diff --git a/libs/ui/canvas/kis_canvas2.cpp b/libs/ui/canvas/kis_canvas2.cpp index 91ff1c101c..8f505a5540 100644 --- a/libs/ui/canvas/kis_canvas2.cpp +++ b/libs/ui/canvas/kis_canvas2.cpp @@ -1,1262 +1,1278 @@ /* This file is part of the KDE project * * Copyright (C) 2006, 2010 Boudewijn Rempt * Copyright (C) Lukáš Tvrdý , (C) 2010 * Copyright (C) 2011 Silvio Heinrich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.. */ #include "kis_canvas2.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kis_tool_proxy.h" #include "kis_coordinates_converter.h" #include "kis_prescaled_projection.h" #include "kis_image.h" #include "kis_image_barrier_locker.h" #include "kis_undo_adapter.h" #include "flake/kis_shape_layer.h" #include "kis_canvas_resource_provider.h" #include "KisViewManager.h" #include "kis_config.h" #include "kis_config_notifier.h" #include "kis_abstract_canvas_widget.h" #include "kis_qpainter_canvas.h" #include "kis_group_layer.h" #include "flake/kis_shape_controller.h" #include "kis_node_manager.h" #include "kis_selection.h" #include "kis_selection_component.h" #include "flake/kis_shape_selection.h" #include "kis_selection_mask.h" #include "kis_image_config.h" #include "kis_infinity_manager.h" #include "kis_signal_compressor.h" #include "kis_display_color_converter.h" #include "kis_exposure_gamma_correction_interface.h" #include "KisView.h" #include "kis_canvas_controller.h" #include "kis_grid_config.h" #include "kis_animation_player.h" #include "kis_animation_frame_cache.h" #include "opengl/kis_opengl_canvas2.h" #include "opengl/kis_opengl.h" #include "kis_fps_decoration.h" #include "KoColorConversionTransformation.h" #include "KisProofingConfiguration.h" #include #include #include "input/kis_input_manager.h" #include "kis_painting_assistants_decoration.h" #include "kis_canvas_updates_compressor.h" #include "KoZoomController.h" #include #include "opengl/kis_opengl_canvas_debugger.h" #include "kis_algebra_2d.h" #include "kis_image_signal_router.h" class Q_DECL_HIDDEN KisCanvas2::KisCanvas2Private { public: KisCanvas2Private(KoCanvasBase *parent, KisCoordinatesConverter* coordConverter, QPointer view, KoCanvasResourceProvider* resourceManager) : coordinatesConverter(coordConverter) , view(view) , shapeManager(parent) , selectedShapesProxy(&shapeManager) , toolProxy(parent) , displayColorConverter(resourceManager, view) , regionOfInterestUpdateCompressor(100, KisSignalCompressor::FIRST_INACTIVE) { } KisCoordinatesConverter *coordinatesConverter; QPointerview; KisAbstractCanvasWidget *canvasWidget = 0; KoShapeManager shapeManager; KisSelectedShapesProxy selectedShapesProxy; bool currentCanvasIsOpenGL; int openGLFilterMode; KisToolProxy toolProxy; KisPrescaledProjectionSP prescaledProjection; bool vastScrolling; KisSignalCompressor canvasUpdateCompressor; QRect savedUpdateRect; QBitArray channelFlags; KisProofingConfigurationSP proofingConfig; bool softProofing = false; bool gamutCheck = false; bool proofingConfigUpdated = false; KisPopupPalette *popupPalette = 0; KisDisplayColorConverter displayColorConverter; KisCanvasUpdatesCompressor projectionUpdatesCompressor; KisAnimationPlayer *animationPlayer; KisAnimationFrameCacheSP frameCache; bool lodAllowedInImage = false; bool bootstrapLodBlocked; QPointer currentlyActiveShapeManager; KisInputActionGroupsMask inputActionGroupsMask = AllActionGroup; KisSignalCompressor frameRenderStartCompressor; KisSignalCompressor regionOfInterestUpdateCompressor; QRect regionOfInterest; QRect renderingLimit; int isBatchUpdateActive = 0; bool effectiveLodAllowedInImage() { return lodAllowedInImage && !bootstrapLodBlocked; } void setActiveShapeManager(KoShapeManager *shapeManager); }; namespace { KoShapeManager* fetchShapeManagerFromNode(KisNodeSP node) { KoShapeManager *shapeManager = 0; KisSelectionSP selection; if (KisLayer *layer = dynamic_cast(node.data())) { KisShapeLayer *shapeLayer = dynamic_cast(layer); if (shapeLayer) { shapeManager = shapeLayer->shapeManager(); } } else if (KisSelectionMask *mask = dynamic_cast(node.data())) { selection = mask->selection(); } if (!shapeManager && selection && selection->hasShapeSelection()) { KisShapeSelection *shapeSelection = dynamic_cast(selection->shapeSelection()); KIS_ASSERT_RECOVER_RETURN_VALUE(shapeSelection, 0); shapeManager = shapeSelection->shapeManager(); } return shapeManager; } } KisCanvas2::KisCanvas2(KisCoordinatesConverter *coordConverter, KoCanvasResourceProvider *resourceManager, KisView *view, KoShapeControllerBase *sc) : KoCanvasBase(sc, resourceManager) , m_d(new KisCanvas2Private(this, coordConverter, view, resourceManager)) { /** * While loading LoD should be blocked. Only when GUI has finished * loading and zoom level settled down, LoD is given a green * light. */ m_d->bootstrapLodBlocked = true; connect(view->mainWindow(), SIGNAL(guiLoadingFinished()), SLOT(bootstrapFinished())); connect(view->mainWindow(), SIGNAL(screenChanged()), SLOT(slotConfigChanged())); KisImageConfig config(false); m_d->canvasUpdateCompressor.setDelay(1000 / config.fpsLimit()); m_d->canvasUpdateCompressor.setMode(KisSignalCompressor::FIRST_ACTIVE); m_d->frameRenderStartCompressor.setDelay(1000 / config.fpsLimit()); m_d->frameRenderStartCompressor.setMode(KisSignalCompressor::FIRST_ACTIVE); } void KisCanvas2::setup() { // a bit of duplication from slotConfigChanged() KisConfig cfg(true); m_d->vastScrolling = cfg.vastScrolling(); m_d->lodAllowedInImage = cfg.levelOfDetailEnabled(); createCanvas(cfg.useOpenGL()); setLodAllowedInCanvas(m_d->lodAllowedInImage); m_d->animationPlayer = new KisAnimationPlayer(this); connect(m_d->view->canvasController()->proxyObject, SIGNAL(moveDocumentOffset(QPoint)), SLOT(documentOffsetMoved(QPoint))); connect(KisConfigNotifier::instance(), SIGNAL(configChanged()), SLOT(slotConfigChanged())); /** * We switch the shape manager every time vector layer or * shape selection is activated. Flake does not expect this * and connects all the signals of the global shape manager * to the clients in the constructor. To workaround this we * forward the signals of local shape managers stored in the * vector layers to the signals of global shape manager. So the * sequence of signal deliveries is the following: * * shapeLayer.m_d.canvas.m_shapeManager.selection() -> * shapeLayer -> * shapeController -> * globalShapeManager.selection() */ KisShapeController *kritaShapeController = static_cast(shapeController()->documentBase()); connect(kritaShapeController, SIGNAL(selectionChanged()), this, SLOT(slotSelectionChanged())); connect(kritaShapeController, SIGNAL(selectionContentChanged()), selectedShapesProxy(), SIGNAL(selectionContentChanged())); connect(kritaShapeController, SIGNAL(currentLayerChanged(const KoShapeLayer*)), selectedShapesProxy(), SIGNAL(currentLayerChanged(const KoShapeLayer*))); connect(&m_d->canvasUpdateCompressor, SIGNAL(timeout()), SLOT(slotDoCanvasUpdate())); connect(this, SIGNAL(sigCanvasCacheUpdated()), &m_d->frameRenderStartCompressor, SLOT(start())); connect(&m_d->frameRenderStartCompressor, SIGNAL(timeout()), SLOT(updateCanvasProjection())); connect(this, SIGNAL(sigContinueResizeImage(qint32,qint32)), SLOT(finishResizingImage(qint32,qint32))); connect(&m_d->regionOfInterestUpdateCompressor, SIGNAL(timeout()), SLOT(slotUpdateRegionOfInterest())); connect(m_d->view->document(), SIGNAL(sigReferenceImagesChanged()), this, SLOT(slotReferenceImagesChanged())); initializeFpsDecoration(); } void KisCanvas2::initializeFpsDecoration() { KisConfig cfg(true); const bool shouldShowDebugOverlay = (canvasIsOpenGL() && cfg.enableOpenGLFramerateLogging()) || cfg.enableBrushSpeedLogging(); if (shouldShowDebugOverlay && !decoration(KisFpsDecoration::idTag)) { addDecoration(new KisFpsDecoration(imageView())); if (cfg.enableBrushSpeedLogging()) { connect(KisStrokeSpeedMonitor::instance(), SIGNAL(sigStatsUpdated()), this, SLOT(updateCanvas())); } } else if (!shouldShowDebugOverlay && decoration(KisFpsDecoration::idTag)) { m_d->canvasWidget->removeDecoration(KisFpsDecoration::idTag); disconnect(KisStrokeSpeedMonitor::instance(), SIGNAL(sigStatsUpdated()), this, SLOT(updateCanvas())); } } KisCanvas2::~KisCanvas2() { if (m_d->animationPlayer->isPlaying()) { m_d->animationPlayer->forcedStopOnExit(); } delete m_d; } void KisCanvas2::setCanvasWidget(KisAbstractCanvasWidget *widget) { if (m_d->popupPalette) { m_d->popupPalette->setParent(widget->widget()); } if (m_d->canvasWidget != 0) { widget->setDecorations(m_d->canvasWidget->decorations()); // Redundant check for the constructor case, see below if(viewManager() != 0) viewManager()->inputManager()->removeTrackedCanvas(this); } m_d->canvasWidget = widget; // Either tmp was null or we are being called by KisCanvas2 constructor that is called by KisView // constructor, so the view manager still doesn't exists. if(m_d->canvasWidget != 0 && viewManager() != 0) viewManager()->inputManager()->addTrackedCanvas(this); if (!m_d->canvasWidget->decoration(INFINITY_DECORATION_ID)) { KisInfinityManager *manager = new KisInfinityManager(m_d->view, this); manager->setVisible(true); m_d->canvasWidget->addDecoration(manager); } widget->widget()->setAutoFillBackground(false); widget->widget()->setAttribute(Qt::WA_OpaquePaintEvent); widget->widget()->setMouseTracking(true); widget->widget()->setAcceptDrops(true); KoCanvasControllerWidget *controller = dynamic_cast(canvasController()); if (controller && controller->canvas() == this) { controller->changeCanvasWidget(widget->widget()); } } bool KisCanvas2::canvasIsOpenGL() const { return m_d->currentCanvasIsOpenGL; } KisOpenGL::FilterMode KisCanvas2::openGLFilterMode() const { return KisOpenGL::FilterMode(m_d->openGLFilterMode); } void KisCanvas2::gridSize(QPointF *offset, QSizeF *spacing) const { QTransform transform = coordinatesConverter()->imageToDocumentTransform(); const QPoint intSpacing = m_d->view->document()->gridConfig().spacing(); const QPoint intOffset = m_d->view->document()->gridConfig().offset(); QPointF size = transform.map(QPointF(intSpacing)); spacing->rwidth() = size.x(); spacing->rheight() = size.y(); *offset = transform.map(QPointF(intOffset)); } bool KisCanvas2::snapToGrid() const { return m_d->view->document()->gridConfig().snapToGrid(); } qreal KisCanvas2::rotationAngle() const { return m_d->coordinatesConverter->rotationAngle(); } bool KisCanvas2::xAxisMirrored() const { return m_d->coordinatesConverter->xAxisMirrored(); } bool KisCanvas2::yAxisMirrored() const { return m_d->coordinatesConverter->yAxisMirrored(); } void KisCanvas2::channelSelectionChanged() { KisImageSP image = this->image(); m_d->channelFlags = image->rootLayer()->channelFlags(); m_d->view->viewManager()->blockUntilOperationsFinishedForced(image); image->barrierLock(); m_d->canvasWidget->channelSelectionChanged(m_d->channelFlags); startUpdateInPatches(image->bounds()); image->unlock(); } void KisCanvas2::addCommand(KUndo2Command *command) { // This method exists to support flake-related operations m_d->view->document()->addCommand(command); } void KisCanvas2::KisCanvas2Private::setActiveShapeManager(KoShapeManager *shapeManager) { if (shapeManager != currentlyActiveShapeManager) { currentlyActiveShapeManager = shapeManager; selectedShapesProxy.setShapeManager(shapeManager); } } KoShapeManager* KisCanvas2::shapeManager() const { KoShapeManager *localShapeManager = this->localShapeManager(); // sanity check for consistency of the local shape manager KIS_SAFE_ASSERT_RECOVER (localShapeManager == m_d->currentlyActiveShapeManager) { localShapeManager = globalShapeManager(); } return localShapeManager ? localShapeManager : globalShapeManager(); } KoSelectedShapesProxy* KisCanvas2::selectedShapesProxy() const { return &m_d->selectedShapesProxy; } KoShapeManager* KisCanvas2::globalShapeManager() const { return &m_d->shapeManager; } KoShapeManager *KisCanvas2::localShapeManager() const { KisNodeSP node = m_d->view->currentNode(); KoShapeManager *localShapeManager = fetchShapeManagerFromNode(node); if (localShapeManager != m_d->currentlyActiveShapeManager) { m_d->setActiveShapeManager(localShapeManager); } return localShapeManager; } void KisCanvas2::updateInputMethodInfo() { // TODO call (the protected) QWidget::updateMicroFocus() on the proper canvas widget... } const KisCoordinatesConverter* KisCanvas2::coordinatesConverter() const { return m_d->coordinatesConverter; } KoViewConverter* KisCanvas2::viewConverter() const { return m_d->coordinatesConverter; } KisInputManager* KisCanvas2::globalInputManager() const { return m_d->view->globalInputManager(); } KisInputActionGroupsMask KisCanvas2::inputActionGroupsMask() const { return m_d->inputActionGroupsMask; } void KisCanvas2::setInputActionGroupsMask(KisInputActionGroupsMask mask) { m_d->inputActionGroupsMask = mask; } QWidget* KisCanvas2::canvasWidget() { return m_d->canvasWidget->widget(); } const QWidget* KisCanvas2::canvasWidget() const { return m_d->canvasWidget->widget(); } KoUnit KisCanvas2::unit() const { KoUnit unit(KoUnit::Pixel); KisImageWSP image = m_d->view->image(); if (image) { if (!qFuzzyCompare(image->xRes(), image->yRes())) { warnKrita << "WARNING: resolution of the image is anisotropic" << ppVar(image->xRes()) << ppVar(image->yRes()); } const qreal resolution = image->xRes(); unit.setFactor(resolution); } return unit; } KoToolProxy * KisCanvas2::toolProxy() const { return &m_d->toolProxy; } void KisCanvas2::createQPainterCanvas() { m_d->currentCanvasIsOpenGL = false; KisQPainterCanvas * canvasWidget = new KisQPainterCanvas(this, m_d->coordinatesConverter, m_d->view); m_d->prescaledProjection = new KisPrescaledProjection(); m_d->prescaledProjection->setCoordinatesConverter(m_d->coordinatesConverter); m_d->prescaledProjection->setMonitorProfile(m_d->displayColorConverter.monitorProfile(), m_d->displayColorConverter.renderingIntent(), m_d->displayColorConverter.conversionFlags()); m_d->prescaledProjection->setDisplayFilter(m_d->displayColorConverter.displayFilter()); canvasWidget->setPrescaledProjection(m_d->prescaledProjection); setCanvasWidget(canvasWidget); } void KisCanvas2::createOpenGLCanvas() { KisConfig cfg(true); m_d->openGLFilterMode = cfg.openGLFilteringMode(); m_d->currentCanvasIsOpenGL = true; KisOpenGLCanvas2 *canvasWidget = new KisOpenGLCanvas2(this, m_d->coordinatesConverter, 0, m_d->view->image(), &m_d->displayColorConverter); m_d->frameCache = KisAnimationFrameCache::getFrameCache(canvasWidget->openGLImageTextures()); setCanvasWidget(canvasWidget); } void KisCanvas2::createCanvas(bool useOpenGL) { // deinitialize previous canvas structures m_d->prescaledProjection = 0; m_d->frameCache = 0; KisConfig cfg(true); QDesktopWidget dw; const KoColorProfile *profile = cfg.displayProfile(dw.screenNumber(imageView())); m_d->displayColorConverter.notifyOpenGLCanvasIsActive(useOpenGL && KisOpenGL::hasOpenGL()); m_d->displayColorConverter.setMonitorProfile(profile); if (useOpenGL && !KisOpenGL::hasOpenGL()) { warnKrita << "Tried to create OpenGL widget when system doesn't have OpenGL\n"; useOpenGL = false; } m_d->displayColorConverter.notifyOpenGLCanvasIsActive(useOpenGL); if (useOpenGL) { createOpenGLCanvas(); if (cfg.canvasState() == "OPENGL_FAILED") { // Creating the opengl canvas failed, fall back warnKrita << "OpenGL Canvas initialization returned OPENGL_FAILED. Falling back to QPainter."; m_d->displayColorConverter.notifyOpenGLCanvasIsActive(false); createQPainterCanvas(); } } else { createQPainterCanvas(); } if (m_d->popupPalette) { m_d->popupPalette->setParent(m_d->canvasWidget->widget()); } } void KisCanvas2::initializeImage() { KisImageSP image = m_d->view->image(); m_d->displayColorConverter.setImageColorSpace(image->colorSpace()); m_d->coordinatesConverter->setImage(image); m_d->toolProxy.initializeImage(image); connect(image, SIGNAL(sigImageUpdated(QRect)), SLOT(startUpdateCanvasProjection(QRect)), Qt::DirectConnection); connect(image->signalRouter(), SIGNAL(sigNotifyBatchUpdateStarted()), SLOT(slotBeginUpdatesBatch()), Qt::DirectConnection); connect(image->signalRouter(), SIGNAL(sigNotifyBatchUpdateEnded()), SLOT(slotEndUpdatesBatch()), Qt::DirectConnection); connect(image->signalRouter(), SIGNAL(sigRequestLodPlanesSyncBlocked(bool)), SLOT(slotSetLodUpdatesBlocked(bool)), Qt::DirectConnection); connect(image, SIGNAL(sigProofingConfigChanged()), SLOT(slotChangeProofingConfig())); connect(image, SIGNAL(sigSizeChanged(QPointF,QPointF)), SLOT(startResizingImage()), Qt::DirectConnection); connect(image->undoAdapter(), SIGNAL(selectionChanged()), SLOT(slotTrySwitchShapeManager())); connect(image, SIGNAL(sigColorSpaceChanged(const KoColorSpace*)), SLOT(slotImageColorSpaceChanged())); connect(image, SIGNAL(sigProfileChanged(const KoColorProfile*)), SLOT(slotImageColorSpaceChanged())); connectCurrentCanvas(); } void KisCanvas2::connectCurrentCanvas() { KisImageWSP image = m_d->view->image(); if (!m_d->currentCanvasIsOpenGL) { Q_ASSERT(m_d->prescaledProjection); m_d->prescaledProjection->setImage(image); } startResizingImage(); setLodAllowedInCanvas(m_d->lodAllowedInImage); emit sigCanvasEngineChanged(); } void KisCanvas2::resetCanvas(bool useOpenGL) { // we cannot reset the canvas before it's created, but this method might be called, // for instance when setting the monitor profile. if (!m_d->canvasWidget) { return; } KisConfig cfg(true); bool needReset = (m_d->currentCanvasIsOpenGL != useOpenGL) || (m_d->currentCanvasIsOpenGL && m_d->openGLFilterMode != cfg.openGLFilteringMode()); if (needReset) { createCanvas(useOpenGL); connectCurrentCanvas(); notifyZoomChanged(); } updateCanvasWidgetImpl(); } void KisCanvas2::startUpdateInPatches(const QRect &imageRect) { /** * We don't do patched loading for openGL canvas, becasue it loads * the tiles, which are bascially "patches". Therefore, big chunks * of memory are never allocated. */ if (m_d->currentCanvasIsOpenGL) { startUpdateCanvasProjection(imageRect); } else { KisImageConfig imageConfig(true); int patchWidth = imageConfig.updatePatchWidth(); int patchHeight = imageConfig.updatePatchHeight(); for (int y = 0; y < imageRect.height(); y += patchHeight) { for (int x = 0; x < imageRect.width(); x += patchWidth) { QRect patchRect(x, y, patchWidth, patchHeight); startUpdateCanvasProjection(patchRect); } } } } void KisCanvas2::setDisplayFilter(QSharedPointer displayFilter) { m_d->displayColorConverter.setDisplayFilter(displayFilter); KisImageSP image = this->image(); m_d->view->viewManager()->blockUntilOperationsFinishedForced(image); image->barrierLock(); m_d->canvasWidget->setDisplayFilter(displayFilter); image->unlock(); } QSharedPointer KisCanvas2::displayFilter() const { return m_d->displayColorConverter.displayFilter(); } void KisCanvas2::slotImageColorSpaceChanged() { KisImageSP image = this->image(); m_d->view->viewManager()->blockUntilOperationsFinishedForced(image); m_d->displayColorConverter.setImageColorSpace(image->colorSpace()); image->barrierLock(); m_d->canvasWidget->notifyImageColorSpaceChanged(image->colorSpace()); image->unlock(); } KisDisplayColorConverter* KisCanvas2::displayColorConverter() const { return &m_d->displayColorConverter; } KisExposureGammaCorrectionInterface* KisCanvas2::exposureGammaCorrectionInterface() const { QSharedPointer displayFilter = m_d->displayColorConverter.displayFilter(); return displayFilter ? displayFilter->correctionInterface() : KisDumbExposureGammaCorrectionInterface::instance(); } void KisCanvas2::setProofingOptions(bool softProof, bool gamutCheck) { m_d->proofingConfig = this->image()->proofingConfiguration(); if (!m_d->proofingConfig) { KisImageConfig cfg(false); m_d->proofingConfig = cfg.defaultProofingconfiguration(); } KoColorConversionTransformation::ConversionFlags conversionFlags = m_d->proofingConfig->conversionFlags; #if QT_VERSION >= 0x050700 if (this->image()->colorSpace()->colorDepthId().id().contains("U")) { conversionFlags.setFlag(KoColorConversionTransformation::SoftProofing, softProof); if (softProof) { conversionFlags.setFlag(KoColorConversionTransformation::GamutCheck, gamutCheck); } } #else if (this->image()->colorSpace()->colorDepthId().id().contains("U")) { conversionFlags |= KoColorConversionTransformation::SoftProofing; } else { conversionFlags = conversionFlags & ~KoColorConversionTransformation::SoftProofing; } if (gamutCheck && softProof && this->image()->colorSpace()->colorDepthId().id().contains("U")) { conversionFlags |= KoColorConversionTransformation::GamutCheck; } else { conversionFlags = conversionFlags & ~KoColorConversionTransformation::GamutCheck; } #endif m_d->proofingConfig->conversionFlags = conversionFlags; m_d->proofingConfigUpdated = true; startUpdateInPatches(this->image()->bounds()); } void KisCanvas2::slotSoftProofing(bool softProofing) { m_d->softProofing = softProofing; setProofingOptions(m_d->softProofing, m_d->gamutCheck); } void KisCanvas2::slotGamutCheck(bool gamutCheck) { m_d->gamutCheck = gamutCheck; setProofingOptions(m_d->softProofing, m_d->gamutCheck); } void KisCanvas2::slotChangeProofingConfig() { setProofingOptions(m_d->softProofing, m_d->gamutCheck); } void KisCanvas2::setProofingConfigUpdated(bool updated) { m_d->proofingConfigUpdated = updated; } bool KisCanvas2::proofingConfigUpdated() { return m_d->proofingConfigUpdated; } KisProofingConfigurationSP KisCanvas2::proofingConfiguration() const { if (!m_d->proofingConfig) { m_d->proofingConfig = this->image()->proofingConfiguration(); if (!m_d->proofingConfig) { m_d->proofingConfig = KisImageConfig(true).defaultProofingconfiguration(); } } return m_d->proofingConfig; } void KisCanvas2::startResizingImage() { KisImageWSP image = this->image(); qint32 w = image->width(); qint32 h = image->height(); emit sigContinueResizeImage(w, h); QRect imageBounds(0, 0, w, h); startUpdateInPatches(imageBounds); } void KisCanvas2::finishResizingImage(qint32 w, qint32 h) { m_d->canvasWidget->finishResizingImage(w, h); } void KisCanvas2::startUpdateCanvasProjection(const QRect & rc) { KisUpdateInfoSP info = m_d->canvasWidget->startUpdateCanvasProjection(rc, m_d->channelFlags); if (m_d->projectionUpdatesCompressor.putUpdateInfo(info)) { emit sigCanvasCacheUpdated(); } } void KisCanvas2::updateCanvasProjection() { auto tryIssueCanvasUpdates = [this](const QRect &vRect) { if (!m_d->isBatchUpdateActive) { // TODO: Implement info->dirtyViewportRect() for KisOpenGLCanvas2 to avoid updating whole canvas if (m_d->currentCanvasIsOpenGL) { m_d->savedUpdateRect = QRect(); // we already had a compression in frameRenderStartCompressor, so force the update directly slotDoCanvasUpdate(); } else if (/* !m_d->currentCanvasIsOpenGL && */ !vRect.isEmpty()) { m_d->savedUpdateRect = m_d->coordinatesConverter->viewportToWidget(vRect).toAlignedRect(); // we