diff --git a/libs/image/kis_fill_painter.cc b/libs/image/kis_fill_painter.cc index 84d0bcfa33..67db897851 100644 --- a/libs/image/kis_fill_painter.cc +++ b/libs/image/kis_fill_painter.cc @@ -1,358 +1,358 @@ /* * Copyright (c) 2004 Adrian Page * Copyright (c) 2004 Bart Coppens * Copyright (c) 2010 Lukáš Tvrdý * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "kis_fill_painter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "generator/kis_generator.h" #include "filter/kis_filter_configuration.h" #include "generator/kis_generator_registry.h" #include "kis_processing_information.h" #include "kis_debug.h" #include "kis_image.h" #include "kis_layer.h" #include "kis_paint_device.h" #include #include "KoColorSpace.h" #include "kis_transaction.h" #include "kis_pixel_selection.h" #include #include #include "kis_selection_filters.h" #include KisFillPainter::KisFillPainter() : KisPainter() { initFillPainter(); } KisFillPainter::KisFillPainter(KisPaintDeviceSP device) : KisPainter(device) { initFillPainter(); } KisFillPainter::KisFillPainter(KisPaintDeviceSP device, KisSelectionSP selection) : KisPainter(device, selection) { initFillPainter(); } void KisFillPainter::initFillPainter() { m_width = m_height = -1; m_careForSelection = false; m_sizemod = 0; m_feather = 0; m_useCompositioning = false; m_threshold = 0; } void KisFillPainter::fillSelection(const QRect &rc, const KoColor &color) { KisPaintDeviceSP fillDevice = new KisPaintDevice(device()->colorSpace()); fillDevice->setDefaultPixel(color); bitBlt(rc.topLeft(), fillDevice, rc); } // 'regular' filling // XXX: This also needs renaming, since filling ought to keep the opacity and the composite op in mind, // this is more eraseToColor. void KisFillPainter::fillRect(qint32 x1, qint32 y1, qint32 w, qint32 h, const KoColor& kc, quint8 opacity) { if (w > 0 && h > 0) { // Make sure we're in the right colorspace KoColor kc2(kc); // get rid of const kc2.convertTo(device()->colorSpace()); quint8 * data = kc2.data(); device()->colorSpace()->setOpacity(data, opacity, 1); device()->fill(x1, y1, w, h, data); addDirtyRect(QRect(x1, y1, w, h)); } } void KisFillPainter::fillRect(const QRect &rc, const KoPatternSP pattern, const QPoint &offset) { fillRect(rc.x(), rc.y(), rc.width(), rc.height(), pattern, offset); } void KisFillPainter::fillRect(qint32 x1, qint32 y1, qint32 w, qint32 h, const KoPatternSP pattern, const QPoint &offset) { if (!pattern) return; if (!pattern->valid()) return; if (!device()) return; if (w < 1) return; if (h < 1) return; KisPaintDeviceSP patternLayer = new KisPaintDevice(device()->compositionSourceColorSpace(), pattern->name()); patternLayer->convertFromQImage(pattern->pattern(), 0); if (!offset.isNull()) { patternLayer->moveTo(offset); } fillRect(x1, y1, w, h, patternLayer, QRect(offset.x(), offset.y(), pattern->width(), pattern->height())); } void KisFillPainter::fillRect(const QRect &rc, const KoPatternSP pattern, const QTransform transform) { if (!pattern) return; if (!pattern->valid()) return; if (!device()) return; if (rc.width() < 1) return; if (rc.height() < 1) return; KisPaintDeviceSP patternLayer = new KisPaintDevice(device()->compositionSourceColorSpace(), pattern->name()); patternLayer->convertFromQImage(pattern->pattern(), 0); fillRect(rc.x(), rc.y(), rc.width(), rc.height(), patternLayer, QRect(0, 0, pattern->width(), pattern->height()), transform); } void KisFillPainter::fillRect(qint32 x1, qint32 y1, qint32 w, qint32 h, const KisPaintDeviceSP device, const QRect& deviceRect, const QTransform transform) { KisPaintDeviceSP wrapped = device; wrapped->setDefaultBounds(new KisWrapAroundBoundsWrapper(wrapped->defaultBounds(), deviceRect)); KisPerspectiveTransformWorker worker = KisPerspectiveTransformWorker(this->device(), transform, this->progressUpdater()); worker.runPartialDst(device, this->device(), QRect(x1, y1, w, h)); addDirtyRect(QRect(x1, y1, w, h)); } void KisFillPainter::fillRect(qint32 x1, qint32 y1, qint32 w, qint32 h, const KisPaintDeviceSP device, const QRect& deviceRect) { const QRect &patternRect = deviceRect; const QRect fillRect(x1, y1, w, h); auto toPatternLocal = [](int value, int offset, int width) { const int normalizedValue = value - offset; return offset + (normalizedValue >= 0 ? normalizedValue % width : width - (-normalizedValue - 1) % width - 1); }; int dstY = fillRect.y(); while (dstY <= fillRect.bottom()) { const int dstRowsRemaining = fillRect.bottom() - dstY + 1; const int srcY = toPatternLocal(dstY, patternRect.y(), patternRect.height()); const int height = qMin(patternRect.height() - srcY + patternRect.y(), dstRowsRemaining); int dstX = fillRect.x(); while (dstX <= fillRect.right()) { const int dstColumnsRemaining = fillRect.right() - dstX + 1; const int srcX = toPatternLocal(dstX, patternRect.x(), patternRect.width()); const int width = qMin(patternRect.width() - srcX + patternRect.x(), dstColumnsRemaining); bitBlt(dstX, dstY, device, srcX, srcY, width, height); dstX += width; } dstY += height; } addDirtyRect(QRect(x1, y1, w, h)); } void KisFillPainter::fillRect(qint32 x1, qint32 y1, qint32 w, qint32 h, const KisFilterConfigurationSP generator) { if (!generator) return; KisGeneratorSP g = KisGeneratorRegistry::instance()->value(generator->name()); if (!device()) return; if (w < 1) return; if (h < 1) return; QRect tmpRc(x1, y1, w, h); KisProcessingInformation dstCfg(device(), tmpRc.topLeft(), 0); g->generate(dstCfg, tmpRc.size(), generator); addDirtyRect(tmpRc); } // flood filling void KisFillPainter::fillColor(int startX, int startY, KisPaintDeviceSP sourceDevice) { if (!m_useCompositioning) { if (m_sizemod || m_feather || compositeOp()->id() != COMPOSITE_OVER || opacity() != MAX_SELECTED || sourceDevice != device()) { warnKrita << "WARNING: Fast Flood Fill (no compositioning mode)" << "does not support compositeOps, opacity, " << "selection enhancements and separate source " << "devices"; } QRect fillBoundsRect(0, 0, m_width, m_height); QPoint startPoint(startX, startY); if (!fillBoundsRect.contains(startPoint)) return; KisScanlineFill gc(device(), startPoint, fillBoundsRect); gc.setThreshold(m_threshold); gc.fillColor(paintColor()); } else { genericFillStart(startX, startY, sourceDevice); // Now create a layer and fill it KisPaintDeviceSP filled = device()->createCompositionSourceDevice(); Q_CHECK_PTR(filled); KisFillPainter painter(filled); painter.fillRect(0, 0, m_width, m_height, paintColor()); painter.end(); genericFillEnd(filled); } } void KisFillPainter::fillPattern(int startX, int startY, KisPaintDeviceSP sourceDevice) { genericFillStart(startX, startY, sourceDevice); // Now create a layer and fill it KisPaintDeviceSP filled = device()->createCompositionSourceDevice(); Q_CHECK_PTR(filled); KisFillPainter painter(filled); - painter.fillRect(0, 0, m_width, m_height, pattern()); + painter.fillRect(QRect(0, 0, m_width, m_height), pattern(), QTransform()); painter.end(); genericFillEnd(filled); } void KisFillPainter::genericFillStart(int startX, int startY, KisPaintDeviceSP sourceDevice) { Q_ASSERT(m_width > 0); Q_ASSERT(m_height > 0); // Create a selection from the surrounding area KisPixelSelectionSP pixelSelection = createFloodSelection(startX, startY, sourceDevice); KisSelectionSP newSelection = new KisSelection(pixelSelection->defaultBounds()); newSelection->pixelSelection()->applySelection(pixelSelection, SELECTION_REPLACE); m_fillSelection = newSelection; } void KisFillPainter::genericFillEnd(KisPaintDeviceSP filled) { if (progressUpdater() && progressUpdater()->interrupted()) { m_width = m_height = -1; return; } // TODO: filling using the correct bound of the selection would be better, *but* // the selection is limited to the exact bound of a layer, while in reality, we don't // want that, since we want a transparent layer to be completely filled // QRect rc = m_fillSelection->selectedExactRect(); /** * Apply the real selection to a filled one */ KisSelectionSP realSelection = selection(); if (realSelection) { m_fillSelection->pixelSelection()->applySelection( realSelection->projection(), SELECTION_INTERSECT); } setSelection(m_fillSelection); bitBlt(0, 0, filled, 0, 0, m_width, m_height); setSelection(realSelection); if (progressUpdater()) progressUpdater()->setProgress(100); m_width = m_height = -1; } KisPixelSelectionSP KisFillPainter::createFloodSelection(int startX, int startY, KisPaintDeviceSP sourceDevice) { KisPixelSelectionSP newSelection = new KisPixelSelection(new KisSelectionDefaultBounds(device())); return createFloodSelection(newSelection, startX, startY, sourceDevice); } KisPixelSelectionSP KisFillPainter::createFloodSelection(KisPixelSelectionSP pixelSelection, int startX, int startY, KisPaintDeviceSP sourceDevice) { if (m_width < 0 || m_height < 0) { if (selection() && m_careForSelection) { QRect rc = selection()->selectedExactRect(); m_width = rc.width() - (startX - rc.x()); m_height = rc.height() - (startY - rc.y()); } } dbgImage << "Width: " << m_width << " Height: " << m_height; // Otherwise the width and height should have been set Q_ASSERT(m_width > 0 && m_height > 0); QRect fillBoundsRect(0, 0, m_width, m_height); QPoint startPoint(startX, startY); if (!fillBoundsRect.contains(startPoint)) { return pixelSelection; } KisScanlineFill gc(sourceDevice, startPoint, fillBoundsRect); gc.setThreshold(m_threshold); gc.fillSelection(pixelSelection); if (m_sizemod > 0) { KisGrowSelectionFilter biggy(m_sizemod, m_sizemod); biggy.process(pixelSelection, pixelSelection->selectedRect().adjusted(-m_sizemod, -m_sizemod, m_sizemod, m_sizemod)); } else if (m_sizemod < 0) { KisShrinkSelectionFilter tiny(-m_sizemod, -m_sizemod, false); tiny.process(pixelSelection, pixelSelection->selectedRect()); } if (m_feather > 0) { KisFeatherSelectionFilter feathery(m_feather); feathery.process(pixelSelection, pixelSelection->selectedRect().adjusted(-m_feather, -m_feather, m_feather, m_feather)); } return pixelSelection; } diff --git a/libs/image/kis_painter.cc b/libs/image/kis_painter.cc index 59fb0f3261..e66cfd26a8 100644 --- a/libs/image/kis_painter.cc +++ b/libs/image/kis_painter.cc @@ -1,3067 +1,3067 @@ /* * Copyright (c) 2002 Patrick Julien * Copyright (c) 2004 Boudewijn Rempt * Copyright (c) 2004 Clarence Dang * Copyright (c) 2004 Adrian Page * Copyright (c) 2004 Cyrille Berger * Copyright (c) 2008-2010 Lukáš Tvrdý * Copyright (c) 2010 José Luis Vergara Toloza * Copyright (c) 2011 Silvio Heinrich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "kis_painter.h" #include #include #include #include #include #ifndef Q_OS_WIN #include #endif #include #include #include #include #include #include #include #include "kis_image.h" #include "filter/kis_filter.h" #include "kis_layer.h" #include "kis_paint_device.h" #include "kis_fixed_paint_device.h" #include "kis_transaction.h" #include "kis_vec.h" #include "kis_iterator_ng.h" #include "kis_random_accessor_ng.h" #include "filter/kis_filter_configuration.h" #include "kis_pixel_selection.h" #include #include "kis_paintop_registry.h" #include "kis_perspective_math.h" #include "tiles3/kis_random_accessor.h" #include #include #include "kis_lod_transform.h" #include "kis_algebra_2d.h" #include "krita_utils.h" // Maximum distance from a Bezier control point to the line through the start // and end points for the curve to be considered flat. #define BEZIER_FLATNESS_THRESHOLD 0.5 #include "kis_painter_p.h" KisPainter::KisPainter() : d(new Private(this)) { init(); } KisPainter::KisPainter(KisPaintDeviceSP device) : d(new Private(this, device->colorSpace())) { init(); Q_ASSERT(device); begin(device); } KisPainter::KisPainter(KisPaintDeviceSP device, KisSelectionSP selection) : d(new Private(this, device->colorSpace())) { init(); Q_ASSERT(device); begin(device); d->selection = selection; } void KisPainter::init() { d->selection = 0 ; d->transaction = 0; d->paintOp = 0; d->sourceLayer = 0; d->fillStyle = FillStyleNone; d->strokeStyle = StrokeStyleBrush; d->antiAliasPolygonFill = true; d->progressUpdater = 0; d->maskPainter = 0; d->fillPainter = 0; d->maskImageWidth = 255; d->maskImageHeight = 255; d->mirrorHorizontally = false; d->mirrorVertically = false; d->isOpacityUnit = true; d->paramInfo = KoCompositeOp::ParameterInfo(); d->renderingIntent = KoColorConversionTransformation::internalRenderingIntent(); d->conversionFlags = KoColorConversionTransformation::internalConversionFlags(); } KisPainter::~KisPainter() { // TODO: Maybe, don't be that strict? // deleteTransaction(); end(); delete d->paintOp; delete d->maskPainter; delete d->fillPainter; delete d; } template void copyAreaOptimizedImpl(const QPoint &dstPt, KisPaintDeviceSP src, KisPaintDeviceSP dst, const QRect &srcRect) { const QRect dstRect(dstPt, srcRect.size()); const QRect srcExtent = src->extent(); const QRect dstExtent = dst->extent(); const QRect srcSampleRect = srcExtent & srcRect; const QRect dstSampleRect = dstExtent & dstRect; const bool srcEmpty = srcSampleRect.isEmpty(); const bool dstEmpty = dstSampleRect.isEmpty(); if (!srcEmpty || !dstEmpty) { if (srcEmpty) { dst->clear(dstRect); } else { QRect srcCopyRect = srcRect; QRect dstCopyRect = dstRect; if (!srcExtent.contains(srcRect)) { if (src->defaultPixel() == dst->defaultPixel()) { const QRect dstSampleInSrcCoords = dstSampleRect.translated(srcRect.topLeft() - dstPt); if (dstSampleInSrcCoords.isEmpty() || srcSampleRect.contains(dstSampleInSrcCoords)) { srcCopyRect = srcSampleRect; } else { srcCopyRect = srcSampleRect | dstSampleInSrcCoords; } dstCopyRect = QRect(dstPt + srcCopyRect.topLeft() - srcRect.topLeft(), srcCopyRect.size()); } } KisPainter gc(dst); gc.setCompositeOp(dst->colorSpace()->compositeOp(COMPOSITE_COPY)); if (useOldData) { gc.bitBltOldData(dstCopyRect.topLeft(), src, srcCopyRect); } else { gc.bitBlt(dstCopyRect.topLeft(), src, srcCopyRect); } } } } void KisPainter::copyAreaOptimized(const QPoint &dstPt, KisPaintDeviceSP src, KisPaintDeviceSP dst, const QRect &srcRect) { copyAreaOptimizedImpl(dstPt, src, dst, srcRect); } void KisPainter::copyAreaOptimizedOldData(const QPoint &dstPt, KisPaintDeviceSP src, KisPaintDeviceSP dst, const QRect &srcRect) { copyAreaOptimizedImpl(dstPt, src, dst, srcRect); } void KisPainter::copyAreaOptimized(const QPoint &dstPt, KisPaintDeviceSP src, KisPaintDeviceSP dst, const QRect &originalSrcRect, KisSelectionSP selection) { if (!selection) { copyAreaOptimized(dstPt, src, dst, originalSrcRect); return; } const QRect selectionRect = selection->selectedRect(); const QRect srcRect = originalSrcRect & selectionRect; const QPoint dstOffset = srcRect.topLeft() - originalSrcRect.topLeft(); const QRect dstRect = QRect(dstPt + dstOffset, srcRect.size()); const bool srcEmpty = (src->extent() & srcRect).isEmpty(); const bool dstEmpty = (dst->extent() & dstRect).isEmpty(); if (!srcEmpty || !dstEmpty) { //if (srcEmpty) { // doesn't support dstRect // dst->clearSelection(selection); // } else */ { KisPainter gc(dst); gc.setSelection(selection); gc.setCompositeOp(dst->colorSpace()->compositeOp(COMPOSITE_COPY)); gc.bitBlt(dstRect.topLeft(), src, srcRect); } } } KisPaintDeviceSP KisPainter::convertToAlphaAsAlpha(KisPaintDeviceSP src) { const KoColorSpace *srcCS = src->colorSpace(); const QRect processRect = src->extent(); KisPaintDeviceSP dst(new KisPaintDevice(KoColorSpaceRegistry::instance()->alpha8())); if (processRect.isEmpty()) return dst; KisSequentialConstIterator srcIt(src, processRect); KisSequentialIterator dstIt(dst, processRect); while (srcIt.nextPixel() && dstIt.nextPixel()) { const quint8 *srcPtr = srcIt.rawDataConst(); quint8 *alpha8Ptr = dstIt.rawData(); const quint8 white = srcCS->intensity8(srcPtr); const quint8 alpha = srcCS->opacityU8(srcPtr); *alpha8Ptr = KoColorSpaceMaths::multiply(alpha, KoColorSpaceMathsTraits::unitValue - white); } return dst; } KisPaintDeviceSP KisPainter::convertToAlphaAsGray(KisPaintDeviceSP src) { const KoColorSpace *srcCS = src->colorSpace(); const QRect processRect = src->extent(); KisPaintDeviceSP dst(new KisPaintDevice(KoColorSpaceRegistry::instance()->alpha8())); if (processRect.isEmpty()) return dst; KisSequentialConstIterator srcIt(src, processRect); KisSequentialIterator dstIt(dst, processRect); while (srcIt.nextPixel() && dstIt.nextPixel()) { const quint8 *srcPtr = srcIt.rawDataConst(); quint8 *alpha8Ptr = dstIt.rawData(); *alpha8Ptr = srcCS->intensity8(srcPtr); } return dst; } KisPaintDeviceSP KisPainter::convertToAlphaAsPureAlpha(KisPaintDeviceSP src) { const KoColorSpace *srcCS = src->colorSpace(); const QRect processRect = src->extent(); KisPaintDeviceSP dst(new KisPaintDevice(KoColorSpaceRegistry::instance()->alpha8())); if (processRect.isEmpty()) return dst; KisSequentialConstIterator srcIt(src, processRect); KisSequentialIterator dstIt(dst, processRect); while (srcIt.nextPixel() && dstIt.nextPixel()) { const quint8 *srcPtr = srcIt.rawDataConst(); quint8 *alpha8Ptr = dstIt.rawData(); *alpha8Ptr = srcCS->opacityU8(srcPtr); } return dst; } bool KisPainter::checkDeviceHasTransparency(KisPaintDeviceSP dev) { const QRect deviceBounds = dev->exactBounds(); const QRect imageBounds = dev->defaultBounds()->bounds(); if (deviceBounds.isEmpty() || (deviceBounds & imageBounds) != imageBounds) { return true; } const KoColorSpace *cs = dev->colorSpace(); KisSequentialConstIterator it(dev, deviceBounds); while(it.nextPixel()) { if (cs->opacityU8(it.rawDataConst()) != OPACITY_OPAQUE_U8) { return true; } } return false; } void KisPainter::begin(KisPaintDeviceSP device) { begin(device, d->selection); } void KisPainter::begin(KisPaintDeviceSP device, KisSelectionSP selection) { if (!device) return; d->selection = selection; Q_ASSERT(device->colorSpace()); end(); d->device = device; d->colorSpace = device->colorSpace(); d->compositeOp = d->colorSpace->compositeOp(COMPOSITE_OVER); d->pixelSize = device->pixelSize(); } void KisPainter::end() { Q_ASSERT_X(!d->transaction, "KisPainter::end()", "end() was called for the painter having a transaction. " "Please use end/deleteTransaction() instead"); } void KisPainter::beginTransaction(const KUndo2MagicString& transactionName,int timedID) { Q_ASSERT_X(!d->transaction, "KisPainter::beginTransaction()", "You asked for a new transaction while still having " "another one. Please finish the first one with " "end/deleteTransaction() first"); d->transaction = new KisTransaction(transactionName, d->device); Q_CHECK_PTR(d->transaction); d->transaction->undoCommand()->setTimedID(timedID); } void KisPainter::revertTransaction() { Q_ASSERT_X(d->transaction, "KisPainter::revertTransaction()", "No transaction is in progress"); d->transaction->revert(); delete d->transaction; d->transaction = 0; } void KisPainter::endTransaction(KisUndoAdapter *undoAdapter) { Q_ASSERT_X(d->transaction, "KisPainter::endTransaction()", "No transaction is in progress"); d->transaction->commit(undoAdapter); delete d->transaction; d->transaction = 0; } void KisPainter::endTransaction(KisPostExecutionUndoAdapter *undoAdapter) { Q_ASSERT_X(d->transaction, "KisPainter::endTransaction()", "No transaction is in progress"); d->transaction->commit(undoAdapter); delete d->transaction; d->transaction = 0; } KUndo2Command* KisPainter::endAndTakeTransaction() { Q_ASSERT_X(d->transaction, "KisPainter::endTransaction()", "No transaction is in progress"); KUndo2Command *transactionData = d->transaction->endAndTake(); delete d->transaction; d->transaction = 0; return transactionData; } void KisPainter::deleteTransaction() { if (!d->transaction) return; delete d->transaction; d->transaction = 0; } void KisPainter::putTransaction(KisTransaction* transaction) { Q_ASSERT_X(!d->transaction, "KisPainter::putTransaction()", "You asked for a new transaction while still having " "another one. Please finish the first one with " "end/deleteTransaction() first"); d->transaction = transaction; } KisTransaction* KisPainter::takeTransaction() { Q_ASSERT_X(d->transaction, "KisPainter::takeTransaction()", "No transaction is in progress"); KisTransaction *temp = d->transaction; d->transaction = 0; return temp; } QVector KisPainter::takeDirtyRegion() { QVector vrect = d->dirtyRects; d->dirtyRects.clear(); return vrect; } void KisPainter::addDirtyRect(const QRect & rc) { QRect r = rc.normalized(); if (r.isValid()) { d->dirtyRects.append(rc); } } void KisPainter::addDirtyRects(const QVector &rects) { d->dirtyRects.reserve(d->dirtyRects.size() + rects.size()); Q_FOREACH (const QRect &rc, rects) { const QRect r = rc.normalized(); if (r.isValid()) { d->dirtyRects.append(rc); } } } inline bool KisPainter::Private::tryReduceSourceRect(const KisPaintDevice *srcDev, QRect *srcRect, qint32 *srcX, qint32 *srcY, qint32 *srcWidth, qint32 *srcHeight, qint32 *dstX, qint32 *dstY) { bool needsReadjustParams = false; /** * In case of COMPOSITE_COPY and Wrap Around Mode even the pixels * outside the device extent matter, because they will be either * directly copied (former case) or cloned from another area of * the image. */ if (compositeOp->id() != COMPOSITE_COPY && compositeOp->id() != COMPOSITE_DESTINATION_IN && compositeOp->id() != COMPOSITE_DESTINATION_ATOP && !srcDev->defaultBounds()->wrapAroundMode()) { /** * If srcDev->extent() (the area of the tiles containing * srcDev) is smaller than srcRect, then shrink srcRect to * that size. This is done as a speed optimization, useful for * stack recomposition in KisImage. srcRect won't grow if * srcDev->extent() is larger. */ *srcRect &= srcDev->extent(); if (srcRect->isEmpty()) return true; needsReadjustParams = true; } if (selection) { /** * We should also crop the blitted area by the selected region, * because we cannot paint outside the selection. */ *srcRect &= selection->selectedRect(); if (srcRect->isEmpty()) return true; needsReadjustParams = true; } if (!paramInfo.channelFlags.isEmpty()) { const QBitArray onlyColor = colorSpace->channelFlags(true, false); KIS_SAFE_ASSERT_RECOVER_NOOP(onlyColor.size() == paramInfo.channelFlags.size()); // check if we have alpha channel locked if ((paramInfo.channelFlags & onlyColor) == paramInfo.channelFlags) { *srcRect &= device->extent(); if (srcRect->isEmpty()) return true; needsReadjustParams = true; } } if (needsReadjustParams) { // Readjust the function paramenters to the new dimensions. *dstX += srcRect->x() - *srcX; // This will only add, not subtract *dstY += srcRect->y() - *srcY; // Idem srcRect->getRect(srcX, srcY, srcWidth, srcHeight); } return false; } void KisPainter::bitBltWithFixedSelection(qint32 dstX, qint32 dstY, const KisPaintDeviceSP srcDev, const KisFixedPaintDeviceSP selection, qint32 selX, qint32 selY, qint32 srcX, qint32 srcY, qint32 srcWidth, qint32 srcHeight) { // TODO: get selX and selY working as intended /* This check for nonsense ought to be a Q_ASSERT. However, when paintops are just initializing they perform some dummy passes with those parameters, and it must not crash */ if (srcWidth == 0 || srcHeight == 0) return; if (srcDev.isNull()) return; if (d->device.isNull()) return; // Check that selection has an alpha colorspace, crash if false Q_ASSERT(selection->colorSpace() == KoColorSpaceRegistry::instance()->alpha8()); QRect srcRect = QRect(srcX, srcY, srcWidth, srcHeight); QRect selRect = QRect(selX, selY, srcWidth, srcHeight); /* Trying to read outside a KisFixedPaintDevice is inherently wrong and shouldn't be done, so crash if someone attempts to do this. Don't resize YET as it would obfuscate the mistake. */ Q_ASSERT(selection->bounds().contains(selRect)); Q_UNUSED(selRect); // only used by the above Q_ASSERT /** * An optimization, which crops the source rect by the bounds of * the source device when it is possible */ if (d->tryReduceSourceRect(srcDev, &srcRect, &srcX, &srcY, &srcWidth, &srcHeight, &dstX, &dstY)) return; /* Create an intermediate byte array to hold information before it is written to the current paint device (d->device) */ quint8* dstBytes = 0; try { dstBytes = new quint8[srcWidth * srcHeight * d->device->pixelSize()]; } catch (const std::bad_alloc&) { warnKrita << "KisPainter::bitBltWithFixedSelection std::bad_alloc for " << srcWidth << " * " << srcHeight << " * " << d->device->pixelSize() << "dst bytes"; return; } d->device->readBytes(dstBytes, dstX, dstY, srcWidth, srcHeight); // Copy the relevant bytes of raw data from srcDev quint8* srcBytes = 0; try { srcBytes = new quint8[srcWidth * srcHeight * srcDev->pixelSize()]; } catch (const std::bad_alloc&) { warnKrita << "KisPainter::bitBltWithFixedSelection std::bad_alloc for " << srcWidth << " * " << srcHeight << " * " << d->device->pixelSize() << "src bytes"; return; } srcDev->readBytes(srcBytes, srcX, srcY, srcWidth, srcHeight); QRect selBounds = selection->bounds(); const quint8 *selRowStart = selection->data() + (selBounds.width() * (selY - selBounds.top()) + (selX - selBounds.left())) * selection->pixelSize(); /* * This checks whether there is nothing selected. */ if (!d->selection) { /* As there's nothing selected, blit to dstBytes (intermediary bit array), ignoring d->selection (the user selection)*/ d->paramInfo.dstRowStart = dstBytes; d->paramInfo.dstRowStride = srcWidth * d->device->pixelSize(); d->paramInfo.srcRowStart = srcBytes; d->paramInfo.srcRowStride = srcWidth * srcDev->pixelSize(); d->paramInfo.maskRowStart = selRowStart; d->paramInfo.maskRowStride = selBounds.width() * selection->pixelSize(); d->paramInfo.rows = srcHeight; d->paramInfo.cols = srcWidth; d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); } else { /* Read the user selection (d->selection) bytes into an array, ready to merge in the next block*/ quint32 totalBytes = srcWidth * srcHeight * selection->pixelSize(); quint8* mergedSelectionBytes = 0; try { mergedSelectionBytes = new quint8[ totalBytes ]; } catch (const std::bad_alloc&) { warnKrita << "KisPainter::bitBltWithFixedSelection std::bad_alloc for " << srcWidth << " * " << srcHeight << " * " << d->device->pixelSize() << "total bytes"; return; } d->selection->projection()->readBytes(mergedSelectionBytes, dstX, dstY, srcWidth, srcHeight); // Merge selections here by multiplying them - compositeOP(COMPOSITE_MULT) d->paramInfo.dstRowStart = mergedSelectionBytes; d->paramInfo.dstRowStride = srcWidth * selection->pixelSize(); d->paramInfo.srcRowStart = selRowStart; d->paramInfo.srcRowStride = selBounds.width() * selection->pixelSize(); d->paramInfo.maskRowStart = 0; d->paramInfo.maskRowStride = 0; d->paramInfo.rows = srcHeight; d->paramInfo.cols = srcWidth; KoColorSpaceRegistry::instance()->alpha8()->compositeOp(COMPOSITE_MULT)->composite(d->paramInfo); // Blit to dstBytes (intermediary bit array) d->paramInfo.dstRowStart = dstBytes; d->paramInfo.dstRowStride = srcWidth * d->device->pixelSize(); d->paramInfo.srcRowStart = srcBytes; d->paramInfo.srcRowStride = srcWidth * srcDev->pixelSize(); d->paramInfo.maskRowStart = mergedSelectionBytes; d->paramInfo.maskRowStride = srcWidth * selection->pixelSize(); d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); delete[] mergedSelectionBytes; } d->device->writeBytes(dstBytes, dstX, dstY, srcWidth, srcHeight); delete[] dstBytes; delete[] srcBytes; addDirtyRect(QRect(dstX, dstY, srcWidth, srcHeight)); } void