diff --git a/libs/pigment/KoColorSpace.cpp b/libs/pigment/KoColorSpace.cpp index fce965ed3f..728f0c5d29 100644 --- a/libs/pigment/KoColorSpace.cpp +++ b/libs/pigment/KoColorSpace.cpp @@ -1,820 +1,816 @@ /* * Copyright (c) 2005 Boudewijn Rempt * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "KoColorSpace.h" #include "KoColorSpace_p.h" #include "KoChannelInfo.h" #include "DebugPigment.h" #include "KoCompositeOp.h" #include "KoColorTransformation.h" #include "KoColorTransformationFactory.h" #include "KoColorTransformationFactoryRegistry.h" #include "KoColorConversionCache.h" #include "KoColorConversionSystem.h" #include "KoColorSpaceRegistry.h" #include "KoColorProfile.h" #include "KoCopyColorConversionTransformation.h" #include "KoFallBackColorTransformation.h" #include "KoUniqueNumberForIdServer.h" #include "KoMixColorsOp.h" #include "KoConvolutionOp.h" #include "KoCompositeOpRegistry.h" #include "KoColorSpaceEngine.h" #include #include #include #include #include #include KoColorSpace::KoColorSpace() - : d(new Private()) + : d(new Private()) { } KoColorSpace::KoColorSpace(const QString &id, const QString &name, KoMixColorsOp* mixColorsOp, KoConvolutionOp* convolutionOp) - : d(new Private()) + : d(new Private()) { d->id = id; d->idNumber = KoUniqueNumberForIdServer::instance()->numberForId(d->id); d->name = name; d->mixColorsOp = mixColorsOp; d->convolutionOp = convolutionOp; d->transfoToRGBA16 = 0; d->transfoFromRGBA16 = 0; d->transfoToLABA16 = 0; d->transfoFromLABA16 = 0; d->gamutXYY = QPolygonF(); d->TRCXYY = QPolygonF(); d->colorants = QVector (0); d->lumaCoefficients = QVector (0); d->iccEngine = 0; d->deletability = NotOwnedByRegistry; } KoColorSpace::~KoColorSpace() { Q_ASSERT(d->deletability != OwnedByRegistryDoNotDelete); qDeleteAll(d->compositeOps); Q_FOREACH (KoChannelInfo * channel, d->channels) { delete channel; } if (d->deletability == NotOwnedByRegistry) { KoColorConversionCache* cache = KoColorSpaceRegistry::instance()->colorConversionCache(); if (cache) { cache->colorSpaceIsDestroyed(this); } } delete d->mixColorsOp; delete d->convolutionOp; delete d->transfoToRGBA16; delete d->transfoFromRGBA16; delete d->transfoToLABA16; delete d->transfoFromLABA16; delete d; } bool KoColorSpace::operator==(const KoColorSpace& rhs) const { const KoColorProfile* p1 = rhs.profile(); const KoColorProfile* p2 = profile(); return d->idNumber == rhs.d->idNumber && ((p1 == p2) || (*p1 == *p2)); } QString KoColorSpace::id() const { return d->id; } QString KoColorSpace::name() const { return d->name; } //Color space info stuff. QPolygonF KoColorSpace::gamutXYY() const { if (d->gamutXYY.empty()) { //now, let's decide on the boundary. This is a bit tricky because icc profiles can be both matrix-shaper and cLUT at once if the maker so pleases. //first make a list of colors. qreal max = 1.0; if ((colorModelId().id()=="CMYKA" || colorModelId().id()=="LABA") && colorDepthId().id()=="F32") { //boundaries for cmyka/laba have trouble getting the max values for Float, and are pretty awkward in general. max = this->channels()[0]->getUIMax(); } int samples = 5;//amount of samples in our color space. const KoColorSpace* xyzColorSpace = KoColorSpaceRegistry::instance()->colorSpace("XYZA", "F32"); quint8 *data = new quint8[pixelSize()]; quint8 data2[16]; // xyza f32 is 4 floats, that is 16 bytes per pixel. //QVector sampleCoordinates(pow(colorChannelCount(),samples)); //sampleCoordinates.fill(0.0); // This is fixed to 5 since the maximum number of channels are 5 for CMYKA QVector channelValuesF(5);//for getting the coordinates. for(int x=0;xnormalisedChannelsValue(data2, channelValuesF); qreal x = channelValuesF[0]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); qreal y = channelValuesF[1]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); d->gamutXYY << QPointF(x,y); } else { for(int y=0;ynormalisedChannelsValue(data2, channelValuesF); qreal x = channelValuesF[0] / (channelValuesF[0] + channelValuesF[1] + channelValuesF[2]); qreal y = channelValuesF[1] / (channelValuesF[0] + channelValuesF[1] + channelValuesF[2]); d->gamutXYY<< QPointF(x,y); } } else { channelValuesF[0]=(max/(samples-1))*(x); channelValuesF[1]=(max/(samples-1))*(y); channelValuesF[2]=(max/(samples-1))*(z); channelValuesF[3]=max; if (colorModelId().id()!="XYZA") { //no need for conversion when using xyz. fromNormalisedChannelsValue(data, channelValuesF); convertPixelsTo(data, data2, xyzColorSpace, 1, KoColorConversionTransformation::IntentAbsoluteColorimetric, KoColorConversionTransformation::adjustmentConversionFlags()); xyzColorSpace->normalisedChannelsValue(data2,channelValuesF); } qreal x = channelValuesF[0]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); qreal y = channelValuesF[1]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); d->gamutXYY<< QPointF(x,y); } } } } } delete[] data; //if we ever implement a boundary-checking thing I'd add it here. return d->gamutXYY; } else { return d->gamutXYY; } } QPolygonF KoColorSpace::estimatedTRCXYY() const { if (d->TRCXYY.empty()){ qreal max = 1.0; if ((colorModelId().id()=="CMYKA" || colorModelId().id()=="LABA") && colorDepthId().id()=="F32") { //boundaries for cmyka/laba have trouble getting the max values for Float, and are pretty awkward in general. max = this->channels()[0]->getUIMax(); } const KoColorSpace* xyzColorSpace = KoColorSpaceRegistry::instance()->colorSpace("XYZA", "F32"); quint8 *data = new quint8[pixelSize()]; quint8 *data2 = new quint8[xyzColorSpace->pixelSize()]; // This is fixed to 5 since the maximum number of channels are 5 for CMYKA QVector channelValuesF(5);//for getting the coordinates. for (quint32 i=0; i0; j--){ channelValuesF.fill(0.0); channelValuesF[i] = ((max/4)*(5-j)); if (colorModelId().id()!