diff --git a/plugins/tools/selectiontools/KisMagneticWorker.cc b/plugins/tools/selectiontools/KisMagneticWorker.cc index 55db7ae32f..e0159aea10 100644 --- a/plugins/tools/selectiontools/KisMagneticWorker.cc +++ b/plugins/tools/selectiontools/KisMagneticWorker.cc @@ -1,279 +1,276 @@ /* * Copyright (c) 2019 Kuntal Majumder * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; version 2.1 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "KisMagneticWorker.h" #include #include #include #include #include #include #include #include #include #include "KisMagneticGraph.h" struct DistanceMap { typedef VertexDescriptor key_type; typedef double data_type; typedef std::pair value_type; explicit DistanceMap(double const &dval) : m_default(dval) { } data_type &operator [] (key_type const &k) { if (m.find(k) == m.end()) m[k] = m_default; return m[k]; } private: std::map m; data_type const m_default; }; struct PredecessorMap { PredecessorMap() = default; PredecessorMap(PredecessorMap const &that) = default; typedef VertexDescriptor key_type; typedef VertexDescriptor value_type; typedef boost::read_write_property_map_tag category; VertexDescriptor &operator [] (VertexDescriptor v) { return m_map[v]; } std::map m_map; }; VertexDescriptor get(PredecessorMap const &m, VertexDescriptor v) { auto found = m.m_map.find(v); return found != m.m_map.end() ? found->second : v; } void put(PredecessorMap &m, VertexDescriptor key, VertexDescriptor value) { m.m_map[key] = value; } double EuclideanDistance(VertexDescriptor p1, VertexDescriptor p2) { return std::sqrt(std::pow(p1.y - p2.y, 2) + std::pow(p1.x - p2.x, 2)); } class AStarHeuristic : public boost::astar_heuristic { private: VertexDescriptor m_goal; public: explicit AStarHeuristic(VertexDescriptor goal) : m_goal(goal) { } double operator () (VertexDescriptor v) { return EuclideanDistance(v, m_goal); } }; struct GoalFound { }; class AStarGoalVisitor : public boost::default_astar_visitor { public: explicit AStarGoalVisitor(VertexDescriptor goal) : m_goal(goal){ } void examine_vertex(VertexDescriptor u, KisMagneticGraph const &g) { Q_UNUSED(g) if (u == m_goal) { throw GoalFound(); } } private: VertexDescriptor m_goal; }; struct WeightMap { typedef std::pair key_type; typedef double data_type; typedef std::pair value_type; WeightMap() = default; explicit WeightMap(const KisMagneticGraph &g) : m_graph(g) { } data_type &operator [] (key_type const &k) { if (m_map.find(k) == m_map.end()) { double edge_gradient = (m_graph.getIntensity(k.first) + m_graph.getIntensity(k.second)) / 2; m_map[k] = EuclideanDistance(k.first, k.second) + 255.0 - edge_gradient; } return m_map[k]; } private: std::map m_map; KisMagneticGraph m_graph; }; -KisMagneticWorker::KisMagneticWorker(const KisPaintDeviceSP &dev) +KisMagneticLazyTiles::KisMagneticLazyTiles(KisPaintDeviceSP dev) { m_dev = KisPainter::convertToAlphaAsGray(dev); QSize s = m_dev->exactBounds().size(); m_tileSize = KritaUtils::optimalPatchSize(); m_tilesPerRow = std::ceil((double) s.width() / (double) m_tileSize.width()); int tilesPerColumn = std::ceil((double) s.height() / (double) m_tileSize.height()); m_dev->setDefaultBounds(dev->defaultBounds()); for (int i = 0; i < tilesPerColumn; i++) { for (int j = 0; j < m_tilesPerRow; j++) { int width = std::min(m_dev->exactBounds().width() - j * m_tileSize.width(), m_tileSize.width()); int height = std::min(m_dev->exactBounds().height() - i * m_tileSize.height(), m_tileSize.height()); QRect temp(j *m_tileSize.width(), i *m_tileSize.height(), width, height); m_tiles.push_back(temp); } } m_radiusRecord = QVector(m_tiles.size(), -1); } -void KisMagneticWorker::filterDevice(qreal radius, QRect &bounds) +void KisMagneticLazyTiles::filter(qreal radius, QRect &rect) { - KisGaussianKernel::applyTightLoG(m_dev, bounds, radius, -1.0, QBitArray(), nullptr); - KisLazyFillTools::normalizeAlpha8Device(m_dev, bounds); -} - -QPoint divide2DVal(QPoint p, QSize s) -{ - return QPoint(p.x() / s.width(), p.y() / s.height()); -} - -QVector KisMagneticWorker::computeEdge(int extraBounds, QPoint begin, QPoint end, - qreal radius) -{ - QRect rect; - KisAlgebra2D::accumulateBounds(QVector { begin, end }, &rect); - rect = kisGrowRect(rect, extraBounds); + auto divide = [](QPoint p, QSize s){ + return QPoint(p.x() / s.width(), p.y() / s.height()); + }; - QPoint firstTile = divide2DVal(rect.topLeft(), m_tileSize); - QPoint lastTile = divide2DVal(rect.bottomRight(), m_tileSize); + QPoint firstTile = divide(rect.topLeft(), m_tileSize); + QPoint lastTile = divide(rect.bottomRight(), m_tileSize); for (int i = firstTile.y(); i <= lastTile.y(); i++) { for (int j = firstTile.x(); j <= lastTile.x(); j++) { int currentTile = i * m_tilesPerRow + j; - if (radius != m_radiusRecord[currentTile]) { - filterDevice(radius, m_tiles[currentTile]); + if (qFuzzyCompare(radius, m_radiusRecord[currentTile])) { + QRect bounds = m_tiles[currentTile]; + KisGaussianKernel::applyTightLoG(m_dev, bounds, radius, -1.0, QBitArray(), nullptr); + KisLazyFillTools::normalizeAlpha8Device(m_dev, bounds); m_radiusRecord[currentTile] = radius; } } } +} + +KisMagneticWorker::KisMagneticWorker(const KisPaintDeviceSP &dev) : + m_lazyTileFilter(dev) +{ } + +QVector KisMagneticWorker::computeEdge(int bounds, QPoint begin, QPoint end, qreal radius) +{ + QRect rect; + KisAlgebra2D::accumulateBounds(QVector { begin, end }, &rect); + rect = kisGrowRect(rect, bounds); + + m_lazyTileFilter.filter(radius, rect); + VertexDescriptor goal(end); VertexDescriptor start(begin); - KisMagneticGraph m_graph(m_dev, rect); + KisMagneticGraph m_graph(m_lazyTileFilter.device(), rect); // How many maps does it require? // Take a look here, if it doesn't make sense, https://www.boost.org/doc/libs/1_70_0/libs/graph/doc/astar_search.html PredecessorMap pmap; DistanceMap dmap(std::numeric_limits::max()); dmap[start] = 0; std::map rmap; std::map cmap; std::map imap; WeightMap wmap(m_graph); AStarHeuristic heuristic(goal); QVector result; try { boost::astar_search_no_init( m_graph, start, heuristic, boost::visitor(AStarGoalVisitor(goal)) .distance_map(boost::associative_property_map(dmap)) .predecessor_map(boost::ref(pmap)) .weight_map(boost::associative_property_map(wmap)) .vertex_index_map(boost::associative_property_map >(imap)) .rank_map(boost::associative_property_map >(rmap)) .color_map(boost::associative_property_map > (cmap)) .distance_combine(std::plus()) .distance_compare(std::less()) ); } catch (GoalFound const &) { for (VertexDescriptor u = goal; u != start; u = pmap[u]) { result.push_front(QPointF(u.x, u.y)); } } result.push_front(QPoint(start.x, start.y)); return