KisPainter::bitBltWithFixedSelection(qint32 dstX, qint32 dstY, const KisPaintDeviceSP srcDev, const KisFixedPaintDeviceSP selection, qint32 srcWidth, qint32 srcHeight) { bitBltWithFixedSelection(dstX, dstY, srcDev, selection, 0, 0, 0, 0, srcWidth, srcHeight); } template void KisPainter::bitBltImpl(qint32 dstX, qint32 dstY, const KisPaintDeviceSP srcDev, qint32 srcX, qint32 srcY, qint32 srcWidth, qint32 srcHeight) { /* This check for nonsense ought to be a Q_ASSERT. However, when paintops are just initializing they perform some dummy passes with those parameters, and it must not crash */ if (srcWidth == 0 || srcHeight == 0) return; if (srcDev.isNull()) return; if (d->device.isNull()) return; QRect srcRect = QRect(srcX, srcY, srcWidth, srcHeight); if (d->compositeOp->id() == COMPOSITE_COPY) { if(!d->selection && d->isOpacityUnit && srcX == dstX && srcY == dstY && d->device->fastBitBltPossible(srcDev)) { if(useOldSrcData) { d->device->fastBitBltOldData(srcDev, srcRect); } else { d->device->fastBitBlt(srcDev, srcRect); } addDirtyRect(srcRect); return; } } else { /** * An optimization, which crops the source rect by the bounds of * the source device when it is possible */ if (d->tryReduceSourceRect(srcDev, &srcRect, &srcX, &srcY, &srcWidth, &srcHeight, &dstX, &dstY)) return; } qint32 dstY_ = dstY; qint32 srcY_ = srcY; qint32 rowsRemaining = srcHeight; // Read below KisRandomConstAccessorSP srcIt = srcDev->createRandomConstAccessorNG(); KisRandomAccessorSP dstIt = d->device->createRandomAccessorNG(); /* Here be a huge block of verbose code that does roughly the same than the other bit blit operations. This one is longer than the rest in an effort to optimize speed and memory use */ if (d->selection) { KisPaintDeviceSP selectionProjection(d->selection->projection()); KisRandomConstAccessorSP maskIt = selectionProjection->createRandomConstAccessorNG(); while (rowsRemaining > 0) { qint32 dstX_ = dstX; qint32 srcX_ = srcX; qint32 columnsRemaining = srcWidth; qint32 numContiguousDstRows = dstIt->numContiguousRows(dstY_); qint32 numContiguousSrcRows = srcIt->numContiguousRows(srcY_); qint32 numContiguousSelRows = maskIt->numContiguousRows(dstY_); qint32 rows = qMin(numContiguousDstRows, numContiguousSrcRows); rows = qMin(rows, numContiguousSelRows); rows = qMin(rows, rowsRemaining); while (columnsRemaining > 0) { qint32 numContiguousDstColumns = dstIt->numContiguousColumns(dstX_); qint32 numContiguousSrcColumns = srcIt->numContiguousColumns(srcX_); qint32 numContiguousSelColumns = maskIt->numContiguousColumns(dstX_); qint32 columns = qMin(numContiguousDstColumns, numContiguousSrcColumns); columns = qMin(columns, numContiguousSelColumns); columns = qMin(columns, columnsRemaining); qint32 srcRowStride = srcIt->rowStride(srcX_, srcY_); srcIt->moveTo(srcX_, srcY_); qint32 dstRowStride = dstIt->rowStride(dstX_, dstY_); dstIt->moveTo(dstX_, dstY_); qint32 maskRowStride = maskIt->rowStride(dstX_, dstY_); maskIt->moveTo(dstX_, dstY_); d->paramInfo.dstRowStart = dstIt->rawData(); d->paramInfo.dstRowStride = dstRowStride; // if we don't use the oldRawData, we need to access the rawData of the source device. d->paramInfo.srcRowStart = useOldSrcData ? srcIt->oldRawData() : static_cast(srcIt.data())->rawData(); d->paramInfo.srcRowStride = srcRowStride; d->paramInfo.maskRowStart = static_cast(maskIt.data())->rawData(); d->paramInfo.maskRowStride = maskRowStride; d->paramInfo.rows = rows; d->paramInfo.cols = columns; d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); srcX_ += columns; dstX_ += columns; columnsRemaining -= columns; } srcY_ += rows; dstY_ += rows; rowsRemaining -= rows; } } else { while (rowsRemaining > 0) { qint32 dstX_ = dstX; qint32 srcX_ = srcX; qint32 columnsRemaining = srcWidth; qint32 numContiguousDstRows = dstIt->numContiguousRows(dstY_); qint32 numContiguousSrcRows = srcIt->numContiguousRows(srcY_); qint32 rows = qMin(numContiguousDstRows, numContiguousSrcRows); rows = qMin(rows, rowsRemaining); while (columnsRemaining > 0) { qint32 numContiguousDstColumns = dstIt->numContiguousColumns(dstX_); qint32 numContiguousSrcColumns = srcIt->numContiguousColumns(srcX_); qint32 columns = qMin(numContiguousDstColumns, numContiguousSrcColumns); columns = qMin(columns, columnsRemaining); qint32 srcRowStride = srcIt->rowStride(srcX_, srcY_); srcIt->moveTo(srcX_, srcY_); qint32 dstRowStride = dstIt->rowStride(dstX_, dstY_); dstIt->moveTo(dstX_, dstY_); d->paramInfo.dstRowStart = dstIt->rawData(); d->paramInfo.dstRowStride = dstRowStride; // if we don't use the oldRawData, we need to access the rawData of the source device. d->paramInfo.srcRowStart = useOldSrcData ? srcIt->oldRawData() : static_cast(srcIt.data())->rawData(); d->paramInfo.srcRowStride = srcRowStride; d->paramInfo.maskRowStart = 0; d->paramInfo.maskRowStride = 0; d->paramInfo.rows = rows; d->paramInfo.cols = columns; d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); srcX_ += columns; dstX_ += columns; columnsRemaining -= columns; } srcY_ += rows; dstY_ += rows; rowsRemaining -= rows; } } addDirtyRect(QRect(dstX, dstY, srcWidth, srcHeight)); } void KisPainter::bitBlt(qint32 dstX, qint32 dstY, const KisPaintDeviceSP srcDev, qint32 srcX, qint32 srcY, qint32 srcWidth, qint32 srcHeight) { bitBltImpl(dstX, dstY, srcDev, srcX, srcY, srcWidth, srcHeight); } void KisPainter::bitBlt(const QPoint & pos, const KisPaintDeviceSP srcDev, const QRect & srcRect) { bitBlt(pos.x(), pos.y(), srcDev, srcRect.x(), srcRect.y(), srcRect.width(), srcRect.height()); } void KisPainter::bitBltOldData(qint32 dstX, qint32 dstY, const KisPaintDeviceSP srcDev, qint32 srcX, qint32 srcY, qint32 srcWidth, qint32 srcHeight) { bitBltImpl(dstX, dstY, srcDev, srcX, srcY, srcWidth, srcHeight); } void KisPainter::bitBltOldData(const QPoint & pos, const KisPaintDeviceSP srcDev, const QRect & srcRect) { bitBltOldData(pos.x(), pos.y(), srcDev, srcRect.x(), srcRect.y(), srcRect.width(), srcRect.height()); } void KisPainter::fill(qint32 x, qint32 y, qint32 width, qint32 height, const KoColor& color) { /* This check for nonsense ought to be a Q_ASSERT. However, when paintops are just * initializing they perform some dummy passes with those parameters, and it must not crash */ if(width == 0 || height == 0 || d->device.isNull()) return; KoColor srcColor(color, d->device->compositionSourceColorSpace()); qint32 dstY = y; qint32 rowsRemaining = height; KisRandomAccessorSP dstIt = d->device->createRandomAccessorNG(); if(d->selection) { KisPaintDeviceSP selectionProjection(d->selection->projection()); KisRandomConstAccessorSP maskIt = selectionProjection->createRandomConstAccessorNG(); while(rowsRemaining > 0) { qint32 dstX = x; qint32 columnsRemaining = width; qint32 numContiguousDstRows = dstIt->numContiguousRows(dstY); qint32 numContiguousSelRows = maskIt->numContiguousRows(dstY); qint32 rows = qMin(numContiguousDstRows, numContiguousSelRows); rows = qMin(rows, rowsRemaining); while (columnsRemaining > 0) { qint32 numContiguousDstColumns = dstIt->numContiguousColumns(dstX); qint32 numContiguousSelColumns = maskIt->numContiguousColumns(dstX); qint32 columns = qMin(numContiguousDstColumns, numContiguousSelColumns); columns = qMin(columns, columnsRemaining); qint32 dstRowStride = dstIt->rowStride(dstX, dstY); dstIt->moveTo(dstX, dstY); qint32 maskRowStride = maskIt->rowStride(dstX, dstY); maskIt->moveTo(dstX, dstY); d->paramInfo.dstRowStart = dstIt->rawData(); d->paramInfo.dstRowStride = dstRowStride; d->paramInfo.srcRowStart = srcColor.data(); d->paramInfo.srcRowStride = 0; // srcRowStride is set to zero to use the compositeOp with only a single color pixel d->paramInfo.maskRowStart = maskIt->oldRawData(); d->paramInfo.maskRowStride = maskRowStride; d->paramInfo.rows = rows; d->paramInfo.cols = columns; d->colorSpace->bitBlt(srcColor.colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); dstX += columns; columnsRemaining -= columns; } dstY += rows; rowsRemaining -= rows; } } else { while(rowsRemaining > 0) { qint32 dstX = x; qint32 columnsRemaining = width; qint32 numContiguousDstRows = dstIt->numContiguousRows(dstY); qint32 rows = qMin(numContiguousDstRows, rowsRemaining); while(columnsRemaining > 0) { qint32 numContiguousDstColumns = dstIt->numContiguousColumns(dstX); qint32 columns = qMin(numContiguousDstColumns, columnsRemaining); qint32 dstRowStride = dstIt->rowStride(dstX, dstY); dstIt->moveTo(dstX, dstY); d->paramInfo.dstRowStart = dstIt->rawData(); d->paramInfo.dstRowStride = dstRowStride; d->paramInfo.srcRowStart = srcColor.data(); d->paramInfo.srcRowStride = 0; // srcRowStride is set to zero to use the compositeOp with only a single color pixel d->paramInfo.maskRowStart = 0; d->paramInfo.maskRowStride = 0; d->paramInfo.rows = rows; d->paramInfo.cols = columns; d->colorSpace->bitBlt(srcColor.colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); dstX += columns; columnsRemaining -= columns; } dstY += rows; rowsRemaining -= rows; } } addDirtyRect(QRect(x, y, width, height)); } void KisPainter::bltFixed(qint32 dstX, qint32 dstY, const KisFixedPaintDeviceSP srcDev, qint32 srcX, qint32 srcY, qint32 srcWidth, qint32 srcHeight) { /* This check for nonsense ought to be a Q_ASSERT. However, when paintops are just initializing they perform some dummy passes with those parameters, and it must not crash */ if (srcWidth == 0 || srcHeight == 0) return; if (srcDev.isNull()) return; if (d->device.isNull()) return; QRect srcRect = QRect(srcX, srcY, srcWidth, srcHeight); QRect srcBounds = srcDev->bounds(); /* Trying to read outside a KisFixedPaintDevice is inherently wrong and shouldn't be done, so crash if someone attempts to do this. Don't resize as it would obfuscate the mistake. */ KIS_SAFE_ASSERT_RECOVER_RETURN(srcBounds.contains(srcRect)); Q_UNUSED(srcRect); // only used in above assertion /* Create an intermediate byte array to hold information before it is written to the current paint device (aka: d->device) */ quint8* dstBytes = 0; try { dstBytes = new quint8[srcWidth * srcHeight * d->device->pixelSize()]; } catch (const std::bad_alloc&) { warnKrita << "KisPainter::bltFixed std::bad_alloc for " << srcWidth << " * " << srcHeight << " * " << d->device->pixelSize() << "total bytes"; return; } d->device->readBytes(dstBytes, dstX, dstY, srcWidth, srcHeight); const quint8 *srcRowStart = srcDev->data() + (srcBounds.width() * (srcY - srcBounds.top()) + (srcX - srcBounds.left())) * srcDev->pixelSize(); d->paramInfo.dstRowStart = dstBytes; d->paramInfo.dstRowStride = srcWidth * d->device->pixelSize(); d->paramInfo.srcRowStart = srcRowStart; d->paramInfo.srcRowStride = srcBounds.width() * srcDev->pixelSize(); d->paramInfo.maskRowStart = 0; d->paramInfo.maskRowStride = 0; d->paramInfo.rows = srcHeight; d->paramInfo.cols = srcWidth; if (d->selection) { /* d->selection is a KisPaintDevice, so first a readBytes is performed to get the area of interest... */ KisPaintDeviceSP selectionProjection(d->selection->projection()); quint8* selBytes = 0; try { selBytes = new quint8[srcWidth * srcHeight * selectionProjection->pixelSize()]; } catch (const std::bad_alloc&) { delete[] dstBytes; return; } selectionProjection->readBytes(selBytes, dstX, dstY, srcWidth, srcHeight); d->paramInfo.maskRowStart = selBytes; d->paramInfo.maskRowStride = srcWidth * selectionProjection->pixelSize(); } // ...and then blit. d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); d->device->writeBytes(dstBytes, dstX, dstY, srcWidth, srcHeight); delete[] d->paramInfo.maskRowStart; delete[] dstBytes; addDirtyRect(QRect(dstX, dstY, srcWidth, srcHeight)); } void KisPainter::bltFixed(const QPoint & pos, const KisFixedPaintDeviceSP srcDev, const QRect & srcRect) { bltFixed(pos.x(), pos.y(), srcDev, srcRect.x(), srcRect.y(), srcRect.width(), srcRect.height()); } void KisPainter::bltFixedWithFixedSelection(qint32 dstX, qint32 dstY, const KisFixedPaintDeviceSP srcDev, const KisFixedPaintDeviceSP selection, qint32 selX, qint32 selY, qint32 srcX, qint32 srcY, quint32 srcWidth, quint32 srcHeight) { // TODO: get selX and selY working as intended /* This check for nonsense ought to be a Q_ASSERT. However, when paintops are just initializing they perform some dummy passes with those parameters, and it must not crash */ if (srcWidth == 0 || srcHeight == 0) return; if (srcDev.isNull()) return; if (d->device.isNull()) return; // Check that selection has an alpha colorspace, crash if false Q_ASSERT(selection->colorSpace() == KoColorSpaceRegistry::instance()->alpha8()); QRect srcRect = QRect(srcX, srcY, srcWidth, srcHeight); QRect selRect = QRect(selX, selY, srcWidth, srcHeight); QRect srcBounds = srcDev->bounds(); QRect selBounds = selection->bounds(); /* Trying to read outside a KisFixedPaintDevice is inherently wrong and shouldn't be done, so crash if someone attempts to do this. Don't resize as it would obfuscate the mistake. */ Q_ASSERT(srcBounds.contains(srcRect)); Q_UNUSED(srcRect); // only used in above assertion Q_ASSERT(selBounds.contains(selRect)); Q_UNUSED(selRect); // only used in above assertion /* Create an intermediate byte array to hold information before it is written to the current paint device (aka: d->device) */ quint8* dstBytes = 0; try { dstBytes = new quint8[srcWidth * srcHeight * d->device->pixelSize()]; } catch (const std::bad_alloc&) { warnKrita << "KisPainter::bltFixedWithFixedSelection std::bad_alloc for " << srcWidth << " * " << srcHeight << " * " << d->device->pixelSize() << "total