="XYZA") { //no need for conversion when using xyz. fromNormalisedChannelsValue(data, channelValuesF); convertPixelsTo(data, data2, xyzColorSpace, 1, KoColorConversionTransformation::IntentAbsoluteColorimetric, KoColorConversionTransformation::adjustmentConversionFlags()); xyzColorSpace->normalisedChannelsValue(data2,channelValuesF); } if (j==0) { colorantY = channelValuesF[1]; if (d->colorants.size()<2){ d->colorants.resize(3*colorChannelCount()); d->colorants[i] = channelValuesF[0]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); d->colorants[i+1]= channelValuesF[1]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); d->colorants[i+2]= channelValuesF[1]; } } d->TRCXYY << QPointF(channelValuesF[1]/colorantY, ((1.0/4)*(5-j))); } } else { for (int j=0; j<5; j++){ channelValuesF.fill(0.0); channelValuesF[i] = ((max/4)*(j)); fromNormalisedChannelsValue(data, channelValuesF); convertPixelsTo(data, data2, xyzColorSpace, 1, KoColorConversionTransformation::IntentAbsoluteColorimetric, KoColorConversionTransformation::adjustmentConversionFlags()); xyzColorSpace->normalisedChannelsValue(data2,channelValuesF); if (j==0) { colorantY = channelValuesF[1]; if (d->colorants.size()<2){ d->colorants.resize(3*colorChannelCount()); d->colorants[i] = channelValuesF[0]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); d->colorants[i+1]= channelValuesF[1]/(channelValuesF[0]+channelValuesF[1]+channelValuesF[2]); d->colorants[i+2]= channelValuesF[1]; } } d->TRCXYY << QPointF(channelValuesF[1]/colorantY, ((1.0/4)*(j))); } } } delete[] data; delete[] data2; return d->TRCXYY; } else { return d->TRCXYY; } } -QVector KoColorSpace::colorants() const -{ - if (d->colorants.size()>1){ - return d->colorants; - } else if (profile() && profile()->hasColorants()) { - d->colorants.resize(3*colorChannelCount()); - d->colorants = profile()->getColorantsxyY(); - return d->colorants; - } else { - estimatedTRCXYY(); - return d->colorants; - } -} QVector KoColorSpace::lumaCoefficients() const { if (d->lumaCoefficients.size()>1){ return d->lumaCoefficients; } else { d->lumaCoefficients.resize(3); if (colorModelId().id()!="RGBA") { d->lumaCoefficients.fill(0.33); } else { - colorants(); + if (d->colorants.size() <= 0) { + if (profile() && profile()->hasColorants()) { + d->colorants.resize(3 * colorChannelCount()); + d->colorants = profile()->getColorantsxyY(); + } + else { + QPolygonF p = estimatedTRCXYY(); + Q_UNUSED(p); + } + } if (d->colorants[2]<0 || d->colorants[5]<0 || d->colorants[8]<0) { d->lumaCoefficients[0]=0.2126; d->lumaCoefficients[1]=0.7152; d->lumaCoefficients[2]=0.0722; } else { d->lumaCoefficients[0]=d->colorants[2]; d->lumaCoefficients[1]=d->colorants[5]; d->lumaCoefficients[2]=d->colorants[8]; } } return d->lumaCoefficients; } } QList KoColorSpace::channels() const { return d->channels; } QBitArray KoColorSpace::channelFlags(bool color, bool alpha) const { QBitArray ba(d->channels.size()); if (!color && !alpha) return ba; for (int i = 0; i < d->channels.size(); ++i) { KoChannelInfo * channel = d->channels.at(i); if ((color && channel->channelType() == KoChannelInfo::COLOR) || (alpha && channel->channelType() == KoChannelInfo::ALPHA)) ba.setBit(i, true); } return ba; } void KoColorSpace::addChannel(KoChannelInfo * ci) { d->channels.push_back(ci); } bool KoColorSpace::hasCompositeOp(const QString& id) const { return d->compositeOps.contains(id); } QList KoColorSpace::compositeOps() const { return d->compositeOps.values(); } KoMixColorsOp* KoColorSpace::mixColorsOp() const { return d->mixColorsOp; } KoConvolutionOp* KoColorSpace::convolutionOp() const { return d->convolutionOp; } const KoCompositeOp * KoColorSpace::compositeOp(const QString & id) const { const QHash::ConstIterator it = d->compositeOps.constFind(id); if (it != d->compositeOps.constEnd()) { return it.value(); } else { warnPigment << "Asking for non-existent composite operation " << id << ", returning " << COMPOSITE_OVER; return d->compositeOps.value(COMPOSITE_OVER); } } void KoColorSpace::addCompositeOp(const KoCompositeOp * op) { if (op->colorSpace()->id() == id()) { d->compositeOps.insert(op->id(), const_cast(op)); } } const KoColorConversionTransformation* KoColorSpace::toLabA16Converter() const { if (!d->transfoToLABA16) { d->transfoToLABA16 = KoColorSpaceRegistry::instance()->createColorConverter(this, KoColorSpaceRegistry::instance()->lab16(), KoColorConversionTransformation::internalRenderingIntent(), KoColorConversionTransformation::internalConversionFlags()) ; } return d->transfoToLABA16; } const KoColorConversionTransformation* KoColorSpace::fromLabA16Converter() const { if (!d->transfoFromLABA16) { d->transfoFromLABA16 = KoColorSpaceRegistry::instance()->createColorConverter(KoColorSpaceRegistry::instance()->lab16(), this, KoColorConversionTransformation::internalRenderingIntent(), KoColorConversionTransformation::internalConversionFlags()) ; } return d->transfoFromLABA16; } const KoColorConversionTransformation* KoColorSpace::toRgbA16Converter() const { if (!d->transfoToRGBA16) { d->transfoToRGBA16 = KoColorSpaceRegistry::instance()->createColorConverter(this, KoColorSpaceRegistry::instance()->rgb16(), KoColorConversionTransformation::internalRenderingIntent(), KoColorConversionTransformation::internalConversionFlags()) ; } return d->transfoToRGBA16; } const KoColorConversionTransformation* KoColorSpace::fromRgbA16Converter() const { if (!d->transfoFromRGBA16) { d->transfoFromRGBA16 = KoColorSpaceRegistry::instance()->createColorConverter(KoColorSpaceRegistry::instance()->rgb16() , this, KoColorConversionTransformation::internalRenderingIntent(), KoColorConversionTransformation::internalConversionFlags()) ; } return d->transfoFromRGBA16; } void KoColorSpace::toLabA16(const quint8 * src, quint8 * dst, quint32 nPixels) const { toLabA16Converter()->transform(src, dst, nPixels); } void KoColorSpace::fromLabA16(const quint8 * src, quint8 * dst, quint32 nPixels) const { fromLabA16Converter()->transform(src, dst, nPixels); } void KoColorSpace::toRgbA16(const quint8 * src, quint8 * dst, quint32 nPixels) const { toRgbA16Converter()->transform(src, dst, nPixels); } void KoColorSpace::fromRgbA16(const quint8 * src, quint8 * dst, quint32 nPixels) const { fromRgbA16Converter()->transform(src, dst, nPixels); } KoColorConversionTransformation* KoColorSpace::createColorConverter(const KoColorSpace * dstColorSpace, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const { if (*this == *dstColorSpace) { return new KoCopyColorConversionTransformation(this); } else { return KoColorSpaceRegistry::instance()->createColorConverter(this, dstColorSpace, renderingIntent, conversionFlags); } } bool KoColorSpace::convertPixelsTo(const quint8 * src, quint8 * dst, const KoColorSpace * dstColorSpace, quint32 numPixels, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const { if (*this == *dstColorSpace) { if (src != dst) { memcpy(dst, src, numPixels * sizeof(quint8) * pixelSize()); } } else { KoCachedColorConversionTransformation cct = KoColorSpaceRegistry::instance()->colorConversionCache()->cachedConverter(this, dstColorSpace, renderingIntent, conversionFlags); cct.transformation()->transform(src, dst, numPixels); } return true; } KoColorConversionTransformation * KoColorSpace::createProofingTransform(const KoColorSpace *dstColorSpace, const KoColorSpace *proofingSpace, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::Intent proofingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags, quint8 *gamutWarning, double adaptationState) const { if (!d->iccEngine) { d->iccEngine = KoColorSpaceEngineRegistry::instance()->get("icc"); } if (!d->iccEngine) return 0; return d->iccEngine->createColorProofingTransformation(this, dstColorSpace, proofingSpace, renderingIntent, proofingIntent, conversionFlags, gamutWarning, adaptationState); } bool KoColorSpace::proofPixelsTo(const quint8 *src, quint8 *dst, quint32 numPixels, KoColorConversionTransformation *proofingTransform) const { proofingTransform->transform(src, dst, numPixels); //the transform is deleted in the destructor. return true; } void KoColorSpace::bitBlt(const KoColorSpace* srcSpace, const KoCompositeOp::ParameterInfo& params, const KoCompositeOp* op, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const { Q_ASSERT_X(*op->colorSpace() == *this, "KoColorSpace::bitBlt", QString("Composite op is for color space %1 (%2) while this is %3 (%4)").arg(op->colorSpace()->id()).arg(op->colorSpace()->profile()->name()).arg(id()).arg(profile()->name()).toLatin1()); if(params.rows <= 0 || params.cols <= 0) return; if(!(*this == *srcSpace)) { - if (preferCompositionInSourceColorSpace() && - srcSpace->hasCompositeOp(op->id())) { + if (preferCompositionInSourceColorSpace() && + srcSpace->hasCompositeOp(op->id())) { - quint32 conversionDstBufferStride = params.cols * srcSpace->pixelSize(); - QVector * conversionDstCache = threadLocalConversionCache(params.rows * conversionDstBufferStride); - quint8* conversionDstData = conversionDstCache->data(); + quint32 conversionDstBufferStride = params.cols * srcSpace->pixelSize(); + QVector * conversionDstCache = threadLocalConversionCache(params.rows * conversionDstBufferStride); + quint8* conversionDstData = conversionDstCache->data(); - for(qint32 row=0; rowcompositeOp(op->id()); + // FIXME: do not calculate the otherOp every time + const KoCompositeOp *otherOp = srcSpace->compositeOp(op->id()); - KoCompositeOp::ParameterInfo paramInfo(params); - paramInfo.dstRowStart = conversionDstData; - paramInfo.dstRowStride = conversionDstBufferStride; - otherOp->composite(paramInfo); + KoCompositeOp::ParameterInfo paramInfo(params); + paramInfo.dstRowStart = conversionDstData; + paramInfo.dstRowStride = conversionDstBufferStride; + otherOp->composite(paramInfo); - for(qint32 row=0; rowconvertPixelsTo(conversionDstData + row * conversionDstBufferStride, - params.dstRowStart + row * params.dstRowStride, this, params.cols, - renderingIntent, conversionFlags); - } + for(qint32 row=0; rowconvertPixelsTo(conversionDstData + row * conversionDstBufferStride, + params.dstRowStart + row * params.dstRowStride, this, params.cols, + renderingIntent, conversionFlags); + } } else { quint32 conversionBufferStride = params.cols * pixelSize(); QVector * conversionCache = threadLocalConversionCache(params.rows * conversionBufferStride); quint8* conversionData = conversionCache->data(); for(qint32 row=0; rowconvertPixelsTo(params.srcRowStart + row * params.srcRowStride, conversionData + row * conversionBufferStride, this, params.cols, renderingIntent, conversionFlags); } KoCompositeOp::ParameterInfo paramInfo(params); paramInfo.srcRowStart = conversionData; paramInfo.srcRowStride = conversionBufferStride; op->composite(paramInfo); } } else { op->composite(params); } } QVector * KoColorSpace::threadLocalConversionCache(quint32 size) const { QVector * ba = 0; if (!d->conversionCache.hasLocalData()) { ba = new QVector(size, '0'); d->conversionCache.setLocalData(ba); } else { ba = d->conversionCache.localData(); if ((quint8)ba->size() < size) ba->resize(size); } return ba; } KoColorTransformation* KoColorSpace::createColorTransformation(const QString & id, const QHash & parameters) const { KoColorTransformationFactory* factory = KoColorTransformationFactoryRegistry::instance()->get(id); if (!factory) return 0; QPair model(colorModelId(), colorDepthId()); QList< QPair > models = factory->supportedModels(); if (models.isEmpty() || models.contains(model)) { return factory->createTransformation(this, parameters); } else { // Find the best solution // TODO use the color conversion cache KoColorConversionTransformation* csToFallBack = 0; KoColorConversionTransformation* fallBackToCs = 0; KoColorSpaceRegistry::instance()->createColorConverters(this, models, csToFallBack, fallBackToCs); Q_ASSERT(csToFallBack); Q_ASSERT(fallBackToCs); KoColorTransformation* transfo = factory->createTransformation(fallBackToCs->srcColorSpace(), parameters); return new KoFallBackColorTransformation(csToFallBack, fallBackToCs, transfo); } } void KoColorSpace::increaseLuminosity(quint8 * pixel, qreal step) const{ int channelnumber = channelCount(); QVector channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ihasTRC()){ //only linearise and crunch the luma if there's a TRC profile()->linearizeFloatValue(channelValues); qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); luma = pow(luma, 1/2.2); luma = qMin(1.0, luma + step); luma = pow(luma, 2.2); channelValues = fromHSY(&hue, &sat, &luma); - profile()->delinearizeFloatValue(channelValues); + profile()->delinearizeFloatValue(channelValues); } else { qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); luma = qMin(1.0, luma + step); channelValues = fromHSY(&hue, &sat, &luma); } for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ihasTRC()){ //only linearise and crunch the luma if there's a TRC profile()->linearizeFloatValue(channelValues); qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); luma = pow(luma, 1/2.2); if (luma-step<0.0) { luma=0.0; } else { luma -= step; } luma = pow(luma, 2.2); channelValues = fromHSY(&hue, &sat, &luma); profile()->delinearizeFloatValue(channelValues); } else { qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); if (luma-step<0.0) { luma=0.0; } else { luma -= step; } channelValues = fromHSY(&hue, &sat, &luma); } for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); sat += step; sat = qBound(0.0, sat, 1.0); channelValues = fromHSY(&hue, &sat, &luma); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); sat -= step; sat = qBound(0.0, sat, 1.0); channelValues = fromHSY(&hue, &sat, &luma); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); if (hue+step>1.0){ hue=(hue+step)- 1.0; } else { hue += step; } channelValues = fromHSY(&hue, &sat, &luma); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal hue, sat, luma = 0.0; toHSY(channelValues, &hue, &sat, &luma); if (hue-step<0.0){ hue=1.0-(step-hue); } else { hue -= step; } channelValues = fromHSY(&hue, &sat, &luma); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal y, u, v = 0.0; toYUV(channelValues, &y, &u, &v); u += step; u = qBound(0.0, u, 1.0); channelValues = fromYUV(&y, &u, &v); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal y, u, v = 0.0; toYUV(channelValues, &y, &u, &v); u -= step; u = qBound(0.0, u, 1.0); channelValues = fromYUV(&y, &u, &v); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal y, u, v = 0.0; toYUV(channelValues, &y, &u, &v); v += step; v = qBound(0.0, v, 1.0); channelValues = fromYUV(&y, &u, &v); profile()->delinearizeFloatValue(channelValues); for (int i=0;i channelValues(channelnumber); QVector channelValuesF(channelnumber); normalisedChannelsValue(pixel, channelValuesF); for (int i=0;ilinearizeFloatValue(channelValues); qreal y, u, v = 0.0; toYUV(channelValues, &y, &u, &v); v -= step; v = qBound(0.0, v, 1.0); channelValues = fromYUV(&y, &u, &v); profile()->delinearizeFloatValue(channelValues); for (int i=0;irgb8(dstProfile); if (data) this->convertPixelsTo(const_cast(data), img.bits(), dstCS, width * height, renderingIntent, conversionFlags); return img; } bool KoColorSpace::preferCompositionInSourceColorSpace() const { return false; } diff --git a/libs/pigment/KoColorSpace.h b/libs/pigment/KoColorSpace.h index 5caca665c8..67fa12d938 100644 --- a/libs/pigment/KoColorSpace.h +++ b/libs/pigment/KoColorSpace.h @@ -1,645 +1,644 @@ /* * Copyright (c) 2005 Boudewijn Rempt * Copyright (c) 2006-2007 Cyrille Berger * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef KOCOLORSPACE_H #define KOCOLORSPACE_H #include #include #include #include #include #include #include "KoColorSpaceConstants.h" #include "KoColorConversionTransformation.h" #include "KoColorProofingConversionTransformation.h" #include "KoCompositeOp.h" #include #include "kritapigment_export.h" class QDomDocument; class QDomElement; class KoChannelInfo; class KoColorProfile; class KoColorTransformation; class QBitArray; enum Deletability { OwnedByRegistryDoNotDelete, OwnedByRegistryRegistryDeletes, NotOwnedByRegistry }; enum ColorSpaceIndependence { FULLY_INDEPENDENT, TO_LAB16, TO_RGBA8, TO_RGBA16 }; class KoMixColorsOp; class KoConvolutionOp; /** * A KoColorSpace is the definition of a certain color space. * * A color model and a color space are two related concepts. A color * model is more general in that it describes the channels involved and * how they in broad terms combine to describe a color. Examples are * RGB, HSV, CMYK. * * A color space is more specific in that it also describes exactly how * the channels are combined. So for each color model there can be a * number of specific color spaces. So RGB is the model and sRGB, * adobeRGB, etc are colorspaces. * * In Pigment KoColorSpace acts as both a color model and a color space. * You can think of the class definition as the color model, but the * instance of the class as representing a colorspace. * * A third concept is the profile represented by KoColorProfile. It * represents the info needed to specialize a color model into a color * space. * * KoColorSpace is an abstract class serving as an interface. * * Subclasses implement actual color spaces * Some subclasses implement only some parts and are named Traits * */ class KRITAPIGMENT_EXPORT KoColorSpace : public boost::equality_comparable { friend class KoColorSpaceRegistry; friend class KoColorSpaceFactory; protected: /// Only for use by classes that serve as baseclass for real color spaces KoColorSpace(); public: /// Should be called by real color spaces KoColorSpace(const QString &id, const QString &name, KoMixColorsOp* mixColorsOp, KoConvolutionOp* convolutionOp); virtual bool operator==(const KoColorSpace& rhs) const; protected: virtual ~KoColorSpace(); public: //========== Gamut and other basic info ===================================// /* * @returns QPolygonF with 5*channel samples converted to xyY. * maybe convert to 3d space in future? */ QPolygonF gamutXYY() const; /* * @returns a polygon with 5 samples per channel converted to xyY, but unlike * gamutxyY it focuses on the luminance. This then can be used to visualise * the approximate trc of a given colorspace. */ QPolygonF estimatedTRCXYY() const; - QVector colorants() const; QVector lumaCoefficients() const; //========== Channels =====================================================// /// Return a list describing all the channels this color model has. The order /// of the channels in the list is the order of channels in the pixel. To find /// out the preferred display position, use KoChannelInfo::displayPosition. QList channels() const; /** * The total number of channels for a single pixel in this color model */ virtual quint32 channelCount() const = 0; /** * The total number of color channels (excludes alpha) for a single * pixel in this color model. */ virtual quint32 colorChannelCount() const = 0; /** * returns a QBitArray that contains true for the specified * channel types: * * @param color if true, set all color channels to true * @param alpha if true, set all alpha channels to true * * The order of channels is the colorspace descriptive order, * not the pixel order. */ QBitArray channelFlags(bool color = true, bool alpha = false) const; /** * The size in bytes of a single pixel in this color model */ virtual quint32 pixelSize() const = 0; /** * Return a string with the channel's value suitable for display in the gui. */ virtual QString channelValueText(const quint8 *pixel, quint32 channelIndex) const = 0; /** * Return a string with the channel's value with integer * channels normalised to the floating point range 0 to 1, if * appropriate. */ virtual QString normalisedChannelValueText(const quint8 *pixel, quint32 channelIndex) const = 0; /** * Return a QVector of floats with channels' values normalized * to floating point range 0 to 1. */ virtual void normalisedChannelsValue(const quint8 *pixel, QVector &channels) const = 0; /** * Write in the pixel the value from the normalized vector. */ virtual void fromNormalisedChannelsValue(quint8 *pixel, const QVector &values) const = 0; /** * Convert the value of the channel at the specified position into * an 8-bit value. The position is not the number of bytes, but * the position of the channel as defined in the channel info list. */ virtual quint8 scaleToU8(const quint8 * srcPixel, qint32 channelPos) const = 0; /** * Set dstPixel to the pixel containing only the given channel of srcPixel. The remaining channels * should be set to whatever makes sense for 'empty' channels of this color space, * with the intent being that the pixel should look like it only has the given channel. */ virtual void singleChannelPixel(quint8 *dstPixel, const quint8 *srcPixel, quint32 channelIndex) const = 0; //========== Identification ===============================================// /** * ID for use in files and internally: unchanging name. As the id must be unique * it is usually the concatenation of the id of the color model and of the color * depth, for instance "RGBA8" or "CMYKA16" or "XYZA32f". */ QString id() const; /** * User visible name which contains