result; } // KisMagneticWorker::computeEdge void KisMagneticWorker::saveTheImage(vQPointF points) { - QImage img = m_dev->convertToQImage(0, m_dev->exactBounds()); + QImage img = m_lazyTileFilter.device()->convertToQImage(nullptr, m_lazyTileFilter.device()->exactBounds()); - const QPointF offset = m_dev->exactBounds().topLeft(); + const QPointF offset = m_lazyTileFilter.device()->exactBounds().topLeft(); for (QPointF &pt : points) { pt -= offset; } img = img.convertToFormat(QImage::Format_ARGB32); QPainter gc(&img); QPainterPath path; for (int i = 0; i < points.size(); i++) { if (i == 0) { path.moveTo(points[i]); } else { path.lineTo(points[i]); } } gc.setPen(Qt::blue); gc.drawPath(path); gc.setPen(Qt::green); gc.drawEllipse(points[0], 3, 3); gc.setPen(Qt::red); gc.drawEllipse(points[points.count() - 1], 2, 2); - gc.setPen(Qt::red); - for (QRect &r: m_tiles) { - QString str = QString("%1x%2").arg(r.height()).arg(r.width()); - gc.drawText(r, str); - gc.drawRect(r); - } - img.save("result.png"); } // KisMagneticWorker::saveTheImage diff --git a/plugins/tools/selectiontools/KisMagneticWorker.h b/plugins/tools/selectiontools/KisMagneticWorker.h index 7b9d6c0e79..d39bbf36be 100644 --- a/plugins/tools/selectiontools/KisMagneticWorker.h +++ b/plugins/tools/selectiontools/KisMagneticWorker.h @@ -1,45 +1,49 @@ /* * Copyright (c) 2019 Kuntal Majumder * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; version 2.1 of the License. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef KISMAGNETICWORKER_H #define KISMAGNETICWORKER_H #include #include -class KRITASELECTIONTOOLS_EXPORT KisMagneticWorker { +class KisMagneticLazyTiles{ +private: + QVector m_tiles; + QVector m_radiusRecord; + KisPaintDeviceSP m_dev; + QSize m_tileSize; + int m_tilesPerRow; + public: - KisMagneticWorker() - { - // Do not use this, just for making the compiler happy - } + KisMagneticLazyTiles(KisPaintDeviceSP dev); + void filter(qreal radius, QRect &rect); + inline KisPaintDeviceSP device() { return m_dev; } +}; +class KRITASELECTIONTOOLS_EXPORT KisMagneticWorker { +public: KisMagneticWorker(const KisPaintDeviceSP &dev); - QVector computeEdge(int extraBounds, QPoint start, QPoint end, qreal radius); + QVector computeEdge(int bounds, QPoint start, QPoint end, qreal radius); void saveTheImage(vQPointF points); private: - void filterDevice(qreal radius, QRect &bounds); - KisPaintDeviceSP m_dev; - QVector m_tiles; - QVector m_radiusRecord; - QSize m_tileSize; - int m_tilesPerRow; + KisMagneticLazyTiles m_lazyTileFilter; }; #endif // ifndef KISMAGNETICWORKER_H diff --git a/plugins/tools/selectiontools/KisToolSelectMagnetic.cc b/plugins/tools/selectiontools/KisToolSelectMagnetic.cc index cb5f2b8c60..4253535644 100644 --- a/plugins/tools/selectiontools/KisToolSelectMagnetic.cc +++ b/plugins/tools/selectiontools/KisToolSelectMagnetic.cc @@ -1,510 +1,504 @@ /* * Copyright (c) 2019 Kuntal Majumder * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "KisToolSelectMagnetic.