diff --git a/libs/image/kis_convolution_painter.h b/libs/image/kis_convolution_painter.h index 2db38414a7..0911bec934 100644 --- a/libs/image/kis_convolution_painter.h +++ b/libs/image/kis_convolution_painter.h @@ -1,104 +1,109 @@ /* * Copyright (c) 2005 Cyrille Berger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef KIS_CONVOLUTION_PAINTER_H_ #define KIS_CONVOLUTION_PAINTER_H_ #include "kis_types.h" #include "kis_painter.h" #include "kis_image.h" #include "kritaimage_export.h" template class KisConvolutionWorker; enum KisConvolutionBorderOp { BORDER_IGNORE = 0, // read the pixels outside of the application rect BORDER_REPEAT = 1 // Use the border for the missing pixels }; /** * @brief The KisConvolutionPainter class applies a convolution kernel to a paint device. * * * Note: https://bugs.kde.org/show_bug.cgi?id=220310 shows that there's something here * that we need to fix... */ class KRITAIMAGE_EXPORT KisConvolutionPainter : public KisPainter { public: KisConvolutionPainter(); KisConvolutionPainter(KisPaintDeviceSP device); KisConvolutionPainter(KisPaintDeviceSP device, KisSelectionSP selection); enum TestingEnginePreference { NONE, SPATIAL, FFTW }; KisConvolutionPainter(KisPaintDeviceSP device, TestingEnginePreference enginePreference); /** * Convolve all channels in src using the specified kernel; there is only one kernel for all - * channels possible. By default the border pixels are not convolved, that is, convolving - * starts with at (x + kernel.width/2, y + kernel.height/2) and stops at w - (kernel.width/2) - * and h - (kernel.height/2) + * channels possible. + * + * WARNING: The painter will read **more** pixels than you pass in \p areaSize. + * The actual processing area will be: + * QRect(x - kernel.width() / 2, + * y - kernel.height() / 2, + * w + 2 * (kernel.width() / 2), + * h + 2 * (kernel.height() / 2)) * * The border op decides what to do with pixels too close to the edge of the rect as defined above. * * The channels flag determines which set out of color channels, alpha channels. * channels we convolve. * * Note that we do not (currently) support different kernels for * different channels _or_ channel types. * * If you want to convolve a subset of the channels in a pixel, * set those channels with KisPainter::setChannelFlags(); */ void applyMatrix(const KisConvolutionKernelSP kernel, const KisPaintDeviceSP src, QPoint srcPos, QPoint dstPos, QSize areaSize, KisConvolutionBorderOp borderOp = BORDER_REPEAT); /** * The caller should ask if the painter needs an explicit transaction iff * the source and destination devices coincide. Otherwise, the transaction is * just not needed. */ bool needsTransaction(const KisConvolutionKernelSP kernel) const; static bool supportsFFTW(); protected: friend class KisConvolutionPainterTest; private: template KisConvolutionWorker* createWorker(const KisConvolutionKernelSP kernel, KisPainter *painter, KoUpdater *progress); bool useFFTImplementation(const KisConvolutionKernelSP kernel) const; private: TestingEnginePreference m_enginePreference; }; #endif //KIS_CONVOLUTION_PAINTER_H_ diff --git a/libs/image/kis_edge_detection_kernel.cpp b/libs/image/kis_edge_detection_kernel.cpp index 2596140852..15ed4fc938 100644 --- a/libs/image/kis_edge_detection_kernel.cpp +++ b/libs/image/kis_edge_detection_kernel.cpp @@ -1,428 +1,414 @@ /* * Copyright (c) 2017 Wolthera van