the name of the color model and of the color depth. * For instance "RGBA (8-bits)" or "CMYKA (16-bits)". */ QString name() const; /** * @return a string that identify the color model (for instance "RGB" or "CMYK" ...) * @see KoColorModelStandardIds.h */ virtual KoID colorModelId() const = 0; /** * @return a string that identify the bit depth (for instance "U8" or "F16" ...) * @see KoColorModelStandardIds.h */ virtual KoID colorDepthId() const = 0; /** * @return true if the profile given in argument can be used by this color space */ virtual bool profileIsCompatible(const KoColorProfile* profile) const = 0; /** * If false, images in this colorspace will degrade considerably by * functions, tools and filters that have the given measure of colorspace * independence. * * @param independence the measure to which this colorspace will suffer * from the manipulations of the tool or filter asking * @return false if no degradation will take place, true if degradation will * take place */ virtual bool willDegrade(ColorSpaceIndependence independence) const = 0; //========== Capabilities =================================================// /** * Tests if the colorspace offers the specific composite op. */ virtual bool hasCompositeOp(const QString & id) const; /** * Returns the list of user-visible composite ops supported by this colorspace. */ virtual QList compositeOps() const; /** * Retrieve a single composite op from the ones this colorspace offers. * If the requeste composite op does not exist, COMPOSITE_OVER is returned. */ const KoCompositeOp * compositeOp(const QString & id) const; /** * add a composite op to this colorspace. */ virtual void addCompositeOp(const KoCompositeOp * op); /** * Returns true if the colorspace supports channel values outside the * (normalised) range 0 to 1. */ virtual bool hasHighDynamicRange() const = 0; //========== Display profiles =============================================// /** * Return the profile of this color space. */ virtual const KoColorProfile * profile() const = 0; //================= Conversion functions ==================================// /** * The fromQColor methods take a given color defined as an RGB QColor * and fills a byte array with the corresponding color in the * the colorspace managed by this strategy. * * @param color the QColor that will be used to fill dst * @param dst a pointer to a pixel * @param profile the optional profile that describes the color values of QColor */ virtual void fromQColor(const QColor& color, quint8 *dst, const KoColorProfile * profile = 0) const = 0; /** * The toQColor methods take a byte array that is at least pixelSize() long * and converts the contents to a QColor, using the given profile as a source * profile and the optional profile as a destination profile. * * @param src a pointer to the source pixel * @param c the QColor that will be filled with the color at src * @param profile the optional profile that describes the color in c, for instance the monitor profile */ virtual void toQColor(const quint8 *src, QColor *c, const KoColorProfile * profile = 0) const = 0; /** * Convert the pixels in data to (8-bit BGRA) QImage using the specified profiles. * * @param data A pointer to a contiguous memory region containing width * height pixels * @param width in pixels * @param height in pixels * @param dstProfile destination profile * @param renderingIntent the rendering intent */ virtual QImage convertToQImage(const quint8 *data, qint32 width, qint32 height, const KoColorProfile * dstProfile, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const; /** * Convert the specified data to Lab (D50). All colorspaces are guaranteed to support this * * @param src the source data * @param dst the destination data * @param nPixels the number of source pixels */ virtual void toLabA16(const quint8 * src, quint8 * dst, quint32 nPixels) const; /** * Convert the specified data from Lab (D50). to this colorspace. All colorspaces are * guaranteed to support this. * * @param src the pixels in 16 bit lab format * @param dst the destination data * @param nPixels the number of pixels in the array */ virtual void fromLabA16(const quint8 * src, quint8 * dst, quint32 nPixels) const; /** * Convert the specified data to sRGB 16 bits. All colorspaces are guaranteed to support this * * @param src the source data * @param dst the destination data * @param nPixels the number of source pixels */ virtual void toRgbA16(const quint8 * src, quint8 * dst, quint32 nPixels) const; /** * Convert the specified data from sRGB 16 bits. to this colorspace. All colorspaces are * guaranteed to support this. * * @param src the pixels in 16 bit rgb format * @param dst the destination data * @param nPixels the number of pixels in the array */ virtual void fromRgbA16(const quint8 * src, quint8 * dst, quint32 nPixels) const; /** * Create a color conversion transformation. */ virtual KoColorConversionTransformation* createColorConverter(const KoColorSpace * dstColorSpace, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const; /** * Convert a byte array of srcLen pixels *src to the specified color space * and put the converted bytes into the prepared byte array *dst. * * Returns false if the conversion failed, true if it succeeded * * This function is not thread-safe. If you want to apply multiple conversion * in different threads at the same