bytes"; return; } d->device->readBytes(dstBytes, dstX, dstY, srcWidth, srcHeight); const quint8 *srcRowStart = srcDev->data() + (srcBounds.width() * (srcY - srcBounds.top()) + (srcX - srcBounds.left())) * srcDev->pixelSize(); const quint8 *selRowStart = selection->data() + (selBounds.width() * (selY - selBounds.top()) + (selX - selBounds.left())) * selection->pixelSize(); if (!d->selection) { /* As there's nothing selected, blit to dstBytes (intermediary bit array), ignoring d->selection (the user selection)*/ d->paramInfo.dstRowStart = dstBytes; d->paramInfo.dstRowStride = srcWidth * d->device->pixelSize(); d->paramInfo.srcRowStart = srcRowStart; d->paramInfo.srcRowStride = srcBounds.width() * srcDev->pixelSize(); d->paramInfo.maskRowStart = selRowStart; d->paramInfo.maskRowStride = selBounds.width() * selection->pixelSize(); d->paramInfo.rows = srcHeight; d->paramInfo.cols = srcWidth; d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); } else { /* Read the user selection (d->selection) bytes into an array, ready to merge in the next block*/ quint32 totalBytes = srcWidth * srcHeight * selection->pixelSize(); quint8 * mergedSelectionBytes = 0; try { mergedSelectionBytes = new quint8[ totalBytes ]; } catch (const std::bad_alloc&) { warnKrita << "KisPainter::bltFixedWithFixedSelection std::bad_alloc for " << totalBytes << "total bytes"; delete[] dstBytes; return; } d->selection->projection()->readBytes(mergedSelectionBytes, dstX, dstY, srcWidth, srcHeight); // Merge selections here by multiplying them - compositeOp(COMPOSITE_MULT) d->paramInfo.dstRowStart = mergedSelectionBytes; d->paramInfo.dstRowStride = srcWidth * selection->pixelSize(); d->paramInfo.srcRowStart = selRowStart; d->paramInfo.srcRowStride = selBounds.width() * selection->pixelSize(); d->paramInfo.maskRowStart = 0; d->paramInfo.maskRowStride = 0; d->paramInfo.rows = srcHeight; d->paramInfo.cols = srcWidth; KoColorSpaceRegistry::instance()->alpha8()->compositeOp(COMPOSITE_MULT)->composite(d->paramInfo); // Blit to dstBytes (intermediary bit array) d->paramInfo.dstRowStart = dstBytes; d->paramInfo.dstRowStride = srcWidth * d->device->pixelSize(); d->paramInfo.srcRowStart = srcRowStart; d->paramInfo.srcRowStride = srcBounds.width() * srcDev->pixelSize(); d->paramInfo.maskRowStart = mergedSelectionBytes; d->paramInfo.maskRowStride = srcWidth * selection->pixelSize(); d->colorSpace->bitBlt(srcDev->colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); delete[] mergedSelectionBytes; } d->device->writeBytes(dstBytes, dstX, dstY, srcWidth, srcHeight); delete[] dstBytes; addDirtyRect(QRect(dstX, dstY, srcWidth, srcHeight)); } void KisPainter::bltFixedWithFixedSelection(qint32 dstX, qint32 dstY, const KisFixedPaintDeviceSP srcDev, const KisFixedPaintDeviceSP selection, quint32 srcWidth, quint32 srcHeight) { bltFixedWithFixedSelection(dstX, dstY, srcDev, selection, 0, 0, 0, 0, srcWidth, srcHeight); } void KisPainter::paintLine(const KisPaintInformation &pi1, const KisPaintInformation &pi2, KisDistanceInformation *currentDistance) { if (d->device && d->paintOp && d->paintOp->canPaint()) { d->paintOp->paintLine(pi1, pi2, currentDistance); } } void KisPainter::paintPolyline(const vQPointF &points, int index, int numPoints) { if (d->fillStyle != FillStyleNone) { fillPolygon(points, d->fillStyle); } if (d->strokeStyle == StrokeStyleNone) return; if (index >= points.count()) return; if (numPoints < 0) numPoints = points.count(); if (index + numPoints > points.count()) numPoints = points.count() - index; if (numPoints > 1) { KisDistanceInformation saveDist(points[0], KisAlgebra2D::directionBetweenPoints(points[0], points[1], 0.0)); for (int i = index; i < index + numPoints - 1; i++) { paintLine(points [i], points [i + 1], &saveDist); } } } static void getBezierCurvePoints(const KisVector2D &pos1, const KisVector2D &control1, const KisVector2D &control2, const KisVector2D &pos2, vQPointF& points) { LineEquation line = LineEquation::Through(pos1, pos2); qreal d1 = line.absDistance(control1); qreal d2 = line.absDistance(control2); if (d1 < BEZIER_FLATNESS_THRESHOLD && d2 < BEZIER_FLATNESS_THRESHOLD) { points.push_back(toQPointF(pos1)); } else { // Midpoint subdivision. See Foley & Van Dam Computer Graphics P.508 KisVector2D l2 = (pos1 + control1) / 2; KisVector2D h = (control1 + control2) / 2; KisVector2D l3 = (l2 + h) / 2; KisVector2D r3 = (control2 + pos2) / 2; KisVector2D r2 = (h + r3) / 2; KisVector2D l4 = (l3 + r2) / 2; getBezierCurvePoints(pos1, l2, l3, l4, points); getBezierCurvePoints(l4, r2, r3, pos2, points); } } void KisPainter::getBezierCurvePoints(const QPointF &pos1, const QPointF &control1, const QPointF &control2, const QPointF &pos2, vQPointF& points) const { ::getBezierCurvePoints(toKisVector2D(pos1), toKisVector2D(control1), toKisVector2D(control2), toKisVector2D(pos2), points); } void KisPainter::paintBezierCurve(const KisPaintInformation &pi1, const QPointF &control1, const QPointF &control2, const KisPaintInformation &pi2, KisDistanceInformation *currentDistance) { if (d->paintOp && d->paintOp->canPaint()) { d->paintOp->paintBezierCurve(pi1, control1, control2, pi2, currentDistance); } } void KisPainter::paintRect(const QRectF &rect) { QRectF normalizedRect = rect.normalized(); vQPointF points; points.push_back(normalizedRect.topLeft()); points.push_back(normalizedRect.bottomLeft()); points.push_back(normalizedRect.bottomRight()); points.push_back(normalizedRect.topRight()); paintPolygon(points); } void KisPainter::paintRect(const qreal x, const qreal y, const qreal w, const qreal h) { paintRect(QRectF(x, y, w, h)); } void KisPainter::paintEllipse(const QRectF &rect) { QRectF r = rect.normalized(); // normalize before checking as negative width and height are empty too if (r.isEmpty()) return; // See http://www.whizkidtech.redprince.net/bezier/circle/ for explanation. // kappa = (4/3*(sqrt(2)-1)) const qreal kappa = 0.5522847498; const qreal lx = (r.width() / 2) * kappa; const qreal ly = (r.height() / 2) * kappa; QPointF center = r.center(); QPointF p0(r.left(), center.y()); QPointF p1(r.left(), center.y() - ly); QPointF p2(center.x() - lx, r.top()); QPointF p3(center.x(), r.top()); vQPointF points; getBezierCurvePoints(p0, p1, p2, p3, points); QPointF p4(center.x() + lx, r.top()); QPointF p5(r.right(), center.y() - ly); QPointF p6(r.right(), center.y()); getBezierCurvePoints(p3, p4, p5, p6, points); QPointF p7(r.right(), center.y() + ly); QPointF p8(center.x() + lx, r.bottom()); QPointF p9(center.x(), r.bottom()); getBezierCurvePoints(p6, p7, p8, p9, points); QPointF p10(center.x() - lx, r.bottom()); QPointF p11(r.left(), center.y() + ly); getBezierCurvePoints(p9, p10, p11, p0, points); paintPolygon(points); } void KisPainter::paintEllipse(const qreal x, const qreal y, const qreal w, const qreal h) { paintEllipse(QRectF(x, y, w, h)); } void KisPainter::paintAt(const KisPaintInformation& pi, KisDistanceInformation *savedDist) { if (d->paintOp && d->paintOp->canPaint()) { d->paintOp->paintAt(pi, savedDist); } } void KisPainter::fillPolygon(const vQPointF& points, FillStyle fillStyle) { if (points.count() < 3) { return; } if (fillStyle == FillStyleNone) { return; } QPainterPath polygonPath; polygonPath.moveTo(points.at(0)); for (int pointIndex = 1; pointIndex < points.count(); pointIndex++) { polygonPath.lineTo(points.at(pointIndex)); } polygonPath.closeSubpath(); d->fillStyle = fillStyle; fillPainterPath(polygonPath); } void KisPainter::paintPolygon(const vQPointF& points) { if (d->fillStyle != FillStyleNone) { fillPolygon(points, d->fillStyle); } if (d->strokeStyle != StrokeStyleNone) { if (points.count() > 1) { KisDistanceInformation distance(points[0], KisAlgebra2D::directionBetweenPoints(points[0], points[1], 0.0)); for (int i = 0; i < points.count() - 1; i++) { paintLine(KisPaintInformation(points[i]), KisPaintInformation(points[i + 1]), &distance); } paintLine(points[points.count() - 1], points[0], &distance); } } } void KisPainter::paintPainterPath(const QPainterPath& path) { if (d->fillStyle != FillStyleNone) { fillPainterPath(path); } if (d->strokeStyle == StrokeStyleNone) return; QPointF lastPoint, nextPoint; int elementCount = path.elementCount(); KisDistanceInformation saveDist; for (int i = 0; i < elementCount; i++) { QPainterPath::Element element = path.elementAt(i); switch (element.type) { case QPainterPath::MoveToElement: lastPoint = QPointF(element.x, element.y); break; case QPainterPath::LineToElement: nextPoint = QPointF(element.x, element.y); paintLine(KisPaintInformation(lastPoint), KisPaintInformation(nextPoint), &saveDist); lastPoint = nextPoint; break; case QPainterPath::CurveToElement: nextPoint = QPointF(path.elementAt(i + 2).x, path.elementAt(i + 2).y); paintBezierCurve(KisPaintInformation(lastPoint), QPointF(path.elementAt(i).x, path.elementAt(i).y), QPointF(path.elementAt(i + 1).x, path.elementAt(i + 1).y), KisPaintInformation(nextPoint), &saveDist); lastPoint = nextPoint; break; default: continue; } } } void KisPainter::fillPainterPath(const QPainterPath& path) { fillPainterPath(path, QRect()); } void KisPainter::fillPainterPath(const QPainterPath& path, const QRect &requestedRect) { if (d->mirrorHorizontally || d->mirrorVertically) { KisLodTransform lod(d->device); QPointF effectiveAxesCenter = lod.map(d->axesCenter); QTransform C1 = QTransform::fromTranslate(-effectiveAxesCenter.x(), -effectiveAxesCenter.y()); QTransform C2 = QTransform::fromTranslate(effectiveAxesCenter.x(), effectiveAxesCenter.y()); QTransform t; QPainterPath newPath; QRect newRect; if (d->mirrorHorizontally) { t = C1 * QTransform::fromScale(-1,1) * C2; newPath = t.map(path); newRect = t.mapRect(requestedRect); d->fillPainterPathImpl(newPath, newRect); } if (d->mirrorVertically) { t = C1 * QTransform::fromScale(1,-1) * C2; newPath = t.map(path); newRect = t.mapRect(requestedRect); d->fillPainterPathImpl(newPath, newRect); } if (d->mirrorHorizontally && d->mirrorVertically) { t = C1 * QTransform::fromScale(-1,-1) * C2; newPath = t.map(path); newRect = t.mapRect(requestedRect); d->fillPainterPathImpl(newPath, newRect); } } d->fillPainterPathImpl(path, requestedRect); } void KisPainter::Private::fillPainterPathImpl(const QPainterPath& path, const QRect &requestedRect) { if (fillStyle == FillStyleNone) { return; } // Fill the polygon bounding rectangle with the required contents then we'll // create a mask for the actual polygon coverage. if (!fillPainter) { polygon = device->createCompositionSourceDevice(); fillPainter = new KisFillPainter(polygon); } else { polygon->clear(); } Q_CHECK_PTR(polygon); QRectF boundingRect = path.boundingRect(); QRect fillRect = boundingRect.toAlignedRect(); // Expand the rectangle to allow for anti-aliasing. fillRect.adjust(-1, -1, 1, 1); if (requestedRect.isValid()) { fillRect &= requestedRect; } switch (fillStyle) { default: Q_FALLTHROUGH(); case FillStyleForegroundColor: fillPainter->fillRect(fillRect, q->paintColor(), OPACITY_OPAQUE_U8); break; case FillStyleBackgroundColor: fillPainter->fillRect(fillRect, q->backgroundColor(), OPACITY_OPAQUE_U8); break; case FillStylePattern: if (pattern) { // if the user hasn't got any patterns installed, we shouldn't crash... - fillPainter->fillRect(fillRect, pattern); + fillPainter->fillRect(fillRect, pattern, QTransform()); } break; case FillStyleGenerator: if (generator) { // if the user hasn't got any generators, we shouldn't crash... fillPainter->fillRect(fillRect.x(), fillRect.y(), fillRect.width(), fillRect.height(), q->generator()); } break; } if (polygonMaskImage.isNull() || (maskPainter == 0)) { polygonMaskImage = QImage(maskImageWidth, maskImageHeight, QImage::Format_ARGB32_Premultiplied); maskPainter = new QPainter(&polygonMaskImage); maskPainter->setRenderHint(QPainter::Antialiasing, q->antiAliasPolygonFill()); } // Break the mask up into chunks so we don't have to allocate a potentially very large QImage. const QColor black(Qt::black); const QBrush brush(Qt::white); for (qint32 x = fillRect.x(); x < fillRect.x() + fillRect.width(); x += maskImageWidth) { for (qint32 y = fillRect.y(); y < fillRect.y() + fillRect.height(); y += maskImageHeight) { polygonMaskImage.fill(black.rgb()); maskPainter->translate(-x, -y); maskPainter->fillPath(path, brush); maskPainter->translate(x, y); qint32 rectWidth = qMin(fillRect.x() + fillRect.width() - x, maskImageWidth); qint32 rectHeight = qMin(fillRect.y() + fillRect.height() - y, maskImageHeight); KisHLineIteratorSP lineIt = polygon->createHLineIteratorNG(x, y, rectWidth); quint8 tmp; for (int row = y; row < y + rectHeight; row++) { QRgb* line = reinterpret_cast(polygonMaskImage.scanLine(row - y)); do { tmp = qRed(line[lineIt->x() - x]); polygon->colorSpace()->applyAlphaU8Mask(lineIt->rawData(), &tmp, 1); } while (lineIt->nextPixel()); lineIt->nextRow(); } } } QRect bltRect = !requestedRect.isEmpty() ? requestedRect : fillRect; q->bitBlt(bltRect.x(), bltRect.y(), polygon, bltRect.x(), bltRect.y(), bltRect.width(), bltRect.height()); } void KisPainter::drawPainterPath(const QPainterPath& path, const QPen& pen) { drawPainterPath(path, pen, QRect()); } void KisPainter::drawPainterPath(const QPainterPath& path, const QPen& _pen, const QRect &requestedRect) { QPen pen(_pen); pen.setColor(Qt::white); if (!d->fillPainter) { d->polygon = d->device->createCompositionSourceDevice(); d->fillPainter = new KisFillPainter(d->polygon); } else { d->polygon->clear(); } Q_CHECK_PTR(d->polygon); QRectF boundingRect = path.boundingRect(); QRect fillRect = boundingRect.toAlignedRect(); // take width of the