } } notifyPointsChanged(); return point; } bool KoPathShape::breakAfter(const KoPathPointIndex &pointIndex) { KoSubpath *subpath = d->subPath(pointIndex.first); if (!subpath || pointIndex.second < 0 || pointIndex.second > subpath->size() - 2 || isClosedSubpath(pointIndex.first)) return false; KoSubpath * newSubpath = new KoSubpath; int size = subpath->size(); for (int i = pointIndex.second + 1; i < size; ++i) { newSubpath->append(subpath->takeAt(pointIndex.second + 1)); } // now make the first point of the new subpath a starting node newSubpath->first()->setProperty(KoPathPoint::StartSubpath); // the last point of the old subpath is now an ending node subpath->last()->setProperty(KoPathPoint::StopSubpath); // insert the new subpath after the broken one d->subpaths.insert(pointIndex.first + 1, newSubpath); notifyPointsChanged(); return true; } bool KoPathShape::join(int subpathIndex) { KoSubpath *subpath = d->subPath(subpathIndex); KoSubpath *nextSubpath = d->subPath(subpathIndex + 1); if (!subpath || !nextSubpath || isClosedSubpath(subpathIndex) || isClosedSubpath(subpathIndex+1)) return false; // the last point of the subpath does not end the subpath anymore subpath->last()->unsetProperty(KoPathPoint::StopSubpath); // the first point of the next subpath does not start a subpath anymore nextSubpath->first()->unsetProperty(KoPathPoint::StartSubpath); // append the second subpath to the first Q_FOREACH (KoPathPoint * p, *nextSubpath) subpath->append(p); // remove the nextSubpath from path d->subpaths.removeAt(subpathIndex + 1); // delete it as it is no longer possible to use it delete nextSubpath; notifyPointsChanged(); return true; } bool KoPathShape::moveSubpath(int oldSubpathIndex, int newSubpathIndex) { KoSubpath *subpath = d->subPath(oldSubpathIndex); if (subpath == 0 || newSubpathIndex >= d->subpaths.size()) return false; if (oldSubpathIndex == newSubpathIndex) return true; d->subpaths.removeAt(oldSubpathIndex); d->subpaths.insert(newSubpathIndex, subpath); notifyPointsChanged(); return true; } KoPathPointIndex KoPathShape::openSubpath(const KoPathPointIndex &pointIndex) { KoSubpath *subpath = d->subPath(pointIndex.first); if (!subpath || pointIndex.second < 0 || pointIndex.second >= subpath->size() || !isClosedSubpath(pointIndex.first)) return KoPathPointIndex(-1, -1); KoPathPoint * oldStartPoint = subpath->first(); // the old starting node no longer starts the subpath oldStartPoint->unsetProperty(KoPathPoint::StartSubpath); // the old end node no longer closes the subpath subpath->last()->unsetProperty(KoPathPoint::StopSubpath); // reorder the subpath for (int i = 0; i < pointIndex.second; ++i) { subpath->append(subpath->takeFirst()); } // make the first point a start node subpath->first()->setProperty(KoPathPoint::StartSubpath); // make the last point an end node subpath->last()->setProperty(KoPathPoint::StopSubpath); notifyPointsChanged(); return pathPointIndex(oldStartPoint); } KoPathPointIndex KoPathShape::closeSubpath(const KoPathPointIndex &pointIndex) { KoSubpath *subpath = d->subPath(pointIndex.first); if (!subpath || pointIndex.second < 0 || pointIndex.second >= subpath->size() || isClosedSubpath(pointIndex.first)) return KoPathPointIndex(-1, -1); KoPathPoint * oldStartPoint = subpath->first(); // the old starting node no longer starts the subpath oldStartPoint->unsetProperty(KoPathPoint::StartSubpath); // the old end node no longer ends the subpath subpath->last()->unsetProperty(KoPathPoint::StopSubpath); // reorder the subpath for (int i = 0; i < pointIndex.second; ++i) { subpath->append(subpath->takeFirst()); } subpath->first()->setProperty(KoPathPoint::StartSubpath); subpath->last()->setProperty(KoPathPoint::StopSubpath); closeSubpathPriv(subpath); notifyPointsChanged(); return pathPointIndex(oldStartPoint); } bool KoPathShape::reverseSubpath(int subpathIndex) { KoSubpath *subpath = d->subPath(subpathIndex); if (subpath == 0) return false; int size = subpath->size(); for (int i = 0; i < size; ++i) { KoPathPoint *p = subpath->takeAt(i); p->reverse(); subpath->prepend(p); } // adjust the position dependent properties KoPathPoint *first = subpath->first(); KoPathPoint *last = subpath->last(); KoPathPoint::PointProperties firstProps = first->properties(); KoPathPoint::PointProperties lastProps = last->properties(); firstProps |= KoPathPoint::StartSubpath; firstProps &= ~KoPathPoint::StopSubpath; lastProps |= KoPathPoint::StopSubpath; lastProps &= ~KoPathPoint::StartSubpath; if (firstProps & KoPathPoint::CloseSubpath) { firstProps |= KoPathPoint::CloseSubpath; lastProps |= KoPathPoint::CloseSubpath; } first->setProperties(firstProps); last->setProperties(lastProps); notifyPointsChanged(); return true; } KoSubpath * KoPathShape::removeSubpath(int subpathIndex) { KoSubpath *subpath = d->subPath(subpathIndex); if (subpath != 0) { Q_FOREACH (KoPathPoint* point, *subpath) { point->setParent(this); } d->subpaths.removeAt(subpathIndex); } notifyPointsChanged(); return subpath; } bool KoPathShape::addSubpath(KoSubpath * subpath, int subpathIndex) { if (subpathIndex < 0 || subpathIndex > d->subpaths.size()) return false; Q_FOREACH (KoPathPoint* point, *subpath) { point->setParent(this); } d->subpaths.insert(subpathIndex, subpath); notifyPointsChanged(); return true; } int KoPathShape::combine(KoPathShape *path) { int insertSegmentPosition = -1; if (!path) return insertSegmentPosition; QTransform pathMatrix = path->absoluteTransformation(0); QTransform myMatrix = absoluteTransformation(0).inverted(); Q_FOREACH (KoSubpath* subpath, path->d->subpaths) { KoSubpath *newSubpath = new KoSubpath(); Q_FOREACH (KoPathPoint* point, *subpath) { KoPathPoint *newPoint = new KoPathPoint(*point, this); newPoint->map(pathMatrix); newPoint->map(myMatrix); newSubpath->append(newPoint); } d->subpaths.append(newSubpath); if (insertSegmentPosition < 0) { insertSegmentPosition = d->subpaths.size() - 1; } } normalize(); notifyPointsChanged(); return insertSegmentPosition; } bool KoPathShape::separate(QList & separatedPaths) { if (! d->subpaths.size()) return false; QTransform myMatrix = absoluteTransformation(0); Q_FOREACH (KoSubpath* subpath, d->subpaths) { KoPathShape *shape = new KoPathShape(); shape->setStroke(stroke()); shape->setBackground(background()); shape->setShapeId(shapeId()); shape->setZIndex(zIndex()); KoSubpath *newSubpath = new KoSubpath(); Q_FOREACH (KoPathPoint* point, *subpath) { KoPathPoint *newPoint = new KoPathPoint(*point, shape); newPoint->map(myMatrix); newSubpath->append(newPoint); } shape->d->subpaths.append(newSubpath); shape->normalize(); // NOTE: shape cannot have any listeners yet, so no notification about // points modification is needed separatedPaths.append(shape); } return true; } void KoPathShape::closeSubpathPriv(KoSubpath *subpath) { if (! subpath) return; subpath->last()->setProperty(KoPathPoint::CloseSubpath); subpath->first()->setProperty(KoPathPoint::CloseSubpath); notifyPointsChanged(); } void KoPathShape::closeMergeSubpathPriv(KoSubpath *subpath) { if (! subpath || subpath->size() < 2) return; KoPathPoint * lastPoint = subpath->last(); KoPathPoint * firstPoint = subpath->first(); // check if first and last points are coincident if (lastPoint->point() == firstPoint->point()) { // we are removing the current last point and // reuse its first control point if active firstPoint->setProperty(KoPathPoint::StartSubpath); firstPoint->setProperty(KoPathPoint::CloseSubpath); if (lastPoint->activeControlPoint1()) firstPoint->setControlPoint1(lastPoint->controlPoint1()); // remove last point delete subpath->takeLast(); // the new last point closes the subpath now lastPoint = subpath->last(); lastPoint->setProperty(KoPathPoint::StopSubpath); lastPoint->setProperty(KoPathPoint::CloseSubpath); notifyPointsChanged(); } else { closeSubpathPriv(subpath); } } const KoSubpathList &KoPathShape::subpaths() const { return d->subpaths; } KoSubpathList &KoPathShape::subpaths() { return d->subpaths; } void KoPathShape::map(const QTransform &matrix) { return d->map(matrix); } KoSubpath *KoPathShape::Private::subPath(int subpathIndex) const { if (subpathIndex < 0 || subpathIndex >= subpaths.size()) return 0; return subpaths.at(subpathIndex); } QString KoPathShape::pathShapeId() const { return KoPathShapeId; } QString KoPathShape::toString(const