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kis_painter.h" #include #include "canvas/kis_canvas2.h" #include "kis_pixel_selection.h" #include "kis_selection_tool_helper.h" #include "kis_algebra_2d.h" #include "KisHandlePainterHelper.h" #include #define FEEDBACK_LINE_WIDTH 2 KisToolSelectMagnetic::KisToolSelectMagnetic(KoCanvasBase *canvas) : KisToolSelect(canvas, KisCursor::load("tool_magnetic_selection_cursor.png", 5, 5), i18n("Magnetic Selection")), - m_continuedMode(false), m_complete(false), m_selected(false), m_finished(false), m_threshold(70), + m_continuedMode(false), m_complete(false), m_selected(false), m_finished(false), m_worker(image()->projection()), m_threshold(70), m_frequency(30), m_radius(3.0) { } void KisToolSelectMagnetic::keyPressEvent(QKeyEvent *event) { if (event->key() == Qt::Key_Control) { m_continuedMode = true; } KisToolSelect::keyPressEvent(event); } void KisToolSelectMagnetic::keyReleaseEvent(QKeyEvent *event) { if (event->key() == Qt::Key_Control || !(event->modifiers() & Qt::ControlModifier)) { m_continuedMode = false; if (mode() != PAINT_MODE && !m_points.isEmpty()) { finishSelectionAction(); } } KisToolSelect::keyReleaseEvent(event); } vQPointF KisToolSelectMagnetic::computeEdgeWrapper(QPoint a, QPoint b) { return m_worker.computeEdge(m_frequency, a, b, m_radius); } // the cursor is still tracked even when no mousebutton is pressed void KisToolSelectMagnetic::mouseMoveEvent(KoPointerEvent *event) { m_lastCursorPos = convertToPixelCoord(event); KisToolSelect::mouseMoveEvent(event); updatePaintPath(); } // KisToolSelectMagnetic::mouseMoveEvent // press primary mouse button void KisToolSelectMagnetic::beginPrimaryAction(KoPointerEvent *event) { setMode(KisTool::PAINT_MODE); QPointF temp(convertToPixelCoord(event)); if(!image()->bounds().contains(temp.toPoint())){ return; } if (m_complete) { checkIfAnchorIsSelected(temp); return; } if (m_points.count() != 0) { vQPointF edge = computeEdgeWrapper(m_anchorPoints.last(), temp.toPoint()); m_points.append(edge); m_pointCollection.push_back(edge); - if (m_snapBound.contains(temp.toPoint())) { + if (m_snapBound.contains(temp)) { m_complete = true; return; } } else { - m_points.push_back(temp.toPoint()); - m_snapBound = QRectF(temp.toPoint(), QSize(5, 5)); + m_points.push_back(temp); + m_snapBound = QRectF(QPoint(0,0), QSize(5, 5)); + m_snapBound.moveTo(temp); } m_lastAnchor = temp.toPoint(); m_anchorPoints.push_back(m_lastAnchor); updateCanvasPixelRect(image()->bounds()); m_complete = false; updatePaintPath(); } // KisToolSelectMagnetic::beginPrimaryAction void KisToolSelectMagnetic::checkIfAnchorIsSelected(QPointF temp) { Q_FOREACH (const QPoint pt, m_anchorPoints) { - if (QRect(pt, QSize(5, 5)).contains(temp.toPoint())) { + QRect r = QRect(QPoint(0,0), QSize(5, 5)); + r.moveCenter(pt); + if (r.contains(temp.toPoint())) { m_selected = true; m_selectedAnchor = m_anchorPoints.lastIndexOf(pt); return; } } } void KisToolSelectMagnetic::beginPrimaryDoubleClickAction(KoPointerEvent *event) { if (m_complete) { QPointF temp = convertToPixelCoord(event); if(!image()->bounds().contains(temp.toPoint())){ return; } int pointA = 0, pointB = 1; double dist = std::numeric_limits::max(); int total = m_anchorPoints.count(); for (int i = 0; i < total; i++) { double distToCompare = kisDistance(m_anchorPoints[i], temp) + kisDistance(temp, m_anchorPoints[(i + 1) % total]); if (dist > distToCompare) { pointA = i; pointB = (i + 1) % total; dist = distToCompare; } } vQPointF path1 = computeEdgeWrapper(m_anchorPoints[pointA], temp.toPoint()); vQPointF path2 = computeEdgeWrapper(temp.toPoint(), m_anchorPoints[pointB]); m_pointCollection[pointA] = path1; m_pointCollection.insert(pointB, path2); m_anchorPoints.insert(pointB, temp.toPoint()); reEvaluatePoints(); } } // drag while primary mouse button is pressed void KisToolSelectMagnetic::continuePrimaryAction(KoPointerEvent *event) { if (m_selected) { m_anchorPoints[m_selectedAnchor] = convertToPixelCoord(event).toPoint(); } KisToolSelectBase::continuePrimaryAction(event); } // release primary mouse button void KisToolSelectMagnetic::endPrimaryAction(KoPointerEvent *event) { if (m_selected) { auto checkIfZero = [ = ](){ return m_selectedAnchor == 0 ? m_anchorPoints.count() - 1 : m_selectedAnchor - 1; }; QPoint currentAnchor = m_anchorPoints[m_selectedAnchor]; QPoint previousAnchor = m_anchorPoints[checkIfZero()]; QPoint nextAnchor = m_anchorPoints[(m_selectedAnchor + 1) % m_anchorPoints.count()]; if (!image()->bounds().contains(m_anchorPoints[m_selectedAnchor])) { m_anchorPoints.remove(m_selectedAnchor); m_pointCollection[checkIfZero()] = computeEdgeWrapper(previousAnchor, nextAnchor); m_pointCollection.remove(m_selectedAnchor); if (m_selectedAnchor == 0) - m_snapBound = QRect(m_anchorPoints.first(), QSize(5, 5)); + m_snapBound.moveCenter(m_anchorPoints.first()); } else { m_pointCollection[checkIfZero()] = computeEdgeWrapper(previousAnchor, currentAnchor); m_pointCollection[m_selectedAnchor] = computeEdgeWrapper(currentAnchor, nextAnchor); } reEvaluatePoints(); } m_selected = false; KisToolSelectBase::endPrimaryAction(event); } // KisToolSelectMagnetic::endPrimaryAction void KisToolSelectMagnetic::reEvaluatePoints() { m_points.clear(); Q_FOREACH (const vQPointF vec, m_pointCollection) { m_points.append(vec); } updatePaintPath(); } void KisToolSelectMagnetic::finishSelectionAction() { KisCanvas2 *kisCanvas = dynamic_cast(canvas()); KIS_ASSERT_RECOVER_RETURN(kisCanvas); kisCanvas->updateCanvas(); setMode(KisTool::HOVER_MODE); m_complete = false; m_finished = true; // just for testing out // m_worker.saveTheImage(m_points); QRectF boundingViewRect = pixelToView(KisAlgebra2D::accumulateBounds(m_points)); KisSelectionToolHelper helper(kisCanvas, kundo2_i18n("Magnetic Selection")); if (m_points.count() > 2 && !helper.tryDeselectCurrentSelection(boundingViewRect, selectionAction())) { QApplication::setOverrideCursor(KisCursor::waitCursor()); const SelectionMode mode = helper.tryOverrideSelectionMode(kisCanvas->viewManager()->selection(), selectionMode(), selectionAction()); if (mode == PIXEL_SELECTION) { KisPixelSelectionSP tmpSel = KisPixelSelectionSP(new KisPixelSelection()); KisPainter painter(tmpSel); painter.setPaintColor(KoColor(Qt::black, tmpSel->colorSpace())); painter.setAntiAliasPolygonFill(antiAliasSelection()); painter.setFillStyle(KisPainter::FillStyleForegroundColor); painter.setStrokeStyle(KisPainter::StrokeStyleNone); painter.paintPolygon(m_points); QPainterPath cache; cache.addPolygon(m_points); cache.closeSubpath(); tmpSel->setOutlineCache(cache); helper.selectPixelSelection(tmpSel, selectionAction()); } else { KoPathShape *path = new KoPathShape(); path->setShapeId(KoPathShapeId); QTransform resolutionMatrix; resolutionMatrix.scale(1 / currentImage()->xRes(), 1 / currentImage()->yRes()); path->moveTo(resolutionMatrix.map(m_points[0])); for (int i = 1; i < m_points.count(); i++) path->lineTo(resolutionMatrix.map(m_points[i])); path->close(); path->normalize(); helper.addSelectionShape(path, selectionAction()); } QApplication::restoreOverrideCursor(); } resetVariables(); } // KisToolSelectMagnetic::finishSelectionAction void KisToolSelectMagnetic::resetVariables() { m_points.clear(); m_anchorPoints.clear(); m_pointCollection.clear(); m_paintPath = QPainterPath(); } void KisToolSelectMagnetic::updatePaintPath() { m_paintPath = QPainterPath(); if (m_points.size() > 0) { m_paintPath.moveTo(pixelToView(m_points[0])); } for (int i = 1; i < m_points.count(); i++) { m_paintPath.lineTo(pixelToView(m_points[i])); } updateFeedback(); if (m_continuedMode && mode() != PAINT_MODE) { updateContinuedMode(); } updateCanvasPixelRect(image()->bounds()); } void KisToolSelectMagnetic::paint(QPainter& gc, const KoViewConverter &converter) { Q_UNUSED(converter); updatePaintPath(); if ((mode() == KisTool::PAINT_MODE || m_continuedMode) && !m_points.isEmpty()) { QPainterPath outline = m_paintPath; if (m_continuedMode && mode() != KisTool::PAINT_MODE) { outline.lineTo(pixelToView(m_lastCursorPos)); } paintToolOutline(&gc, outline); drawAnchors(gc); } } void KisToolSelectMagnetic::drawAnchors(QPainter &gc) { Q_FOREACH (const QPoint pt, m_anchorPoints) { KisHandlePainterHelper helper(&gc, handleRadius()); - if ((m_complete && QRect(pt, QSize(5, 5)).contains(m_lastCursorPos.toPoint())) || + QRect r(QPoint(0,0), QSize(5,5)); + r.moveCenter(pt); + if ((m_complete && r.contains(m_lastCursorPos.toPoint())) || (m_snapBound.contains(m_lastCursorPos) && pt == m_anchorPoints.first())) { helper.setHandleStyle(KisHandleStyle::highlightedPrimaryHandles()); } else { helper.setHandleStyle(KisHandleStyle::primarySelection()); } helper.drawHandleRect(pixelToView(pt), 4, QPoint(0, 0)); } } void KisToolSelectMagnetic::updateFeedback() { if (m_points.count() > 1) { qint32 lastPointIndex = m_points.count() - 1; QRectF updateRect = QRectF(m_points[lastPointIndex - 1], m_points[lastPointIndex]).normalized(); updateRect = kisGrowRect(updateRect, FEEDBACK_LINE_WIDTH); updateCanvasPixelRect(updateRect); } } void KisToolSelectMagnetic::updateContinuedMode() { if (!m_points.isEmpty()) { qint32 lastPointIndex = m_points.count() - 1; QRectF updateRect = QRectF(m_points[lastPointIndex - 1], m_lastCursorPos).normalized(); updateRect = kisGrowRect(updateRect, FEEDBACK_LINE_WIDTH); updateCanvasPixelRect(updateRect); } } void KisToolSelectMagnetic::activate(KoToolBase::ToolActivation activation, const QSet &shapes) { m_worker = KisMagneticWorker(image()->projection()); m_configGroup = KSharedConfig::openConfig()->group(toolId()); connect(action("undo_polygon_selection"), SIGNAL(triggered()), SLOT(undoPoints()), Qt::UniqueConnection); KisToolSelect::activate(activation, shapes); } void KisToolSelectMagnetic::deactivate() { KisCanvas2 *kisCanvas = dynamic_cast(canvas()); KIS_ASSERT_RECOVER_RETURN(kisCanvas); kisCanvas->updateCanvas(); m_continuedMode = false; m_complete = true; disconnect(action("undo_polygon_selection"), nullptr, this, nullptr); KisTool::deactivate(); } void KisToolSelectMagnetic::undoPoints() { if (m_complete) return; m_anchorPoints.pop_back(); - - if (m_anchorPoints.size() == 1) { - m_points.resize(1); - } else { - int last = m_points.count() - 