pen into account int penWidth = qRound(pen.widthF()); fillRect.adjust(-penWidth, -penWidth, penWidth, penWidth); // Expand the rectangle to allow for anti-aliasing. fillRect.adjust(-1, -1, 1, 1); if (!requestedRect.isNull()) { fillRect &= requestedRect; } d->fillPainter->fillRect(fillRect, paintColor(), OPACITY_OPAQUE_U8); if (d->polygonMaskImage.isNull() || (d->maskPainter == 0)) { d->polygonMaskImage = QImage(d->maskImageWidth, d->maskImageHeight, QImage::Format_ARGB32_Premultiplied); d->maskPainter = new QPainter(&d->polygonMaskImage); d->maskPainter->setRenderHint(QPainter::Antialiasing, antiAliasPolygonFill()); } // Break the mask up into chunks so we don't have to allocate a potentially very large QImage. const QColor black(Qt::black); QPen oldPen = d->maskPainter->pen(); d->maskPainter->setPen(pen); for (qint32 x = fillRect.x(); x < fillRect.x() + fillRect.width(); x += d->maskImageWidth) { for (qint32 y = fillRect.y(); y < fillRect.y() + fillRect.height(); y += d->maskImageHeight) { d->polygonMaskImage.fill(black.rgb()); d->maskPainter->translate(-x, -y); d->maskPainter->drawPath(path); d->maskPainter->translate(x, y); qint32 rectWidth = qMin(fillRect.x() + fillRect.width() - x, d->maskImageWidth); qint32 rectHeight = qMin(fillRect.y() + fillRect.height() - y, d->maskImageHeight); KisHLineIteratorSP lineIt = d->polygon->createHLineIteratorNG(x, y, rectWidth); quint8 tmp; for (int row = y; row < y + rectHeight; row++) { QRgb* line = reinterpret_cast(d->polygonMaskImage.scanLine(row - y)); do { tmp = qRed(line[lineIt->x() - x]); d->polygon->colorSpace()->applyAlphaU8Mask(lineIt->rawData(), &tmp, 1); } while (lineIt->nextPixel()); lineIt->nextRow(); } } } d->maskPainter->setPen(oldPen); QRect r = d->polygon->extent(); bitBlt(r.x(), r.y(), d->polygon, r.x(), r.y(), r.width(), r.height()); } inline void KisPainter::compositeOnePixel(quint8 *dst, const KoColor &color) { d->paramInfo.dstRowStart = dst; d->paramInfo.dstRowStride = 0; d->paramInfo.srcRowStart = color.data(); d->paramInfo.srcRowStride = 0; d->paramInfo.maskRowStart = 0; d->paramInfo.maskRowStride = 0; d->paramInfo.rows = 1; d->paramInfo.cols = 1; d->colorSpace->bitBlt(color.colorSpace(), d->paramInfo, d->compositeOp, d->renderingIntent, d->conversionFlags); } /**/ void KisPainter::drawLine(const QPointF& start, const QPointF& end, qreal width, bool antialias){ int x1 = qFloor(start.x()); int y1 = qFloor(start.y()); int x2 = qFloor(end.x()); int y2 = qFloor(end.y()); if ((x2 == x1 ) && (y2 == y1)) return; int dstX = x2-x1; int dstY = y2-y1; qreal uniC = dstX*y1 - dstY*x1; qreal projectionDenominator = 1.0 / (pow((double)dstX, 2) + pow((double)dstY, 2)); qreal subPixel; if (qAbs(dstX) > qAbs(dstY)){ subPixel = start.x() - x1; }else{ subPixel = start.y() - y1; } qreal halfWidth = width * 0.5 + subPixel; int W_ = qRound(halfWidth) + 1; // save the state int X1_ = x1; int Y1_ = y1; int X2_ = x2; int Y2_ = y2; if (x2device->createRandomAccessorNG(); KisRandomConstAccessorSP selectionAccessor; if (d->selection) { selectionAccessor = d->selection->projection()->createRandomConstAccessorNG(); } for (int y = y1-W_; y < y2+W_ ; y++){ for (int x = x1-W_; x < x2+W_; x++){ projection = ( (x-X1_)* dstX + (y-Y1_)*dstY ) * projectionDenominator; scanX = X1_ + projection * dstX; scanY = Y1_ + projection * dstY; if (((scanX < x1) || (scanX > x2)) || ((scanY < y1) || (scanY > y2))) { AA_ = qMin( sqrt( pow((double)x - X1_, 2) + pow((double)y - Y1_, 2) ), sqrt( pow((double)x - X2_, 2) + pow((double)y - Y2_, 2) )); }else{ AA_ = qAbs(dstY*x - dstX*y + uniC) * denominator; } if (AA_>halfWidth) { continue; } accessor->moveTo(x, y); if (selectionAccessor) selectionAccessor->moveTo(x,y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { KoColor mycolor = d->paintColor; if (antialias && AA_ > halfWidth-1.0) { mycolor.colorSpace()->multiplyAlpha(mycolor.data(), 1.0 - (AA_-(halfWidth-1.0)), 1); } compositeOnePixel(accessor->rawData(), mycolor); } } } } /**/ void KisPainter::drawLine(const QPointF & start, const QPointF & end) { drawThickLine(start, end, 1, 1); } void KisPainter::drawDDALine(const QPointF & start, const QPointF & end) { int x = qFloor(start.x()); int y = qFloor(start.y()); int x2 = qFloor(end.x()); int y2 = qFloor(end.y()); // Width and height of the line int xd = x2 - x; int yd = y2 - y; float m = 0; bool lockAxis = true; if (xd == 0) { m = 2.0; } else if ( yd != 0) { lockAxis = false; m = (float)yd / (float)xd; } float fx = x; float fy = y; int inc; KisRandomAccessorSP accessor = d->device->createRandomAccessorNG(); KisRandomConstAccessorSP selectionAccessor; if (d->selection) { selectionAccessor = d->selection->projection()->createRandomConstAccessorNG(); } accessor->moveTo(x, y); if (selectionAccessor) selectionAccessor->moveTo(x,y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), d->paintColor); } if (fabs(m) > 1.0f) { inc = (yd > 0) ? 1 : -1; m = (lockAxis)? 0 : 1.0f / m; m *= inc; while (y != y2) { y = y + inc; fx = fx + m; x = qRound(fx); accessor->moveTo(x, y); if (selectionAccessor) selectionAccessor->moveTo(x, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), d->paintColor); } } } else { inc = (xd > 0) ? 1 : -1; m *= inc; while (x != x2) { x = x + inc; fy = fy + m; y = qRound(fy); accessor->moveTo(x, y); if (selectionAccessor) selectionAccessor->moveTo(x, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), d->paintColor); } } } } void KisPainter::drawWobblyLine(const QPointF & start, const QPointF & end) { KoColor mycolor(d->paintColor); int x1 = qFloor(start.x()); int y1 = qFloor(start.y()); int x2 = qFloor(end.x()); int y2 = qFloor(end.y()); KisRandomAccessorSP accessor = d->device->createRandomAccessorNG(); KisRandomConstAccessorSP selectionAccessor; if (d->selection) { selectionAccessor = d->selection->projection()->createRandomConstAccessorNG(); } // Width and height of the line int xd = (x2 - x1); int yd = (y2 - y1); int x; int y; float fx = (x = x1); float fy = (y = y1); float m = (float)yd / (float)xd; int inc; if (fabs(m) > 1) { inc = (yd > 0) ? 1 : -1; m = 1.0f / m; m *= inc; while (y != y2) { fx = fx + m; y = y + inc; x = qRound(fx); float br1 = qFloor(fx + 1) - fx; float br2 = fx - qFloor(fx); accessor->moveTo(x, y); if (selectionAccessor) selectionAccessor->moveTo(x, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { mycolor.setOpacity((quint8)(255*br1)); compositeOnePixel(accessor->rawData(), mycolor); } accessor->moveTo(x + 1, y); if (selectionAccessor) selectionAccessor->moveTo(x + 1, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { mycolor.setOpacity((quint8)(255*br2)); compositeOnePixel(accessor->rawData(), mycolor); } } } else { inc = (xd > 0) ? 1 : -1; m *= inc; while (x != x2) { fy = fy + m; x = x + inc; y = qRound(fy); float br1 = qFloor(fy + 1) - fy; float br2 = fy - qFloor(fy); accessor->moveTo(x, y); if (selectionAccessor) selectionAccessor->moveTo(x, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { mycolor.setOpacity((quint8)(255*br1)); compositeOnePixel(accessor->rawData(), mycolor); } accessor->moveTo(x, y + 1); if (selectionAccessor) selectionAccessor->moveTo(x, y + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { mycolor.setOpacity((quint8)(255*br2)); compositeOnePixel(accessor->rawData(), mycolor); } } } } void KisPainter::drawWuLine(const QPointF & start, const QPointF & end) { KoColor lineColor(d->paintColor); int x1 = qFloor(start.x()); int y1 = qFloor(start.y()); int x2 = qFloor(end.x()); int y2 = qFloor(end.y()); KisRandomAccessorSP accessor = d->device->createRandomAccessorNG(); KisRandomConstAccessorSP selectionAccessor; if (d->selection) { selectionAccessor = d->selection->projection()->createRandomConstAccessorNG(); } float grad, xd, yd; float xgap, ygap, xend, yend, yf, xf; float brightness1, brightness2; int ix1, ix2, iy1, iy2; quint8 c1, c2; // gradient of line xd = (x2 - x1); yd = (y2 - y1); if (yd == 0) { /* Horizontal line */ int incr = (x1 < x2) ? 1 : -1; ix1 = x1; ix2 = x2; iy1 = y1; while (ix1 != ix2) { ix1 = ix1 + incr; accessor->moveTo(ix1, iy1); if (selectionAccessor) selectionAccessor->moveTo(ix1, iy1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), lineColor); } } return; } if (xd == 0) { /* Vertical line */ int incr = (y1 < y2) ? 1 : -1; iy1 = y1; iy2 = y2; ix1 = x1; while (iy1 != iy2) { iy1 = iy1 + incr; accessor->moveTo(ix1, iy1); if (selectionAccessor) selectionAccessor->moveTo(ix1, iy1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), lineColor); } } return; } if (fabs(xd) > fabs(yd)) { // horizontal line // line have to be paint from left to right if (x1 > x2) { std::swap(x1, x2); std::swap(y1, y2); xd = (x2 - x1); yd = (y2 - y1); } grad = yd / xd; // nearest X,Y integer coordinates xend = x1; yend = y1 + grad * (xend - x1); xgap = invertFrac(x1 + 0.5f); ix1 = x1; iy1 = qFloor(yend); // calc the intensity of the other end point pixel pair. brightness1 = invertFrac(yend) * xgap; brightness2 = frac(yend) * xgap; c1 = (int)(brightness1 * OPACITY_OPAQUE_U8); c2 = (int)(brightness2 * OPACITY_OPAQUE_U8); accessor->moveTo(ix1, iy1); if (selectionAccessor) selectionAccessor->moveTo(ix1, iy1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c1); compositeOnePixel(accessor->rawData(), lineColor); } accessor->moveTo(ix1, iy1 + 1); if (selectionAccessor) selectionAccessor->moveTo(ix1, iy1 + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c2); compositeOnePixel(accessor->rawData(), lineColor); } // calc first Y-intersection for main loop yf = yend + grad; xend = x2; yend = y2 + grad * (xend - x2); xgap = invertFrac(x2 - 0.5f); ix2 = x2; iy2 = qFloor(yend); brightness1 = invertFrac(yend) * xgap; brightness2 = frac(yend) * xgap; c1 = (int)(brightness1 * OPACITY_OPAQUE_U8); c2 = (int)(brightness2 * OPACITY_OPAQUE_U8); accessor->moveTo(ix2, iy2); if (selectionAccessor) selectionAccessor->moveTo(ix2, iy2); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c1); compositeOnePixel(accessor->rawData(), lineColor); } accessor->moveTo(ix2, iy2 + 1); if (selectionAccessor) selectionAccessor->moveTo(ix2, iy2 + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c2); compositeOnePixel(accessor->rawData(), lineColor); } // main loop for (int x = ix1 + 1; x <= ix2 - 1; x++) { brightness1 = invertFrac(yf); brightness2 = frac(yf); c1 = (int)(brightness1 * OPACITY_OPAQUE_U8); c2 = (int)(brightness2 * OPACITY_OPAQUE_U8); accessor->moveTo(x, qFloor(yf)); if (selectionAccessor) selectionAccessor->moveTo(x, qFloor(yf)); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c1); compositeOnePixel(accessor->rawData(), lineColor); } accessor->moveTo(x, qFloor(yf) + 1); if (selectionAccessor) selectionAccessor->moveTo(x, qFloor(yf) + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c2); compositeOnePixel(accessor->rawData(), lineColor); } yf = yf + grad; } } else { //vertical // line have to be painted from left to right if (y1 > y2) { std::swap(x1, x2); std::swap(y1, y2); xd = (x2 - x1); yd = (y2 - y1); } grad = xd / yd; // nearest X,Y integer coordinates yend = y1; xend = x1 + grad * (yend - y1); ygap = y1; ix1 = qFloor(xend); iy1 = y1; // calc the intensity of the other end point pixel pair. brightness1 = invertFrac(xend) * ygap; brightness2 = frac(xend) * ygap; c1 = (int)(brightness1 * OPACITY_OPAQUE_U8); c2 = (int)(brightness2 * OPACITY_OPAQUE_U8); accessor->moveTo(ix1, iy1); if (selectionAccessor) selectionAccessor->moveTo(ix1, iy1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c1); compositeOnePixel(accessor->rawData(), lineColor); } accessor->moveTo(x1 + 1, y1); if (selectionAccessor) selectionAccessor->moveTo(x1 + 1, y1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c2); compositeOnePixel(accessor->rawData(), lineColor); } // calc first Y-intersection for main loop xf = xend + grad; yend = y2; xend = x2 + grad * (yend - y2); ygap = invertFrac(y2 - 0.5f); ix2 = qFloor(xend); iy2 = y2; brightness1 = invertFrac(xend) * ygap; brightness2 = frac(xend) * ygap; c1 = (int)(brightness1 * OPACITY_OPAQUE_U8); c2 = (int)(brightness2 * OPACITY_OPAQUE_U8); accessor->moveTo(ix2, iy2); if (selectionAccessor) selectionAccessor->moveTo(ix2, iy2); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c1); compositeOnePixel(accessor->rawData(), lineColor); } accessor->moveTo(ix2 + 1, iy2); if (selectionAccessor) selectionAccessor->moveTo(ix2 + 1, iy2); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c2); compositeOnePixel(accessor->rawData(), lineColor); } // main loop for (int y = iy1 + 1; y <= iy2 - 1; y++) { brightness1 = invertFrac(xf); brightness2 = frac(xf); c1 = (int)(brightness1 * OPACITY_OPAQUE_U8); c2 = (int)(brightness2 * OPACITY_OPAQUE_U8); accessor->moveTo(qFloor(xf), y); if (selectionAccessor) selectionAccessor->moveTo(qFloor(xf), y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c1); compositeOnePixel(accessor->rawData(), lineColor); } accessor->moveTo(qFloor(xf) + 1, y); if (selectionAccessor) selectionAccessor->moveTo(qFloor(xf) + 1, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { lineColor.setOpacity(c2); compositeOnePixel(accessor->rawData(), lineColor); } xf = xf + grad; } }//end-of-else } void KisPainter::drawThickLine(const QPointF & start, const QPointF & end, int startWidth, int endWidth) { KisRandomAccessorSP accessor = d->device->createRandomAccessorNG(); KisRandomConstAccessorSP selectionAccessor; if (d->selection) { selectionAccessor = d->selection->projection()->createRandomConstAccessorNG(); } const KoColorSpace *cs = d->device->colorSpace(); KoColor c1(d->paintColor); KoColor