Hövell tot Westerflier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "kis_edge_detection_kernel.h" #include "kis_global.h" #include "kis_convolution_kernel.h" #include #include #include #include #include #include KisEdgeDetectionKernel::KisEdgeDetectionKernel() { } /* * This code is very similar to the gaussian kernel code, except unlike the gaussian code, * edge-detection kernels DO use the diagonals. * Except for the simple mode. We implement the simple mode because it is an analog to * the old sobel filter. */ Eigen::Matrix KisEdgeDetectionKernel::createHorizontalMatrix(qreal radius, FilterType type, bool reverse) { int kernelSize = kernelSizeFromRadius(radius); Eigen::Matrix matrix(kernelSize, kernelSize); KIS_ASSERT_RECOVER_NOOP(kernelSize & 0x1); const int center = kernelSize / 2; if (type==Prewit) { for (int x = 0; x < kernelSize; x++) { for (int y=0; y KisEdgeDetectionKernel::createVerticalMatrix(qreal radius, FilterType type, bool reverse) { int kernelSize = kernelSizeFromRadius(radius); Eigen::Matrix matrix(kernelSize, kernelSize); KIS_ASSERT_RECOVER_NOOP(kernelSize & 0x1); const int center = kernelSize / 2; if (type==Prewit) { for (int y = 0; y < kernelSize; y++) { for (int x=0; x matrix = createHorizontalMatrix(radius, type, reverse); if (denormalize) { return KisConvolutionKernel::fromMatrix(matrix, 0.5, 1); } else { return KisConvolutionKernel::fromMatrix(matrix, 0, matrix.sum()); } } KisConvolutionKernelSP KisEdgeDetectionKernel::createVerticalKernel(qreal radius, KisEdgeDetectionKernel::FilterType type, bool denormalize, bool reverse) { Eigen::Matrix matrix = createVerticalMatrix(radius, type, reverse); if (denormalize) { return KisConvolutionKernel::fromMatrix(matrix, 0.5, 1); } else { return KisConvolutionKernel::fromMatrix(matrix, 0, matrix.sum()); } } int KisEdgeDetectionKernel::kernelSizeFromRadius(qreal radius) { return qMax((int)(2 * ceil(sigmaFromRadius(radius)) + 1), 3); } qreal KisEdgeDetectionKernel::sigmaFromRadius(qreal radius) { return 0.3 * radius + 0.3; } void KisEdgeDetectionKernel::applyEdgeDetection(KisPaintDeviceSP device, const QRect &rect, qreal xRadius, qreal yRadius, KisEdgeDetectionKernel::FilterType type, const QBitArray &channelFlags, KoUpdater *progressUpdater, FilterOutput output, bool writeToAlpha) { QPoint srcTopLeft = rect.topLeft(); KisPainter finalPainter(device); finalPainter.setChannelFlags(channelFlags); finalPainter.setProgress(progressUpdater); if (output == pythagorean || output == radian) { KisPaintDeviceSP x_denormalised = new KisPaintDevice(device->colorSpace()); KisPaintDeviceSP y_denormalised = new KisPaintDevice(device->colorSpace()); x_denormalised->prepareClone(device); y_denormalised->prepareClone(device); KisConvolutionKernelSP kernelHorizLeftRight = KisEdgeDetectionKernel::createHorizontalKernel(xRadius, type); KisConvolutionKernelSP kernelVerticalTopBottom = KisEdgeDetectionKernel::createVerticalKernel(yRadius, type); - qreal horizontalCenter = qreal(kernelHorizLeftRight->width()) / 2.0; - qreal verticalCenter = qreal(kernelVerticalTopBottom->height()) / 2.0; - KisConvolutionPainter horizPainterLR(x_denormalised); horizPainterLR.setChannelFlags(channelFlags); horizPainterLR.setProgress(progressUpdater); horizPainterLR.applyMatrix(kernelHorizLeftRight, device, - srcTopLeft - QPoint(0, ceil(horizontalCenter)), - srcTopLeft - QPoint(0, ceil(horizontalCenter)), - rect.size() + QSize(0, 2 * ceil(horizontalCenter)), BORDER_REPEAT); + srcTopLeft, + srcTopLeft, + rect.size(), BORDER_REPEAT); KisConvolutionPainter verticalPainterTB(y_denormalised); verticalPainterTB.setChannelFlags(channelFlags); verticalPainterTB.setProgress(progressUpdater); verticalPainterTB.applyMatrix(kernelVerticalTopBottom, device, - srcTopLeft - QPoint(0, ceil(verticalCenter)), - srcTopLeft - QPoint(0, ceil(verticalCenter)), - rect.size() + QSize(0, 2 * ceil(verticalCenter)), BORDER_REPEAT); + srcTopLeft, + srcTopLeft, + rect.size(), BORDER_REPEAT); KisSequentialIterator yItterator(y_denormalised, rect); KisSequentialIterator xItterator(x_denormalised, rect); KisSequentialIterator finalIt(device, rect); const int pixelSize = device->colorSpace()->pixelSize(); const int channels = device->colorSpace()->channelCount(); const int alphaPos = device->colorSpace()->alphaPos(); KIS_SAFE_ASSERT_RECOVER_RETURN(alphaPos >= 0); QVector yNormalised(channels); QVector xNormalised(channels); QVector finalNorm(channels); while(yItterator.nextPixel() && xItterator.nextPixel() && finalIt.nextPixel()) { device->colorSpace()->normalisedChannelsValue(yItterator.rawData(), yNormalised); device->colorSpace()->normalisedChannelsValue(xItterator.rawData(), xNormalised); device->colorSpace()->normalisedChannelsValue(finalIt.rawData(), finalNorm); if (output == pythagorean) { for (int c = 0; ccolorSpace()); qreal alpha = 0; for (int c = 0; c<(channels-1); c++) { alpha = alpha+finalNorm[c]; } alpha = qMin(alpha/(channels-1), col.opacityF()); col.setOpacity(alpha); memcpy(finalIt.rawData(), col.data(), pixelSize); } else { quint8* f = finalIt.rawData(); finalNorm[alphaPos] = 1.0; device->colorSpace()->fromNormalisedChannelsValue(f, finalNorm); memcpy(finalIt.rawData(), f, pixelSize); } } } else { KisConvolutionKernelSP kernel; - qreal center = 0; bool denormalize = !writeToAlpha; if (output == xGrowth) { kernel = KisEdgeDetectionKernel::createHorizontalKernel(xRadius, type, denormalize); - center = qreal(kernel->width()) / 2.0; } else if (output == xFall) { kernel = KisEdgeDetectionKernel::createHorizontalKernel(xRadius, type, denormalize, true); - center = qreal(kernel->width()) / 2.0; } else if (output == yGrowth) { kernel = KisEdgeDetectionKernel::createVerticalKernel(yRadius, type, denormalize); - center = qreal(kernel->height()) / 2.0; } else { //yFall kernel = KisEdgeDetectionKernel::createVerticalKernel(yRadius, type, denormalize, true); - center = qreal(kernel->height()) / 2.0; } if (writeToAlpha) { KisPaintDeviceSP denormalised = new KisPaintDevice(device->colorSpace()); denormalised->prepareClone(device); KisConvolutionPainter kernelP(denormalised); kernelP.setChannelFlags(channelFlags); kernelP.setProgress(progressUpdater); kernelP.applyMatrix(kernel, device, - srcTopLeft - QPoint(0, ceil(center)), - srcTopLeft - QPoint(0, ceil(center)), - rect.size() + QSize(0, 2 * ceil(center)), BORDER_REPEAT); + srcTopLeft, srcTopLeft, + rect.size(), BORDER_REPEAT); KisSequentialIterator iterator(denormalised, rect); KisSequentialIterator finalIt(device, rect); const int pixelSize = device->colorSpace()->pixelSize(); const int channels = device->colorSpace()->colorChannelCount(); QVector normalised(channels); while (iterator.nextPixel() && finalIt.nextPixel()) { device->colorSpace()->normalisedChannelsValue(iterator.rawData(), normalised); KoColor