time, you need to create one color converter * per-thread using createColorConverter. */ virtual bool convertPixelsTo(const quint8 * src, quint8 * dst, const KoColorSpace * dstColorSpace, quint32 numPixels, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const; virtual KoColorConversionTransformation *createProofingTransform(const KoColorSpace * dstColorSpace, const KoColorSpace * proofingSpace, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::Intent proofingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags, quint8 *gamutWarning, double adaptationState) const; /** * @brief proofPixelsTo * @param src * @param dst * @param dstColorSpace the colorspace to which we go to. * @param proofingSpace the proofing space. * @param numPixels the amount of pixels. * @param renderingIntent the rendering intent used for rendering. * @param proofingIntent the intent used for proofing. * @param conversionFlags the conversion flags. * @param gamutWarning the data() of a KoColor. * @param adaptationState the state of adaptation, only affects absolute colorimetric. * @return */ virtual bool proofPixelsTo(const quint8 * src, quint8 * dst, quint32 numPixels, KoColorConversionTransformation *proofingTransform) const; //============================== Manipulation functions ==========================// // // The manipulation functions have default implementations that _convert_ the pixel // to a QColor and back. Reimplement these methods in your color strategy! // /** * Get the alpha value of the given pixel, downscaled to an 8-bit value. */ virtual quint8 opacityU8(const quint8 * pixel) const = 0; virtual qreal opacityF(const quint8 * pixel) const = 0; /** * Set the alpha channel of the given run of pixels to the given value. * * pixels -- a pointer to the pixels that will have their alpha set to this value * alpha -- a downscaled 8-bit value for opacity * nPixels -- the number of pixels * */ virtual void setOpacity(quint8 * pixels, quint8 alpha, qint32 nPixels) const = 0; virtual void setOpacity(quint8 * pixels, qreal alpha, qint32 nPixels) const = 0; /** * Multiply the alpha channel of the given run of pixels by the given value. * * pixels -- a pointer to the pixels that will have their alpha set to this value * alpha -- a downscaled 8-bit value for opacity * nPixels -- the number of pixels * */ virtual void multiplyAlpha(quint8 * pixels, quint8 alpha, qint32 nPixels) const = 0; /** * Applies the specified 8-bit alpha mask to the pixels. We assume that there are just * as many alpha values as pixels but we do not check this; the alpha values * are assumed to be 8-bits. */ virtual void applyAlphaU8Mask(quint8 * pixels, const quint8 * alpha, qint32 nPixels) const = 0; /** * Applies the inverted 8-bit alpha mask to the pixels. We assume that there are just * as many alpha values as pixels but we do not check this; the alpha values * are assumed to be 8-bits. */ virtual void applyInverseAlphaU8Mask(quint8 * pixels, const quint8 * alpha, qint32 nPixels) const = 0; /** * Applies the specified float alpha mask to the pixels. We assume that there are just * as many alpha values as pixels but we do not check this; alpha values have to be between 0.0 and 1.0 */ virtual void applyAlphaNormedFloatMask(quint8 * pixels, const float * alpha, qint32 nPixels) const = 0; /** * Applies the inverted specified float alpha mask to the pixels. We assume that there are just * as many alpha values as pixels but we do not check this; alpha values have to be between 0.0 and 1.0 */ virtual void applyInverseNormedFloatMask(quint8 * pixels, const float * alpha, qint32 nPixels) const = 0; /** * Create an adjustment object for adjusting the brightness and contrast * transferValues is a 256 bins array with values from 0 to 0xFFFF * This function is thread-safe, but you need to create one KoColorTransformation per thread. */ virtual KoColorTransformation *createBrightnessContrastAdjustment(const quint16 *transferValues) const = 0; /** * Create an adjustment object for adjusting individual channels * transferValues is an array of colorChannelCount number of 256 bins array with values from 0 to 0xFFFF * This function is thread-safe, but you need to create one KoColorTransformation per thread. * * The layout of the channels must be the following: * * 0..N-2 - color channels of the pixel; * N-1 - alpha channel of the pixel (if exists) */ virtual KoColorTransformation *createPerChannelAdjustment(const quint16 * const* transferValues) const = 0; /** * Darken all color channels with the given amount. If compensate is true, * the compensation factor will be used to limit the darkening. * */ virtual KoColorTransformation *createDarkenAdjustment(qint32 shade, bool compensate, qreal compensation) const = 0; /** * Invert color channels of the given pixels * This function is thread-safe, but you need to create one KoColorTransformation per thread. */ virtual KoColorTransformation *createInvertTransformation() const = 0; /** * Get the difference between 2 colors, normalized in the range (0,255). Only completely * opaque and completely transparent are taken into account when computing the difference; * other transparency levels are not regarded when finding the difference. */ virtual quint8 difference(const quint8* src1, const quint8* src2) const = 0; /** * Get the difference between 2 colors, normalized in the range (0,255). This function * takes the Alpha channel of the pixel into account. Alpha channel has the same * weight as Lightness channel. */ virtual quint8 differenceA(const quint8* src1, const quint8* src2) const = 0; /** * @return the mix color operation of this colorspace (do not delete it locally, it's deleted by the colorspace). */ virtual KoMixColorsOp* mixColorsOp() const; /** * @return the convolution operation of this colorspace (do not delete it locally, it's deleted by the colorspace). */ virtual KoConvolutionOp* convolutionOp() const; /** * Calculate the intensity of the given pixel, scaled down to the range 0-255. XXX: Maybe this should be more flexible */ virtual quint8 intensity8(const quint8 * src) const = 0; /* *increase luminosity by step */ virtual void increaseLuminosity(quint8 * pixel, qreal step) const; virtual void decreaseLuminosity(quint8 * pixel, qreal step) const; virtual void increaseSaturation(quint8 * pixel, qreal step) const; virtual void decreaseSaturation(quint8 * pixel, qreal step) const; virtual void increaseHue(quint8 * pixel, qreal step) const; virtual void decreaseHue(quint8 * pixel, qreal step) const; virtual void increaseRed(quint8 * pixel, qreal step) const; virtual void increaseGreen(quint8 * pixel, qreal step) const; virtual void increaseBlue(quint8 * pixel, qreal step) const; virtual void increaseYellow(quint8 * pixel, qreal step) const; virtual void toHSY(const QVector &channelValues, qreal *hue, qreal *sat, qreal *luma) const = 0; virtual QVector fromHSY(qreal *hue, qreal *sat, qreal *luma) const = 0; virtual void toYUV(const QVector &channelValues, qreal *y, qreal *u, qreal *v) const = 0; virtual QVector fromYUV(qreal *y, qreal *u, qreal *v) const = 0; /** * Compose two arrays of pixels together. If source and target * are not the same color model, the source pixels will be * converted to the target model. We're "dst" -- "dst" pixels are always in _this_ * colorspace. * * @param srcSpace the colorspace of the source pixels that will be composited onto "us" * @param param the information needed for blitting e.g. the source and destination pixel data, * the opacity and flow, ... * @param op the composition operator to use, e.g. COPY_OVER * */ virtual void bitBlt(const KoColorSpace* srcSpace, const KoCompositeOp::ParameterInfo& params, const KoCompositeOp* op, KoColorConversionTransformation::Intent renderingIntent, KoColorConversionTransformation::ConversionFlags conversionFlags) const; /** * Serialize this color following Create's swatch color specification available * at http://create.freedesktop.org/wiki/index.php/Swatches_-_colour_file_format * * This function doesn't create the element but rather the , * , ... elements. It is assumed that colorElt is the * element. * * @param pixel buffer to serialized * @param colorElt root element for the serialization, it is assumed that this * element is * @param doc is the document containing colorElt */ virtual void colorToXML(const quint8* pixel, QDomDocument& doc, QDomElement& colorElt) const = 0; /** * Unserialize a color following Create's swatch color specification available * at http://create.freedesktop.org/wiki/index.php/Swatches_-_colour_file_format * * @param pixel buffer where the color will be unserialized * @param elt the element to unserialize (, , ) * @return the unserialize color, or an empty color object if the function failed * to unserialize the color */ virtual void colorFromXML(quint8* pixel, const QDomElement& elt) const = 0; KoColorTransformation* createColorTransformation(const QString & id, const QHash & parameters) const; protected: /** * Use this function in the constructor of your colorspace to add the information about a channel. * @param ci a pointer to the information about a channel */ virtual void addChannel(KoChannelInfo * ci); const KoColorConversionTransformation* toLabA16Converter() const; const KoColorConversionTransformation* fromLabA16Converter() const; const KoColorConversionTransformation* toRgbA16Converter() const; const KoColorConversionTransformation* fromRgbA16Converter() const; /** * Returns the thread-local conversion cache. If it doesn't exist * yet, it is created. If it is currently too small, it is resized. */ QVector * threadLocalConversionCache(quint32 size) const; /** * This function defines the behavior of the bitBlt function * when the composition of pixels in different colorspaces is * requested, that is in case: * * srcCS == any * dstCS == this * * 1) preferCompositionInSourceColorSpace() == false, * * the source pixels are first converted to *this color space * and then composition is performed. * * 2) preferCompositionInSourceColorSpace() == true, * * the destination pixels are first converted into *srcCS color * space, then the composition is done, and the result is finally * converted into *this colorspace. * * This is used by alpha8() color space mostly, because it has * weaker representation of the color, so the composition * should be done in CS with richer functionality. */ virtual bool preferCompositionInSourceColorSpace() const; struct Private; Private * const d; }; inline QDebug operator<<(QDebug dbg, const KoColorSpace *cs) { if (cs) { dbg.nospace() << cs->name() << " (" << cs->colorModelId().id() << "," << cs->colorDepthId().id() << " )"; } else { dbg.nospace() << "0x0"; } return dbg.space(); } #endif // KOCOLORSPACE_H