c2(d->paintColor); KoColor c3(d->paintColor); KoColor col1(c1); KoColor col2(c1); float grada, gradb, dxa, dxb, dya, dyb, fraca, fracb, xfa, yfa, xfb, yfb, b1a, b2a, b1b, b2b, dstX, dstY; int x, y, ix1, ix2, iy1, iy2; int x0a, y0a, x1a, y1a, x0b, y0b, x1b, y1b; int tp0, tn0, tp1, tn1; int horizontal = 0; float opacity = 1.0; tp0 = startWidth / 2; tn0 = startWidth / 2; if (startWidth % 2 == 0) // even width startWidth tn0--; tp1 = endWidth / 2; tn1 = endWidth / 2; if (endWidth % 2 == 0) // even width endWidth tn1--; int x0 = qRound(start.x()); int y0 = qRound(start.y()); int x1 = qRound(end.x()); int y1 = qRound(end.y()); dstX = x1 - x0; // run of general line dstY = y1 - y0; // rise of general line if (dstY < 0) dstY = -dstY; if (dstX < 0) dstX = -dstX; if (dstX > dstY) { // horizontalish horizontal = 1; x0a = x0; y0a = y0 - tn0; x0b = x0; y0b = y0 + tp0; x1a = x1; y1a = y1 - tn1; x1b = x1; y1b = y1 + tp1; } else { x0a = x0 - tn0; y0a = y0; x0b = x0 + tp0; y0b = y0; x1a = x1 - tn1; y1a = y1; x1b = x1 + tp1; y1b = y1; } if (horizontal) { // draw endpoints for (int i = y0a; i <= y0b; i++) { accessor->moveTo(x0, i); if (selectionAccessor) selectionAccessor->moveTo(x0, i); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c1); } } for (int i = y1a; i <= y1b; i++) { accessor->moveTo(x1, i); if (selectionAccessor) selectionAccessor->moveTo(x1, i); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c1); } } } else { for (int i = x0a; i <= x0b; i++) { accessor->moveTo(i, y0); if (selectionAccessor) selectionAccessor->moveTo(i, y0); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c1); } } for (int i = x1a; i <= x1b; i++) { accessor->moveTo(i, y1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c1); } } } //antialias endpoints if (x1 != x0 && y1 != y0) { if (horizontal) { accessor->moveTo(x0a, y0a - 1); if (selectionAccessor) selectionAccessor->moveTo(x0a, y0a - 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = .25 * c1.opacityF() + (1 - .25) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } accessor->moveTo(x1b, y1b + 1); if (selectionAccessor) selectionAccessor->moveTo(x1b, y1b + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = .25 * c2.opacityF() + (1 - .25) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } } else { accessor->moveTo(x0a - 1, y0a); if (selectionAccessor) selectionAccessor->moveTo(x0a - 1, y0a); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = .25 * c1.opacityF() + (1 - .25) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } accessor->moveTo(x1b + 1, y1b); if (selectionAccessor) selectionAccessor->moveTo(x1b + 1, y1b); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = .25 * c2.opacityF() + (1 - .25) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } } } dxa = x1a - x0a; // run of a dya = y1a - y0a; // rise of a dxb = x1b - x0b; // run of b dyb = y1b - y0b; // rise of b if (horizontal) { // horizontal-ish lines if (x1 < x0) { int xt, yt, wt; KoColor tmp; xt = x1a; x1a = x0a; x0a = xt; yt = y1a; y1a = y0a; y0a = yt; xt = x1b; x1b = x0b; x0b = xt; yt = y1b; y1b = y0b; y0b = yt; xt = x1; x1 = x0; x0 = xt; yt = y1; y1 = y0; y0 = yt; tmp = c1; c1 = c2; c2 = tmp; wt = startWidth; startWidth = endWidth; endWidth = wt; } grada = dya / dxa; gradb = dyb / dxb; ix1 = x0; iy1 = y0; ix2 = x1; iy2 = y1; yfa = y0a + grada; yfb = y0b + gradb; for (x = ix1 + 1; x <= ix2 - 1; x++) { fraca = yfa - qFloor(yfa); b1a = 1 - fraca; b2a = fraca; fracb = yfb - qFloor(yfb); b1b = 1 - fracb; b2b = fracb; // color first pixel of bottom line opacity = ((x - ix1) / dstX) * c2.opacityF() + (1 - (x - ix1) / dstX) * c1.opacityF(); c3.setOpacity(opacity); accessor->moveTo(x, qFloor(yfa)); if (selectionAccessor) selectionAccessor->moveTo(x, qFloor(yfa)); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b1a * c3.opacityF() + (1 - b1a) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } // color first pixel of top line if (!(startWidth == 1 && endWidth == 1)) { accessor->moveTo(x, qFloor(yfb)); if (selectionAccessor) selectionAccessor->moveTo(x, qFloor(yfb)); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b1b * c3.opacityF() + (1 - b1b) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } } // color second pixel of bottom line if (grada != 0 && grada != 1) { // if not flat or exact diagonal accessor->moveTo(x, qFloor(yfa) + 1); if (selectionAccessor) selectionAccessor->moveTo(x, qFloor(yfa) + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b2a * c3.opacityF() + (1 - b2a) * alpha; col2.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col2); } } // color second pixel of top line if (gradb != 0 && gradb != 1 && !(startWidth == 1 && endWidth == 1)) { accessor->moveTo(x, qFloor(yfb) + 1); if (selectionAccessor) selectionAccessor->moveTo(x, qFloor(yfb) + 1); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b2b * c3.opacityF() + (1 - b2b) * alpha; col2.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col2); } } // fill remaining pixels if (!(startWidth == 1 && endWidth == 1)) { if (yfa < yfb) for (int i = qFloor(yfa) + 1; i <= qFloor(yfb); i++) { accessor->moveTo(x, i); if (selectionAccessor) selectionAccessor->moveTo(x, i); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c3); } } else for (int i = qFloor(yfa) + 1; i >= qFloor(yfb); i--) { accessor->moveTo(x, i); if (selectionAccessor) selectionAccessor->moveTo(x, i); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c3); } } } yfa += grada; yfb += gradb; } } else { // vertical-ish lines if (y1 < y0) { int xt, yt, wt; xt = x1a; x1a = x0a; x0a = xt; yt = y1a; y1a = y0a; y0a = yt; xt = x1b; x1b = x0b; x0b = xt; yt = y1b; y1b = y0b; y0b = yt; xt = x1; x1 = x0; x0 = xt; yt = y1; y1 = y0; y0 = yt; KoColor tmp; tmp = c1; c1 = c2; c2 = tmp; wt = startWidth; startWidth = endWidth; endWidth = wt; } grada = dxa / dya; gradb = dxb / dyb; ix1 = x0; iy1 = y0; ix2 = x1; iy2 = y1; xfa = x0a + grada; xfb = x0b + gradb; for (y = iy1 + 1; y <= iy2 - 1; y++) { fraca = xfa - qFloor(xfa); b1a = 1 - fraca; b2a = fraca; fracb = xfb - qFloor(xfb); b1b = 1 - fracb; b2b = fracb; // color first pixel of left line opacity = ((y - iy1) / dstY) * c2.opacityF() + (1 - (y - iy1) / dstY) * c1.opacityF(); c3.setOpacity(opacity); accessor->moveTo(qFloor(xfa), y); if (selectionAccessor) selectionAccessor->moveTo(qFloor(xfa), y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b1a * c3.opacityF() + (1 - b1a) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } // color first pixel of right line if (!(startWidth == 1 && endWidth == 1)) { accessor->moveTo(qFloor(xfb), y); if (selectionAccessor) selectionAccessor->moveTo(qFloor(xfb), y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b1b * c3.opacityF() + (1 - b1b) * alpha; col1.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col1); } } // color second pixel of left line if (grada != 0 && grada != 1) { // if not flat or exact diagonal accessor->moveTo(qFloor(xfa) + 1, y); if (selectionAccessor) selectionAccessor->moveTo(qFloor(xfa) + 1, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b2a * c3.opacityF() + (1 - b2a) * alpha; col2.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col2); } } // color second pixel of right line if (gradb != 0 && gradb != 1 && !(startWidth == 1 && endWidth == 1)) { accessor->moveTo(qFloor(xfb) + 1, y); if (selectionAccessor) selectionAccessor->moveTo(qFloor(xfb) + 1, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { qreal alpha = cs->opacityF(accessor->rawData()); opacity = b2b * c3.opacityF() + (1 - b2b) * alpha; col2.setOpacity(opacity); compositeOnePixel(accessor->rawData(), col2); } } // fill remaining pixels between current xfa,xfb if (!(startWidth == 1 && endWidth == 1)) { if (xfa < xfb) for (int i = qFloor(xfa) + 1; i <= qFloor(xfb); i++) { accessor->moveTo(i, y); if (selectionAccessor) selectionAccessor->moveTo(i, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c3); } } else for (int i = qFloor(xfb); i <= qFloor(xfa) + 1; i++) { accessor->moveTo(i, y); if (selectionAccessor) selectionAccessor->moveTo(i, y); if (!selectionAccessor || *selectionAccessor->oldRawData() > SELECTION_THRESHOLD) { compositeOnePixel(accessor->rawData(), c3); } } } xfa += grada; xfb += gradb; } } } void KisPainter::setProgress(KoUpdater * progressUpdater) { d->progressUpdater = progressUpdater; } const KisPaintDeviceSP KisPainter::device() const { return d->device; } KisPaintDeviceSP KisPainter::device() { return d->device; } void KisPainter::setChannelFlags(QBitArray channelFlags) { // Q_ASSERT(channelFlags.isEmpty() || quint32(channelFlags.size()) == d->colorSpace->channelCount()); // Now, if all bits in the channelflags are true, pass an empty channel flags bitarray // because otherwise the compositeops cannot optimize. d->paramInfo.channelFlags = channelFlags; if (!channelFlags.isEmpty() && channelFlags == QBitArray(channelFlags.size(), true)) { d->paramInfo.channelFlags = QBitArray(); } } QBitArray KisPainter::channelFlags() { return d->paramInfo.channelFlags; } void KisPainter::setPattern(const KoPatternSP pattern) { d->pattern = pattern; } const KoPatternSP KisPainter::pattern() const { return d->pattern; } void KisPainter::setPaintColor(const KoColor& color) { d->paintColor = color; if (d->device) { d->paintColor.convertTo(d->device->compositionSourceColorSpace()); } } const KoColor &KisPainter::paintColor() const { return d->paintColor; } void KisPainter::setBackgroundColor(const KoColor& color) { d->backgroundColor = color; if (d->device) { d->backgroundColor.convertTo(d->device->compositionSourceColorSpace()); } } const KoColor &KisPainter::backgroundColor() const { return d->backgroundColor; } void KisPainter::setGenerator(KisFilterConfigurationSP generator) { d->generator = generator; } const KisFilterConfigurationSP KisPainter::generator() const { return d->generator; } void KisPainter::setFillStyle(FillStyle fillStyle) { d->fillStyle = fillStyle; } KisPainter::FillStyle KisPainter::fillStyle() const { return d->fillStyle; } void KisPainter::setAntiAliasPolygonFill(bool antiAliasPolygonFill) { d->antiAliasPolygonFill = antiAliasPolygonFill; } bool KisPainter::antiAliasPolygonFill() { return d->antiAliasPolygonFill; } void KisPainter::setStrokeStyle(KisPainter::StrokeStyle strokeStyle) { d->strokeStyle = strokeStyle; } KisPainter::StrokeStyle KisPainter::strokeStyle() const { return d->strokeStyle; } void KisPainter::setFlow(quint8 flow) { d->paramInfo.flow = float(flow) / 255.0f; } quint8 KisPainter::flow() const { return quint8(d->paramInfo.flow * 255.0f); } void KisPainter::setOpacityUpdateAverage(quint8 opacity) { d->isOpacityUnit = opacity == OPACITY_OPAQUE_U8; d->paramInfo.updateOpacityAndAverage(float(opacity) / 255.0f); } void KisPainter::setAverageOpacity(qreal averageOpacity) { d->paramInfo.setOpacityAndAverage(d->paramInfo.opacity, averageOpacity); } qreal KisPainter::blendAverageOpacity(qreal opacity, qreal averageOpacity) { const float exponent = 0.1; return averageOpacity < opacity ? opacity : exponent * opacity + (1.0 - exponent) * (averageOpacity); } void KisPainter::setOpacity(quint8 opacity) { d->isOpacityUnit = opacity == OPACITY_OPAQUE_U8; d->paramInfo.opacity = float(opacity) / 255.0f; } quint8 KisPainter::opacity() const { return quint8(d->paramInfo.opacity * 255.0f); } void KisPainter::setCompositeOp(const KoCompositeOp * op) { d->compositeOp = op; } const KoCompositeOp * KisPainter::compositeOp() { return d->compositeOp; } /** * TODO: Rename this setCompositeOpId(). See KoCompositeOpRegistry.h */ void KisPainter::setCompositeOp(const QString& op) { d->compositeOp = d->colorSpace->compositeOp(op); } void KisPainter::setSelection(KisSelectionSP selection) { d->selection = selection; } KisSelectionSP KisPainter::selection() { return d->selection; } KoUpdater * KisPainter::progressUpdater() { return d->progressUpdater; } void KisPainter::setGradient(const KoAbstractGradientSP gradient) { d->gradient = gradient; } const KoAbstractGradientSP KisPainter::gradient() const { return d->gradient; } void KisPainter::setPaintOpPreset(KisPaintOpPresetSP preset, KisNodeSP node, KisImageSP image) { d->paintOpPreset = preset; KisPaintOp *paintop = KisPaintOpRegistry::instance()->paintOp(preset, this, node, image); Q_ASSERT(paintop); if (paintop) { delete d->paintOp; d->paintOp = paintop; } else { warnKrita << "Could not create paintop for preset " << preset->name(); } } KisPaintOpPresetSP KisPainter::preset() const { return d->paintOpPreset; } KisPaintOp* KisPainter::paintOp() const { return d->paintOp; } void KisPainter::setMirrorInformation(const QPointF& axesCenter, bool mirrorHorizontally, bool mirrorVertically) { d->axesCenter = axesCenter; d->mirrorHorizontally = mirrorHorizontally; d->mirrorVertically = mirrorVertically; } void KisPainter::copyMirrorInformationFrom(const KisPainter *other) { d->axesCenter = other->d->axesCenter; d->mirrorHorizontally = other->d->mirrorHorizontally; d->mirrorVertically = other->d->mirrorVertically; } bool KisPainter::hasMirroring() const { return d->mirrorHorizontally || d->mirrorVertically; } bool KisPainter::hasHorizontalMirroring() const { return d->mirrorHorizontally; } bool KisPainter::hasVerticalMirroring() const { return d->mirrorVertically; } void KisPainter::setMaskImageSize(qint32 width, qint32 height) { d->maskImageWidth = qBound(1, width, 256); d->maskImageHeight = qBound(1, height, 256); d->fillPainter = 0; d->polygonMaskImage = QImage(); } //void KisPainter::setLockAlpha(bool protect) //{ // if(d->paramInfo.channelFlags.isEmpty()) { // d->paramInfo.channelFlags = d->colorSpace->channelFlags(true, true); // } // QBitArray switcher = // d->colorSpace->channelFlags(protect, !protect); // if(protect) { // d->paramInfo.channelFlags &= switcher; // } // else { // d->paramInfo.channelFlags |= switcher; // } // Q_ASSERT(quint32(d->paramInfo.channelFlags.size()) == d->colorSpace->channelCount()); //} //bool KisPainter::alphaLocked() const //{ // QBitArray switcher = d->colorSpace->channelFlags(false, true); // return !