col(finalIt.rawData(), device->colorSpace()); qreal alpha = 0; for (int c = 0; ccolorSpace()->setOpacity(finalIt.rawData(), 1.0, numConseqPixels); } } } } void KisEdgeDetectionKernel::convertToNormalMap(KisPaintDeviceSP device, const QRect &rect, qreal xRadius, qreal yRadius, KisEdgeDetectionKernel::FilterType type, int channelToConvert, QVector channelOrder, QVector channelFlip, const QBitArray &channelFlags, KoUpdater *progressUpdater) { QPoint srcTopLeft = rect.topLeft(); KisPainter finalPainter(device); finalPainter.setChannelFlags(channelFlags); finalPainter.setProgress(progressUpdater); KisPaintDeviceSP x_denormalised = new KisPaintDevice(device->colorSpace()); KisPaintDeviceSP y_denormalised = new KisPaintDevice(device->colorSpace()); x_denormalised->prepareClone(device); y_denormalised->prepareClone(device); KisConvolutionKernelSP kernelHorizLeftRight = KisEdgeDetectionKernel::createHorizontalKernel(yRadius, type, true, !channelFlip[1]); KisConvolutionKernelSP kernelVerticalTopBottom = KisEdgeDetectionKernel::createVerticalKernel(xRadius, type, true, !channelFlip[0]); - qreal horizontalCenter = qreal(kernelHorizLeftRight->width()) / 2.0; - qreal verticalCenter = qreal(kernelVerticalTopBottom->height()) / 2.0; - KisConvolutionPainter horizPainterLR(y_denormalised); horizPainterLR.setChannelFlags(channelFlags); horizPainterLR.setProgress(progressUpdater); horizPainterLR.applyMatrix(kernelHorizLeftRight, device, - srcTopLeft - QPoint(ceil(horizontalCenter), 0), - srcTopLeft - QPoint(ceil(horizontalCenter), 0), - rect.size() + QSize(2 * ceil(horizontalCenter), 0), BORDER_REPEAT); + srcTopLeft, srcTopLeft, + rect.size(), BORDER_REPEAT); KisConvolutionPainter verticalPainterTB(x_denormalised); verticalPainterTB.setChannelFlags(channelFlags); verticalPainterTB.setProgress(progressUpdater); verticalPainterTB.applyMatrix(kernelVerticalTopBottom, device, - srcTopLeft - QPoint(0, ceil(verticalCenter)), - srcTopLeft - QPoint(0, ceil(verticalCenter)), - rect.size() + QSize(0, 2 * ceil(verticalCenter)), BORDER_REPEAT); + srcTopLeft, + srcTopLeft, + rect.size(), BORDER_REPEAT); KisSequentialIterator yItterator(y_denormalised, rect); KisSequentialIterator xItterator(x_denormalised, rect); KisSequentialIterator finalIt(device, rect); const int pixelSize = device->colorSpace()->pixelSize(); const int channels = device->colorSpace()->channelCount(); const int alphaPos = device->colorSpace()->alphaPos(); KIS_SAFE_ASSERT_RECOVER_RETURN(alphaPos >= 0); QVector yNormalised(channels); QVector xNormalised(channels); QVector finalNorm(channels); while(yItterator.nextPixel() && xItterator.nextPixel() && finalIt.nextPixel()) { device->colorSpace()->normalisedChannelsValue(yItterator.rawData(), yNormalised); device->colorSpace()->normalisedChannelsValue(xItterator.rawData(), xNormalised); qreal z = 1.0; if (channelFlip[2]==true){ z=-1.0; } QVector3D normal = QVector3D((xNormalised[channelToConvert]-0.5)*2, (yNormalised[channelToConvert]-0.5)*2, z); normal.normalize(); finalNorm.fill(1.0); for (int c = 0; c<3; c++) { finalNorm[device->colorSpace()->channels().at(channelOrder[c])->displayPosition()] = (normal[channelOrder[c]]/2)+0.5; } finalNorm[alphaPos]= 1.0; quint8* pixel = finalIt.rawData(); device->colorSpace()->fromNormalisedChannelsValue(pixel, finalNorm); memcpy(finalIt.rawData(), pixel, pixelSize); } }