QTransform &matrix) const { QString pathString; // iterate over all subpaths KoSubpathList::const_iterator pathIt(d->subpaths.constBegin()); for (; pathIt != d->subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator pointIt((*pathIt)->constBegin()); // keep a pointer to the first point of the subpath KoPathPoint *firstPoint(*pointIt); // keep a pointer to the previous point of the subpath KoPathPoint *lastPoint = firstPoint; // keep track if the previous point has an active control point 2 bool activeControlPoint2 = false; // iterate over all points of the current subpath for (; pointIt != (*pathIt)->constEnd(); ++pointIt) { KoPathPoint *currPoint(*pointIt); if (!currPoint) { qWarning() << "Found a zero point in the shape's path!"; continue; } // first point of subpath ? if (currPoint == firstPoint) { // are we starting a subpath ? if (currPoint->properties() & KoPathPoint::StartSubpath) { const QPointF p = matrix.map(currPoint->point()); pathString += QString("M%1 %2").arg(p.x()).arg(p.y()); } } // end point of curve segment ? else if (activeControlPoint2 || currPoint->activeControlPoint1()) { // check if we have a cubic or quadratic curve const bool isCubic = activeControlPoint2 && currPoint->activeControlPoint1(); KoPathSegment cubicSeg = isCubic ? KoPathSegment(lastPoint, currPoint) : KoPathSegment(lastPoint, currPoint).toCubic(); const QPointF cp1 = matrix.map(cubicSeg.first()->controlPoint2()); const QPointF cp2 = matrix.map(cubicSeg.second()->controlPoint1()); const QPointF p = matrix.map(cubicSeg.second()->point()); pathString += QString("C%1 %2 %3 %4 %5 %6") .arg(cp1.x()).arg(cp1.y()) .arg(cp2.x()).arg(cp2.y()) .arg(p.x()).arg(p.y()); } // end point of line segment! else { const QPointF p = matrix.map(currPoint->point()); pathString += QString("L%1 %2").arg(p.x()).arg(p.y()); } // last point closes subpath ? if (currPoint->properties() & KoPathPoint::StopSubpath && currPoint->properties() & KoPathPoint::CloseSubpath) { // add curve when there is a curve on the way to the first point if (currPoint->activeControlPoint2() || firstPoint->activeControlPoint1()) { // check if we have a cubic or quadratic curve const bool isCubic = currPoint->activeControlPoint2() && firstPoint->activeControlPoint1(); KoPathSegment cubicSeg = isCubic ? KoPathSegment(currPoint, firstPoint) : KoPathSegment(currPoint, firstPoint).toCubic(); const QPointF cp1 = matrix.map(cubicSeg.first()->controlPoint2()); const QPointF cp2 = matrix.map(cubicSeg.second()->controlPoint1()); const QPointF p = matrix.map(cubicSeg.second()->point()); pathString += QString("C%1 %2 %3 %4 %5 %6") .arg(cp1.x()).arg(cp1.y()) .arg(cp2.x()).arg(cp2.y()) .arg(p.x()).arg(p.y()); } pathString += QString("Z"); } activeControlPoint2 = currPoint->activeControlPoint2(); lastPoint = currPoint; } } return pathString; } char nodeType(const KoPathPoint * point) { if (point->properties() & KoPathPoint::IsSmooth) { return 's'; } else if (point->properties() & KoPathPoint::IsSymmetric) { return 'z'; } else { return 'c'; } } QString KoPathShape::Private::nodeTypes() const { QString types; KoSubpathList::const_iterator pathIt(subpaths.constBegin()); for (; pathIt != subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it) { if (it == (*pathIt)->constBegin()) { types.append('c'); } else { types.append(nodeType(*it)); } if ((*it)->properties() & KoPathPoint::StopSubpath && (*it)->properties() & KoPathPoint::CloseSubpath) { KoPathPoint * firstPoint = (*pathIt)->first(); types.append(nodeType(firstPoint)); } } } return types; } void updateNodeType(KoPathPoint * point, const QChar & nodeType) { if (nodeType == 's') { point->setProperty(KoPathPoint::IsSmooth); } else if (nodeType == 'z') { point->setProperty(KoPathPoint::IsSymmetric); } } void KoPathShape::Private::loadNodeTypes(const KoXmlElement &element) { if (element.hasAttributeNS(KoXmlNS::calligra, "nodeTypes")) { QString nodeTypes = element.attributeNS(KoXmlNS::calligra, "nodeTypes"); QString::const_iterator nIt(nodeTypes.constBegin()); KoSubpathList::const_iterator pathIt(subpaths.constBegin()); for (; pathIt != subpaths.constEnd(); ++pathIt) { KoSubpath::const_iterator