(d->paramInfo.channelFlags & switcher).count(true); //} void KisPainter::setRenderingIntent(KoColorConversionTransformation::Intent intent) { d->renderingIntent = intent; } void KisPainter::setColorConversionFlags(KoColorConversionTransformation::ConversionFlags conversionFlags) { d->conversionFlags = conversionFlags; } void KisPainter::setRunnableStrokeJobsInterface(KisRunnableStrokeJobsInterface *interface) { d->runnableStrokeJobsInterface = interface; } KisRunnableStrokeJobsInterface *KisPainter::runnableStrokeJobsInterface() const { if (!d->runnableStrokeJobsInterface) { if (!d->fakeRunnableStrokeJobsInterface) { d->fakeRunnableStrokeJobsInterface.reset(new KisFakeRunnableStrokeJobsExecutor()); } return d->fakeRunnableStrokeJobsInterface.data(); } return d->runnableStrokeJobsInterface; } void KisPainter::renderMirrorMaskSafe(QRect rc, KisFixedPaintDeviceSP dab, bool preserveDab) { if (!d->mirrorHorizontally && !d->mirrorVertically) return; KisFixedPaintDeviceSP dabToProcess = dab; if (preserveDab) { dabToProcess = new KisFixedPaintDevice(*dab); } renderMirrorMask(rc, dabToProcess); } void KisPainter::renderMirrorMaskSafe(QRect rc, KisPaintDeviceSP dab, int sx, int sy, KisFixedPaintDeviceSP mask, bool preserveMask) { if (!d->mirrorHorizontally && !d->mirrorVertically) return; KisFixedPaintDeviceSP maskToProcess = mask; if (preserveMask) { maskToProcess = new KisFixedPaintDevice(*mask); } renderMirrorMask(rc, dab, sx, sy, maskToProcess); } void KisPainter::renderMirrorMask(QRect rc, KisFixedPaintDeviceSP dab) { int x = rc.topLeft().x(); int y = rc.topLeft().y(); KisLodTransform t(d->device); QPoint effectiveAxesCenter = t.map(d->axesCenter).toPoint(); int mirrorX = -((x+rc.width()) - effectiveAxesCenter.x()) + effectiveAxesCenter.x(); int mirrorY = -((y+rc.height()) - effectiveAxesCenter.y()) + effectiveAxesCenter.y(); if (d->mirrorHorizontally && d->mirrorVertically){ dab->mirror(true, false); bltFixed(mirrorX, y, dab, 0,0,rc.width(),rc.height()); dab->mirror(false,true); bltFixed(mirrorX, mirrorY, dab, 0,0,rc.width(),rc.height()); dab->mirror(true, false); bltFixed(x, mirrorY, dab, 0,0,rc.width(),rc.height()); } else if (d->mirrorHorizontally){ dab->mirror(true, false); bltFixed(mirrorX, y, dab, 0,0,rc.width(),rc.height()); } else if (d->mirrorVertically){ dab->mirror(false, true); bltFixed(x, mirrorY, dab, 0,0,rc.width(),rc.height()); } } void KisPainter::renderMirrorMask(QRect rc, KisFixedPaintDeviceSP dab, KisFixedPaintDeviceSP mask) { int x = rc.topLeft().x(); int y = rc.topLeft().y(); KisLodTransform t(d->device); QPoint effectiveAxesCenter = t.map(d->axesCenter).toPoint(); int mirrorX = -((x+rc.width()) - effectiveAxesCenter.x()) + effectiveAxesCenter.x(); int mirrorY = -((y+rc.height()) - effectiveAxesCenter.y()) + effectiveAxesCenter.y(); if (d->mirrorHorizontally && d->mirrorVertically){ dab->mirror(true, false); mask->mirror(true, false); bltFixedWithFixedSelection(mirrorX,y, dab, mask, rc.width() ,rc.height() ); dab->mirror(false,true); mask->mirror(false, true); bltFixedWithFixedSelection(mirrorX,mirrorY, dab, mask, rc.width() ,rc.height() ); dab->mirror(true, false); mask->mirror(true, false); bltFixedWithFixedSelection(x,mirrorY, dab, mask, rc.width() ,rc.height() ); }else if (d->mirrorHorizontally){ dab->mirror(true, false); mask->mirror(true, false); bltFixedWithFixedSelection(mirrorX,y, dab, mask, rc.width() ,rc.height() ); }else if (d->mirrorVertically){ dab->mirror(false, true); mask->mirror(false, true); bltFixedWithFixedSelection(x,mirrorY, dab, mask, rc.width() ,rc.height() ); } } void KisPainter::renderMirrorMask(QRect rc, KisPaintDeviceSP dab){ if (d->mirrorHorizontally || d->mirrorVertically){ KisFixedPaintDeviceSP mirrorDab(new KisFixedPaintDevice(dab->colorSpace())); QRect dabRc( QPoint(0,0), QSize(rc.width(),rc.height()) ); mirrorDab->setRect(dabRc); mirrorDab->lazyGrowBufferWithoutInitialization(); dab->readBytes(mirrorDab->data(),rc); renderMirrorMask( QRect(rc.topLeft(),dabRc.size()), mirrorDab); } } void KisPainter::renderMirrorMask(QRect rc, KisPaintDeviceSP dab, int sx, int sy, KisFixedPaintDeviceSP mask) { if (d->mirrorHorizontally || d->mirrorVertically){ KisFixedPaintDeviceSP mirrorDab(new KisFixedPaintDevice(dab->colorSpace())); QRect dabRc( QPoint(0,0), QSize(rc.width(),rc.height()) ); mirrorDab->setRect(dabRc); mirrorDab->lazyGrowBufferWithoutInitialization(); dab->readBytes(mirrorDab->data(),QRect(QPoint(sx,sy),rc.size())); renderMirrorMask(rc, mirrorDab, mask); } } void KisPainter::renderDabWithMirroringNonIncremental(QRect rc, KisPaintDeviceSP dab) { QVector rects; int x = rc.topLeft().x(); int y = rc.topLeft().y(); KisLodTransform t(d->device); QPoint effectiveAxesCenter = t.map(d->axesCenter).toPoint(); int mirrorX = -((x+rc.width()) - effectiveAxesCenter.x()) + effectiveAxesCenter.x(); int mirrorY = -((y+rc.height()) - effectiveAxesCenter.y()) + effectiveAxesCenter.y(); rects << rc; if (d->mirrorHorizontally && d->mirrorVertically){ rects << QRect(mirrorX, y, rc.width(), rc.height()); rects << QRect(mirrorX, mirrorY, rc.width(), rc.height()); rects << QRect(x, mirrorY, rc.width(), rc.height()); } else if (d->mirrorHorizontally) { rects << QRect(mirrorX, y, rc.width(), rc.height()); } else if (d->mirrorVertically) { rects << QRect(x, mirrorY, rc.width(), rc.height()); } Q_FOREACH (const QRect &rc, rects) { d->device->clear(rc); } QRect resultRect = dab->extent() | rc; bool intersects = false; for (int i = 1; i < rects.size(); i++) { if (rects[i].intersects(resultRect)) { intersects = true; break; } } /** * If there are no cross-intersections, we can use a fast path * and do no cycling recompositioning */ if (!intersects) { rects.resize(1); } Q_FOREACH (const QRect &rc, rects) { bitBlt(rc.topLeft(), dab, rc); } Q_FOREACH (const QRect &rc, rects) { renderMirrorMask(rc, dab); } } bool KisPainter::hasDirtyRegion() const { return !d->dirtyRects.isEmpty(); } void KisPainter::mirrorRect(Qt::Orientation direction, QRect *rc) const { KisLodTransform t(d->device); QPoint effectiveAxesCenter = t.map(d->axesCenter).toPoint(); KritaUtils::mirrorRect(direction, effectiveAxesCenter, rc); } void KisPainter::mirrorDab(Qt::Orientation direction, KisRenderedDab *dab, bool skipMirrorPixels) const { KisLodTransform t(d->device); QPoint effectiveAxesCenter = t.map(d->axesCenter).toPoint(); KritaUtils::mirrorDab(direction, effectiveAxesCenter, dab, skipMirrorPixels); } namespace { inline void mirrorOneObject(Qt::Orientation dir, const QPoint ¢er, QRect *rc) { KritaUtils::mirrorRect(dir, center, rc); } inline void mirrorOneObject(Qt::Orientation dir, const QPoint ¢er, QPointF *pt) { KritaUtils::mirrorPoint(dir, center, pt); } inline void mirrorOneObject(Qt::Orientation dir, const QPoint ¢er, QPair *pair) { KritaUtils::mirrorPoint(dir, center, &pair->first); KritaUtils::mirrorPoint(dir, center, &pair->second); } } template QVector KisPainter::Private::calculateMirroredObjects(const T &object) { QVector result; KisLodTransform t(this->device); const QPoint effectiveAxesCenter = t.map(this->axesCenter).toPoint(); T baseObject = object; result << baseObject; if (this->mirrorHorizontally && this->mirrorVertically){ mirrorOneObject(Qt::Horizontal, effectiveAxesCenter, &baseObject); result << baseObject; mirrorOneObject(Qt::Vertical, effectiveAxesCenter, &baseObject); result << baseObject; mirrorOneObject(Qt::Horizontal, effectiveAxesCenter, &baseObject); result << baseObject; } else if (this->mirrorHorizontally) { mirrorOneObject(Qt::Horizontal, effectiveAxesCenter, &baseObject); result << baseObject; } else if (this->mirrorVertically) { mirrorOneObject(Qt::Vertical, effectiveAxesCenter, &baseObject); result << baseObject; } return result; } const QVector KisPainter::calculateAllMirroredRects(const QRect &rc) { return d->calculateMirroredObjects(rc); } const QVector KisPainter::calculateAllMirroredPoints(const QPointF &pos) { return d->calculateMirroredObjects(pos); } const QVector> KisPainter::calculateAllMirroredPoints(const QPair &pair) { return d->calculateMirroredObjects(pair); } diff --git a/libs/image/layerstyles/kis_ls_utils.cpp b/libs/image/layerstyles/kis_ls_utils.cpp index 4b562898fb..283ee7db9b 100644 --- a/libs/image/layerstyles/kis_ls_utils.cpp +++ b/libs/image/layerstyles/kis_ls_utils.cpp @@ -1,592 +1,592 @@ /* * Copyright (c) 2015 Dmitry Kazakov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "kis_ls_utils.h" #include #include #include #include "psd.h" #include "kis_default_bounds.h" #include "kis_pixel_selection.h" #include "kis_random_accessor_ng.h" #include "kis_iterator_ng.h" #include "kis_convolution_kernel.h" #include "kis_convolution_painter.h" #include "kis_gaussian_kernel.h" #include "kis_fill_painter.h" #include "kis_gradient_painter.h" #include "kis_layer_style_filter_environment.h" #include "kis_selection_filters.h" #include "kis_multiple_projection.h" #include "kis_default_bounds_base.h" #include "kis_cached_paint_device.h" namespace KisLsUtils { QRect growSelectionUniform(KisPixelSelectionSP selection, int growSize, const QRect &applyRect) { QRect changeRect = applyRect; if (growSize > 0) { KisGrowSelectionFilter filter(growSize, growSize); changeRect = filter.changeRect(applyRect, selection->defaultBounds()); filter.process(selection, applyRect); } else if (growSize < 0) { KisShrinkSelectionFilter filter(qAbs(growSize), qAbs(growSize), false); changeRect = filter.changeRect(applyRect, selection->defaultBounds()); filter.process(selection, applyRect); } return changeRect; } void selectionFromAlphaChannel(KisPaintDeviceSP srcDevice, KisSelectionSP dstSelection, const QRect &srcRect) { const KoColorSpace *cs = srcDevice->colorSpace(); KisPixelSelectionSP selection = dstSelection->pixelSelection(); KisSequentialConstIterator srcIt(srcDevice, srcRect); KisSequentialIterator dstIt(selection, srcRect); while (srcIt.nextPixel() && dstIt.nextPixel()) { quint8 *dstPtr = dstIt.rawData(); const quint8* srcPtr = srcIt.rawDataConst(); *dstPtr = cs->opacityU8(srcPtr); } } void findEdge(KisPixelSelectionSP selection, const QRect &applyRect, const bool edgeHidden) { KisSequentialIterator dstIt(selection, applyRect); if (edgeHidden) { while(dstIt.nextPixel()) { quint8 *pixelPtr = dstIt.rawData(); *pixelPtr = (*pixelPtr < 24) ? *pixelPtr * 10 : 0xFF; } } else { while(dstIt.nextPixel()) { quint8 *pixelPtr = dstIt.rawData(); *pixelPtr = 0xFF; } } } QRect growRectFromRadius(const QRect &rc, int radius) { int halfSize = KisGaussianKernel::kernelSizeFromRadius(radius) / 2; return rc.adjusted(-halfSize, -halfSize, halfSize, halfSize); } void applyGaussianWithTransaction(KisPixelSelectionSP selection, const QRect &applyRect, qreal radius) { KisGaussianKernel::applyGaussian(selection, applyRect, radius, radius, QBitArray(), 0, true, BORDER_IGNORE); } namespace Private { void getGradientTable(const KoAbstractGradient *gradient, QVector *table, const KoColorSpace *colorSpace) { KIS_ASSERT_RECOVER_RETURN(table->size() == 256); for (int i = 0; i < 256; i++) { gradient->colorAt(((*table)[i]), qreal(i) / 255.0); (*table)[i].convertTo(colorSpace); } } struct LinearGradientIndex { int popOneIndex(int selectionAlpha) { return 255 - selectionAlpha; } bool nextPixel() { return true; } }; struct JitterGradientIndex { JitterGradientIndex(const QRect &applyRect, int jitter, const KisLayerStyleFilterEnvironment *env) : randomSelection(env->cachedRandomSelection(applyRect)), noiseIt(randomSelection, applyRect), m_jitterCoeff(jitter * 255 / 100) { } int popOneIndex(int selectionAlpha) { int gradientIndex = 255 - selectionAlpha; gradientIndex += m_jitterCoeff * *noiseIt.rawDataConst() >> 8; gradientIndex &= 0xFF; return gradientIndex; } bool nextPixel() { return noiseIt.nextPixel(); } private: KisPixelSelectionSP randomSelection; KisSequentialConstIterator noiseIt; int m_jitterCoeff; }; template void applyGradientImpl(KisPaintDeviceSP device, KisPixelSelectionSP selection, const QRect &applyRect, const QVector &table, bool edgeHidden, IndexFetcher &indexFetcher) { KIS_ASSERT_RECOVER_RETURN( *table.first().colorSpace() == *device->colorSpace()); const KoColorSpace *cs = device->colorSpace(); const int pixelSize = cs->pixelSize(); KisSequentialConstIterator selIt(selection, applyRect); KisSequentialIterator dstIt(device, applyRect); if (edgeHidden) { while (selIt.nextPixel() && dstIt.nextPixel() && indexFetcher.nextPixel()) { quint8 selAlpha = *selIt.rawDataConst(); int gradientIndex = indexFetcher.popOneIndex(selAlpha); const KoColor &color = table[gradientIndex]; quint8 tableAlpha = color.opacityU8(); memcpy(dstIt.rawData(), color.data(), pixelSize); if (selAlpha < 24 && tableAlpha == 255) { tableAlpha = int(selAlpha) * 10 * tableAlpha >> 8; cs->setOpacity(dstIt.rawData(), tableAlpha, 1); } } } else { while (selIt.nextPixel() && dstIt.nextPixel() && indexFetcher.nextPixel()) { int gradientIndex = indexFetcher.popOneIndex(*selIt.rawDataConst()); const KoColor &color = table[gradientIndex]; memcpy(dstIt.rawData(), color.data(), pixelSize); } } } void applyGradient(KisPaintDeviceSP