1; - for (; last >= 0; last--) { - if (m_points[last] == m_anchorPoints.last()) { - break; - } - } - m_points.resize(last); - } - updatePaintPath(); + m_pointCollection.pop_back(); + reEvaluatePoints(); } void KisToolSelectMagnetic::requestStrokeEnd() { if (m_finished || m_anchorPoints.count() < 2) return; finishSelectionAction(); m_finished = false; } void KisToolSelectMagnetic::requestStrokeCancellation() { m_complete = false; m_points.clear(); m_anchorPoints.clear(); m_paintPath = QPainterPath(); updatePaintPath(); } QWidget * KisToolSelectMagnetic::createOptionWidget() { KisToolSelectBase::createOptionWidget(); KisSelectionOptions *selectionWidget = selectionOptionWidget(); QHBoxLayout *f1 = new QHBoxLayout(); QLabel *lblRad = new QLabel(i18n("Filter Radius: "), selectionWidget); f1->addWidget(lblRad); KisDoubleSliderSpinBox *radInput = new KisDoubleSliderSpinBox(selectionWidget); radInput->setObjectName("radius"); radInput->setRange(2.5, 100.0, 2); radInput->setSingleStep(0.5); radInput->setToolTip("Radius of the filter for the detecting edges, might take some time to calculate"); f1->addWidget(radInput); connect(radInput, SIGNAL(valueChanged(qreal)), this, SLOT(slotSetRadius(qreal))); QHBoxLayout *f2 = new QHBoxLayout(); QLabel *lblThreshold = new QLabel(i18n("Threshold: "), selectionWidget); f2->addWidget(lblThreshold); KisSliderSpinBox *threshInput = new KisSliderSpinBox(selectionWidget); threshInput->setObjectName("threshold"); threshInput->setRange(1, 255); threshInput->setSingleStep(10); threshInput->setToolTip("Threshold for determining the minimum intensity of the edges"); f2->addWidget(threshInput); connect(threshInput, SIGNAL(valueChanged(int)), this, SLOT(slotSetThreshold(int))); QHBoxLayout *f3 = new QHBoxLayout(); QLabel *lblFrquency = new QLabel(i18n("Search Radius: "), selectionWidget); f3->addWidget(lblFrquency); KisSliderSpinBox *freqInput = new KisSliderSpinBox(selectionWidget); freqInput->setObjectName("frequency"); freqInput->setRange(20, 200); freqInput->setSingleStep(10); freqInput->setToolTip("Extra area to be searched"); freqInput->setSuffix(" px"); f3->addWidget(freqInput); connect(freqInput, SIGNAL(valueChanged(int)), this, SLOT(slotSetFrequency(int))); QVBoxLayout *l = dynamic_cast(selectionWidget->layout()); l->insertLayout(1, f1); l->insertLayout(2, f2); l->insertLayout(3, f3); radInput->setValue(m_configGroup.readEntry("radius", 3.0)); threshInput->setValue(m_configGroup.readEntry("threshold", 100)); freqInput->setValue(m_configGroup.readEntry("frequency", 30)); return selectionWidget; } // KisToolSelectMagnetic::createOptionWidget void KisToolSelectMagnetic::slotSetRadius(qreal r) { m_radius = r; m_configGroup.writeEntry("radius", r); } void KisToolSelectMagnetic::slotSetThreshold(int t) { m_threshold = t; m_configGroup.writeEntry("threshold", t); } void KisToolSelectMagnetic::slotSetFrequency(int f) { m_frequency = f; m_configGroup.writeEntry("frequency", f); } void KisToolSelectMagnetic::resetCursorStyle() { if (selectionAction() == SELECTION_ADD) { useCursor(KisCursor::load("tool_magnetic_selection_cursor_add.png", 6, 6)); } else if (selectionAction() == SELECTION_SUBTRACT) { useCursor(KisCursor::load("tool_magnetic_selection_cursor_sub.png", 6, 6)); } else { KisToolSelect::resetCursorStyle(); } }