it((*pathIt)->constBegin()); for (; it != (*pathIt)->constEnd(); ++it, nIt++) { // be sure not to crash if there are not enough nodes in nodeTypes if (nIt == nodeTypes.constEnd()) { warnFlake << "not enough nodes in calligra:nodeTypes"; return; } // the first node is always of type 'c' if (it != (*pathIt)->constBegin()) { updateNodeType(*it, *nIt); } if ((*it)->properties() & KoPathPoint::StopSubpath && (*it)->properties() & KoPathPoint::CloseSubpath) { ++nIt; updateNodeType((*pathIt)->first(), *nIt); } } } } } Qt::FillRule KoPathShape::fillRule() const { return d->fillRule; } void KoPathShape::setFillRule(Qt::FillRule fillRule) { d->fillRule = fillRule; } KoPathShape * KoPathShape::createShapeFromPainterPath(const QPainterPath &path) { KoPathShape * shape = new KoPathShape(); int elementCount = path.elementCount(); for (int i = 0; i < elementCount; i++) { QPainterPath::Element element = path.elementAt(i); switch (element.type) { case QPainterPath::MoveToElement: shape->moveTo(QPointF(element.x, element.y)); break; case QPainterPath::LineToElement: shape->lineTo(QPointF(element.x, element.y)); break; case QPainterPath::CurveToElement: shape->curveTo(QPointF(element.x, element.y), QPointF(path.elementAt(i + 1).x, path.elementAt(i + 1).y), QPointF(path.elementAt(i + 2).x, path.elementAt(i + 2).y)); break; default: continue; } } shape->setShapeId(KoPathShapeId); //shape->normalize(); return shape; } bool KoPathShape::hitTest(const QPointF &position) const { if (parent() && parent()->isClipped(this) && ! parent()->hitTest(position)) return false; QPointF point = absoluteTransformation(0).inverted().map(position); const QPainterPath outlinePath = outline(); if (stroke()) { KoInsets insets; stroke()->strokeInsets(this, insets); QRectF roi(QPointF(-insets.left, -insets.top), QPointF(insets.right, insets.bottom)); roi.moveCenter(point); if (outlinePath.intersects(roi) || outlinePath.contains(roi)) return true; } else { if (outlinePath.contains(point)) return true; } // if there is no shadow we can as well just leave if (! shadow()) return false; // the shadow has an offset to the shape, so we simply // check if the position minus the shadow offset hits the shape point = absoluteTransformation(0).inverted().map(position - shadow()->offset()); return outlinePath.contains(point); } void KoPathShape::setMarker(KoMarker *marker, KoFlake::MarkerPosition pos) { if (!marker && d->markersNew.contains(pos)) { d->markersNew.remove(pos); } else { d->markersNew[pos] = marker; } } KoMarker *KoPathShape::marker(KoFlake::MarkerPosition pos) const { return d->markersNew[pos].data(); } bool KoPathShape::hasMarkers() const { return !d->markersNew.isEmpty(); } bool KoPathShape::autoFillMarkers() const { return d->autoFillMarkers; } void KoPathShape::setAutoFillMarkers(bool value) { d->autoFillMarkers = value; } void KoPathShape::recommendPointSelectionChange(const QList &newSelection) { Q_FOREACH (KoShape::ShapeChangeListener *listener, listeners()) { PointSelectionChangeListener *pointListener = dynamic_cast(listener); if (pointListener) { pointListener->recommendPointSelectionChange(this, newSelection); } } } void KoPathShape::notifyPointsChanged() { Q_FOREACH (KoShape::ShapeChangeListener *listener, listeners()) { PointSelectionChangeListener *pointListener = dynamic_cast(listener); if (pointListener) { pointListener->notifyPathPointsChanged(this); } } } QPainterPath KoPathShape::pathStroke(const QPen &pen) const { if (d->subpaths.isEmpty()) { return QPainterPath(); } QPainterPath pathOutline; QPainterPathStroker stroker; stroker.setWidth(0); stroker.setJoinStyle(Qt::MiterJoin); stroker.setWidth(pen.widthF()); stroker.setJoinStyle(pen.joinStyle()); stroker.setMiterLimit(pen.miterLimit()); stroker.setCapStyle(pen.capStyle()); stroker.setDashOffset(pen.dashOffset()); stroker.setDashPattern(pen.dashPattern()); QPainterPath path = stroker.createStroke(outline()); pathOutline.addPath(path); pathOutline.setFillRule(Qt::WindingFill); return pathOutline; } void KoPathShape::PointSelectionChangeListener::notifyShapeChanged(KoShape::ChangeType type, KoShape *shape) { Q_UNUSED(type); Q_UNUSED(shape); }