device, KisPixelSelectionSP selection, const QRect &applyRect, const QVector &table, bool edgeHidden, int jitter, const KisLayerStyleFilterEnvironment *env) { if (!jitter) { LinearGradientIndex fetcher; applyGradientImpl(device, selection, applyRect, table, edgeHidden, fetcher); } else { JitterGradientIndex fetcher(applyRect, jitter, env); applyGradientImpl(device, selection, applyRect, table, edgeHidden, fetcher); } } } const int noiseNeedBorder = 8; void applyNoise(KisPixelSelectionSP selection, const QRect &applyRect, int noise, const psd_layer_effects_context *context, KisLayerStyleFilterEnvironment *env) { Q_UNUSED(context); const QRect overlayRect = kisGrowRect(applyRect, noiseNeedBorder); KisPixelSelectionSP randomSelection = env->cachedRandomSelection(overlayRect); KisCachedSelection::Guard s1(*env->cachedSelection()); KisPixelSelectionSP randomOverlay = s1.selection()->pixelSelection(); KisSequentialConstIterator noiseIt(randomSelection, overlayRect); KisSequentialConstIterator srcIt(selection, overlayRect); KisRandomAccessorSP dstIt = randomOverlay->createRandomAccessorNG(); while (noiseIt.nextPixel() && srcIt.nextPixel()) { int itX = noiseIt.x(); int itY = noiseIt.y(); int x = itX + (*noiseIt.rawDataConst() >> 4) - 8; int y = itY + (*noiseIt.rawDataConst() & 0x0F) - 8; x = (x + itX) >> 1; y = (y + itY) >> 1; dstIt->moveTo(x, y); quint8 dstAlpha = *dstIt->rawData(); quint8 srcAlpha = *srcIt.rawDataConst(); int value = qMin(255, dstAlpha + srcAlpha); *dstIt->rawData() = value; } noise = noise * 255 / 100; KisPainter gc(selection); gc.setOpacity(noise); gc.setCompositeOp(COMPOSITE_COPY); gc.bitBlt(applyRect.topLeft(), randomOverlay, applyRect); } //const int FULL_PERCENT_RANGE = 100; void adjustRange(KisPixelSelectionSP selection, const QRect &applyRect, const int range) { KIS_ASSERT_RECOVER_RETURN(range >= 1 && range <= 100); quint8 rangeTable[256]; for(int i = 0; i < 256; i ++) { quint8 value = i * 100 / range; rangeTable[i] = qMin(value, quint8(255)); } KisSequentialIterator dstIt(selection, applyRect); while (dstIt.nextPixel()) { quint8 *pixelPtr = dstIt.rawData(); *pixelPtr = rangeTable[*pixelPtr]; } } void applyContourCorrection(KisPixelSelectionSP selection, const QRect &applyRect, const quint8 *lookup_table, bool antiAliased, bool edgeHidden) { quint8 contour[PSD_LOOKUP_TABLE_SIZE] = { 0x00, 0x0b, 0x16, 0x21, 0x2c, 0x37, 0x42, 0x4d, 0x58, 0x63, 0x6e, 0x79, 0x84, 0x8f, 0x9a, 0xa5, 0xb0, 0xbb, 0xc6, 0xd1, 0xdc, 0xf2, 0xfd, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; if (edgeHidden) { if (antiAliased) { for (int i = 0; i < PSD_LOOKUP_TABLE_SIZE; i++) { contour[i] = contour[i] * lookup_table[i] >> 8; } } else { for (int i = 0; i < PSD_LOOKUP_TABLE_SIZE; i++) { contour[i] = contour[i] * lookup_table[(int)((int)(i / 2.55) * 2.55 + 0.5)] >> 8; } } } else { if (antiAliased) { for (int i = 0; i < PSD_LOOKUP_TABLE_SIZE; i++) { contour[i] = lookup_table[i]; } } else { for (int i = 0; i < PSD_LOOKUP_TABLE_SIZE; i++) { contour[i] = lookup_table[(int)((int)(i / 2.55) * 2.55 + 0.5)]; } } } KisSequentialIterator dstIt(selection, applyRect); while (dstIt.nextPixel()) { quint8 *pixelPtr = dstIt.rawData(); *pixelPtr = contour[*pixelPtr]; } } void knockOutSelection(KisPixelSelectionSP selection, KisPixelSelectionSP knockOutSelection, const QRect &srcRect, const QRect &dstRect, const QRect &totalNeedRect, const bool knockOutInverted) { KIS_ASSERT_RECOVER_RETURN(knockOutSelection); QRect knockOutRect = !knockOutInverted ? srcRect : totalNeedRect; knockOutRect &= dstRect; KisPainter gc(selection); gc.setCompositeOp(COMPOSITE_ERASE); gc.bitBlt(knockOutRect.topLeft(), knockOutSelection, knockOutRect); } void fillPattern(KisPaintDeviceSP fillDevice, const QRect &applyRect, KisLayerStyleFilterEnvironment *env, int scale, KoPatternSP pattern, int horizontalPhase, int verticalPhase, bool alignWithLayer) { - if (scale != 100) { - warnKrita << "KisLsOverlayFilter::applyOverlay(): Pattern scaling is NOT implemented!"; - } KIS_SAFE_ASSERT_RECOVER_RETURN(pattern); QSize psize(pattern->width(), pattern->height()); QPoint patternOffset(qreal(psize.width()) * horizontalPhase / 100, qreal(psize.height()) * verticalPhase / 100); const QRect boundsRect = alignWithLayer ? env->layerBounds() : env->defaultBounds(); patternOffset += boundsRect.topLeft(); patternOffset.rx() %= psize.width(); patternOffset.ry() %= psize.height(); QRect fillRect = applyRect | applyRect.translated(patternOffset); KisFillPainter gc(fillDevice); - gc.fillRect(fillRect.x(), fillRect.y(), - fillRect.width(), fillRect.height(), pattern, -patternOffset); + QTransform transform; + transform.translate(-patternOffset.x(), -patternOffset.y()); + qreal scaleNorm = qreal(scale*0.01); + transform.scale(scaleNorm, scaleNorm); + gc.fillRect(fillRect, pattern, transform); gc.end(); } void fillOverlayDevice(KisPaintDeviceSP fillDevice, const QRect &applyRect, const psd_layer_effects_overlay_base *config, KisLayerStyleFilterEnvironment *env) { if (config->fillType() == psd_fill_solid_color) { KoColor color(config->color(), fillDevice->colorSpace()); fillDevice->setDefaultPixel(color); } else if (config->fillType() == psd_fill_pattern) { fillPattern(fillDevice, applyRect, env, config->scale(), config->pattern(), config->horizontalPhase(), config->verticalPhase(), config->alignWithLayer()); } else if (config->fillType() == psd_fill_gradient) { const QRect boundsRect = config->alignWithLayer() ? env->layerBounds() : env->defaultBounds(); QPoint center = boundsRect.center(); center += QPoint(boundsRect.width() * config->gradientXOffset() / 100, boundsRect.height() * config->gradientYOffset() / 100); int width = (boundsRect.width() * config->scale() + 100) / 200; int height = (boundsRect.height() * config->scale() + 100) / 200; /* copy paste from libpsd */ int angle = config->angle(); int corner_angle = (int)(atan((qreal)boundsRect.height() / boundsRect.width()) * 180 / M_PI + 0.5); int sign_x = 1; int sign_y = 1; if(angle < 0) { angle += 360; } if (angle >= 90 && angle < 180) { angle = 180 - angle; sign_x = -1; } else if (angle >= 180 && angle < 270) { angle = angle - 180; sign_x = -1; sign_y = -1; } else if (angle >= 270 && angle <= 360) { angle = 360 - angle; sign_y = -1; } int radius_x = 0; int radius_y = 0; if (angle <= corner_angle) { radius_x = width; radius_y = (int)(radius_x * tan(kisDegreesToRadians(qreal(angle))) + 0.5); } else { radius_y = height; radius_x = (int)(radius_y / tan(kisDegreesToRadians(qreal(angle))) + 0.5); } int radius_corner = (int)(std::sqrt((qreal)(radius_x * radius_x + radius_y * radius_y)) + 0.5); /* end of copy paste from libpsd */ KisGradientPainter gc(fillDevice); gc.setGradient(config->gradient()); QPointF gradStart; QPointF gradEnd; KisGradientPainter::enumGradientRepeat repeat = KisGradientPainter::GradientRepeatNone; QPoint rectangularOffset(sign_x * radius_x, -sign_y * radius_y); switch(config->style()) { case psd_gradient_style_linear: gc.setGradientShape(KisGradientPainter::GradientShapeLinear); repeat = KisGradientPainter::GradientRepeatNone; gradStart = center - rectangularOffset; gradEnd = center + rectangularOffset; break; case psd_gradient_style_radial: gc.setGradientShape(KisGradientPainter::GradientShapeRadial); repeat = KisGradientPainter::GradientRepeatNone; gradStart = center; gradEnd = center + QPointF(radius_corner, 0); break; case psd_gradient_style_angle: gc.setGradientShape(KisGradientPainter::GradientShapeConical); repeat = KisGradientPainter::GradientRepeatNone; gradStart = center; gradEnd = center + rectangularOffset; break; case psd_gradient_style_reflected: gc.setGradientShape(KisGradientPainter::GradientShapeLinear); repeat = KisGradientPainter::GradientRepeatAlternate; gradStart = center - rectangularOffset; gradEnd = center; break; case psd_gradient_style_diamond: gc.setGradientShape(KisGradientPainter::GradientShapeBiLinear); repeat = KisGradientPainter::GradientRepeatNone; gradStart = center - rectangularOffset; gradEnd = center + rectangularOffset; break; default: qFatal("Gradient Overlay: unknown switch case!"); break; } gc.paintGradient(gradStart, gradEnd, repeat, 0.0, config->reverse(), applyRect); } } void applyFinalSelection(const QString &projectionId, KisSelectionSP baseSelection, KisPaintDeviceSP srcDevice, KisMultipleProjection *dst, const QRect &/*srcRect*/, const QRect &dstRect, const psd_layer_effects_context */*context*/, const psd_layer_effects_shadow_base *config, const KisLayerStyleFilterEnvironment *env) { const KoColor effectColor(config->color(), srcDevice->colorSpace()); const QRect effectRect(dstRect); const QString compositeOp = config->blendMode(); const quint8 opacityU8 = quint8(qRound(255.0 / 100.0 * config->opacity())); KisPaintDeviceSP dstDevice = dst->getProjection(projectionId, compositeOp, opacityU8, QBitArray(), srcDevice); if (config->fillType() == psd_fill_solid_color) { KisFillPainter gc(dstDevice); gc.setCompositeOp(COMPOSITE_COPY); gc.setSelection(baseSelection); gc.fillSelection(effectRect, effectColor); gc.end(); } else if (config->fillType() == psd_fill_gradient) { if (!config->gradient()) { warnKrita << "KisLsUtils::applyFinalSelection: Gradient object is null! Skipping..."; return; } QVector table(256); Private::getGradientTable(config->gradient().data(), &table, dstDevice->colorSpace()); Private::applyGradient(dstDevice, baseSelection->pixelSelection(), effectRect, table, true, config->jitter(), env); } //dstDevice->convertToQImage(0, QRect(0,0,300,300)).save("6_device_shadow.png"); } bool checkEffectEnabled(const psd_layer_effects_shadow_base *config, KisMultipleProjection *dst) { bool result = config->effectEnabled(); if (!result) { dst->freeAllProjections(); } return result; } } diff --git a/libs/ui/processing/fill_processing_visitor.cpp b/libs/ui/processing/fill_processing_visitor.cpp index a4e1f25079..3fc5cf9d8b 100644 --- a/libs/ui/processing/fill_processing_visitor.cpp +++ b/libs/ui/processing/fill_processing_visitor.cpp @@ -1,148 +1,148 @@ /* * Copyright (c) 2013 Dmitry Kazakov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "fill_processing_visitor.h" #include #include #include #include #include "lazybrush/kis_colorize_mask.h" FillProcessingVisitor::FillProcessingVisitor(KisPaintDeviceSP refPaintDevice, const QPoint &startPoint, KisSelectionSP selection, KisResourcesSnapshotSP resources, bool useFastMode, bool usePattern, bool selectionOnly, int feather, int sizemod, int fillThreshold, bool unmerged, bool useBgColor) : m_refPaintDevice(refPaintDevice), m_startPoint(startPoint), m_selection(selection), m_useFastMode(useFastMode), m_selectionOnly(selectionOnly), m_usePattern(usePattern), m_resources(resources), m_feather(feather), m_sizemod(sizemod), m_fillThreshold(fillThreshold), m_unmerged(unmerged), m_useBgColor(useBgColor) { } void FillProcessingVisitor::visitExternalLayer(KisExternalLayer *layer, KisUndoAdapter *undoAdapter) { Q_UNUSED(layer); Q_UNUSED(undoAdapter); } void FillProcessingVisitor::visitNodeWithPaintDevice(KisNode *node, KisUndoAdapter *undoAdapter) { KisPaintDeviceSP device = node->paintDevice(); Q_ASSERT(device); ProgressHelper helper(node); fillPaintDevice(device, undoAdapter, helper); } void FillProcessingVisitor::fillPaintDevice(KisPaintDeviceSP device, KisUndoAdapter *undoAdapter, ProgressHelper &helper) { QRect fillRect = m_resources->image()->bounds(); if (!device->defaultBounds()->wrapAroundMode() && !fillRect.contains(m_startPoint)) { return; } if (m_selectionOnly) { KisPaintDeviceSP filledDevice = device->createCompositionSourceDevice(); KisFillPainter fillPainter(filledDevice); fillPainter.setProgress(helper.updater()); if (m_usePattern) { - fillPainter.fillRect(fillRect, m_resources->currentPattern()); + fillPainter.fillRect(fillRect, m_resources->currentPattern(), QTransform()); } else if (m_useBgColor) { fillPainter.fillRect(fillRect, m_resources->currentBgColor(), m_resources->opacity()); } else { fillPainter.fillRect(fillRect, m_resources->currentFgColor(), m_resources->opacity()); } QVector dirtyRect = fillPainter.takeDirtyRegion(); KisPainter painter(device, m_selection); painter.beginTransaction(); m_resources->setupPainter(&painter); Q_FOREACH (const QRect &rc, dirtyRect) { painter.bitBlt(rc.topLeft(), filledDevice, rc); } painter.endTransaction(undoAdapter); } else { QPoint startPoint = m_startPoint; if (device->defaultBounds()->wrapAroundMode()) { startPoint = KisWrappedRect::ptToWrappedPt(startPoint, device->defaultBounds()->bounds()); } KisFillPainter fillPainter(device, m_selection); fillPainter.beginTransaction(); m_resources->setupPainter(&fillPainter); fillPainter.setProgress(helper.updater()); fillPainter.setSizemod(m_sizemod); fillPainter.setFeather(m_feather); fillPainter.setFillThreshold(m_fillThreshold); fillPainter.setCareForSelection(true); fillPainter.setWidth(fillRect.width()); fillPainter.setHeight(fillRect.height()); fillPainter.setUseCompositioning(!m_useFastMode); KisPaintDeviceSP sourceDevice = m_unmerged ? device : m_refPaintDevice; if (m_usePattern) { fillPainter.fillPattern(startPoint.x(), startPoint.y(), sourceDevice); } else { fillPainter.fillColor(startPoint.x(), startPoint.y(), sourceDevice); } fillPainter.endTransaction(undoAdapter); } } void FillProcessingVisitor::visitColorizeMask(KisColorizeMask *mask, KisUndoAdapter *undoAdapter) { // we fill only the coloring project so the user can work // with the mask like with a usual paint layer ProgressHelper helper(mask); fillPaintDevice(mask->coloringProjection(), undoAdapter, helper); }