already had a compression in frameRenderStartCompressor, so force the update directly slotDoCanvasUpdate(); } } }; auto uploadData = [this, tryIssueCanvasUpdates](const QVector &infoObjects) { QVector viewportRects = m_d->canvasWidget->updateCanvasProjection(infoObjects); const QRect vRect = std::accumulate(viewportRects.constBegin(), viewportRects.constEnd(), QRect(), std::bit_or()); tryIssueCanvasUpdates(vRect); }; bool shouldExplicitlyIssueUpdates = false; QVector infoObjects; KisUpdateInfoList originalInfoObjects; m_d->projectionUpdatesCompressor.takeUpdateInfo(originalInfoObjects); for (auto it = originalInfoObjects.constBegin(); it != originalInfoObjects.constEnd(); ++it) { KisUpdateInfoSP info = *it; const KisMarkerUpdateInfo *batchInfo = dynamic_cast(info.data()); if (batchInfo) { if (!infoObjects.isEmpty()) { uploadData(infoObjects); infoObjects.clear(); } if (batchInfo->type() == KisMarkerUpdateInfo::StartBatch) { m_d->isBatchUpdateActive++; } else if (batchInfo->type() == KisMarkerUpdateInfo::EndBatch) { m_d->isBatchUpdateActive--; KIS_SAFE_ASSERT_RECOVER_RETURN(m_d->isBatchUpdateActive >= 0); if (m_d->isBatchUpdateActive == 0) { shouldExplicitlyIssueUpdates = true; } } else if (batchInfo->type() == KisMarkerUpdateInfo::BlockLodUpdates) { m_d->canvasWidget->setLodResetInProgress(true); } else if (batchInfo->type() == KisMarkerUpdateInfo::UnblockLodUpdates) { m_d->canvasWidget->setLodResetInProgress(false); shouldExplicitlyIssueUpdates = true; } } else { infoObjects << info; } } if (!infoObjects.isEmpty()) { uploadData(infoObjects); } else if (shouldExplicitlyIssueUpdates) { tryIssueCanvasUpdates(m_d->coordinatesConverter->imageRectInImagePixels()); } } void KisCanvas2::slotBeginUpdatesBatch() { KisUpdateInfoSP info = new KisMarkerUpdateInfo(KisMarkerUpdateInfo::StartBatch, m_d->coordinatesConverter->imageRectInImagePixels()); m_d->projectionUpdatesCompressor.putUpdateInfo(info); emit sigCanvasCacheUpdated(); } void KisCanvas2::slotEndUpdatesBatch() { KisUpdateInfoSP info = new KisMarkerUpdateInfo(KisMarkerUpdateInfo::EndBatch, m_d->coordinatesConverter->imageRectInImagePixels()); m_d->projectionUpdatesCompressor.putUpdateInfo(info); emit sigCanvasCacheUpdated(); } void KisCanvas2::slotSetLodUpdatesBlocked(bool value) { KisUpdateInfoSP info = new KisMarkerUpdateInfo(value ? KisMarkerUpdateInfo::BlockLodUpdates : KisMarkerUpdateInfo::UnblockLodUpdates, m_d->coordinatesConverter->imageRectInImagePixels()); m_d->projectionUpdatesCompressor.putUpdateInfo(info); emit sigCanvasCacheUpdated(); } void KisCanvas2::slotDoCanvasUpdate() { /** * WARNING: in isBusy() we access openGL functions without making the painting * context current. We hope that currently active context will be Qt's one, * which is shared with our own. */ if (m_d->canvasWidget->isBusy()) { // just restarting the timer updateCanvasWidgetImpl(m_d->savedUpdateRect); return; } if (m_d->savedUpdateRect.isEmpty()) { m_d->canvasWidget->widget()->update(); emit updateCanvasRequested(m_d->canvasWidget->widget()->rect()); } else { emit updateCanvasRequested(m_d->savedUpdateRect); m_d->canvasWidget->widget()->update(m_d->savedUpdateRect); } m_d->savedUpdateRect = QRect(); } void KisCanvas2::updateCanvasWidgetImpl(const QRect &rc) { if (!m_d->canvasUpdateCompressor.isActive() || !m_d->savedUpdateRect.isEmpty()) { m_d->savedUpdateRect |= rc; } m_d->canvasUpdateCompressor.start(); } void KisCanvas2::updateCanvas() { updateCanvasWidgetImpl(); } void KisCanvas2::updateCanvas(const QRectF& documentRect) { if (m_d->currentCanvasIsOpenGL && m_d->canvasWidget->decorations().size() > 0) { updateCanvasWidgetImpl(); } else { // updateCanvas is called from tools, never from the projection // updates, so no need to prescale! QRect widgetRect = m_d->coordinatesConverter->documentToWidget(documentRect).toAlignedRect(); widgetRect.adjust(-2, -2, 2, 2); if (!widgetRect.isEmpty()) { updateCanvasWidgetImpl(widgetRect); } } } void KisCanvas2::disconnectCanvasObserver(QObject *object) { KoCanvasBase::disconnectCanvasObserver(object); m_d->view->disconnect(object); } void KisCanvas2::notifyZoomChanged() { if (!m_d->currentCanvasIsOpenGL) { Q_ASSERT(m_d->prescaledProjection); m_d->prescaledProjection->notifyZoomChanged(); } notifyLevelOfDetailChange(); updateCanvas(); // update the canvas, because that isn't done when zooming using KoZoomAction m_d->regionOfInterestUpdateCompressor.start(); } QRect KisCanvas2::regionOfInterest() const { return m_d->regionOfInterest; } void KisCanvas2::slotUpdateRegionOfInterest() { const QRect oldRegionOfInterest = m_d->regionOfInterest; const qreal ratio = 0.25; const QRect proposedRoi = KisAlgebra2D::blowRect(m_d->coordinatesConverter->widgetRectInImagePixels(), ratio).toAlignedRect(); const QRect imageRect = m_d->coordinatesConverter->imageRectInImagePixels(); m_d->regionOfInterest = imageRect.contains(proposedRoi) ? proposedRoi : imageRect; if (m_d->regionOfInterest != oldRegionOfInterest) { emit sigRegionOfInterestChanged(m_d->regionOfInterest); } } void KisCanvas2::slotReferenceImagesChanged() { canvasController()->resetScrollBars(); } void KisCanvas2::setRenderingLimit(const QRect &rc) { m_d->renderingLimit = rc; } QRect KisCanvas2::renderingLimit() const { return m_d->renderingLimit; } void KisCanvas2::slotTrySwitchShapeManager() { KisNodeSP node = m_d->view->currentNode(); QPointer newManager; newManager = fetchShapeManagerFromNode(node); m_d->setActiveShapeManager(newManager); } void KisCanvas2::notifyLevelOfDetailChange() { if (!m_d->effectiveLodAllowedInImage()) return; const qreal effectiveZoom = m_d->coordinatesConverter->effectiveZoom(); KisConfig cfg(true); const int maxLod = cfg.numMipmapLevels(); const int lod = KisLodTransform::scaleToLod(effectiveZoom, maxLod); if (m_d->effectiveLodAllowedInImage()) { KisImageSP image = this->image(); image->setDesiredLevelOfDetail(lod); } } const KoColorProfile * KisCanvas2::monitorProfile() { return m_d->displayColorConverter.monitorProfile(); } KisViewManager* KisCanvas2::viewManager() const { if (m_d->view) { return m_d->view->viewManager(); } return 0; } QPointerKisCanvas2::imageView() const { return m_d->view; } KisImageWSP KisCanvas2::image() const { return m_d->view->image(); } KisImageWSP KisCanvas2::currentImage() const { return m_d->view->image(); } void KisCanvas2::documentOffsetMoved(const QPoint &documentOffset) { QPointF offsetBefore = m_d->coordinatesConverter->imageRectInViewportPixels().topLeft(); - m_d->coordinatesConverter->setDocumentOffset(documentOffset); + + qreal devicePixelRatio = m_d->coordinatesConverter->devicePixelRatio(); + // The given offset is in widget logical pixels. In order to prevent fuzzy + // canvas rendering at 100% pixel-perfect zoom level when devicePixelRatio + // is not integral, we adjusts the offset to map to whole device pixels. + // We use qFloor here since the offset can be negative. + int deviceOffsetX = qFloor(documentOffset.x() * devicePixelRatio); + int deviceOffsetY = qFloor(documentOffset.y() * devicePixelRatio); + // These adjusted offsets will be in logical pixel but is aligned in device + // pixel space for pixel-perfect rendering. + qreal pixelPerfectOffsetX = deviceOffsetX / devicePixelRatio; + qreal pixelPerfectOffsetY = deviceOffsetY / devicePixelRatio; + // FIXME: This is a temporary hack for fixing the canvas under fractional + // DPI scaling before a new coordinate system is introduced. + QPointF offsetAdjusted(pixelPerfectOffsetX, pixelPerfectOffsetY); + + m_d->coordinatesConverter->setDocumentOffset(offsetAdjusted); QPointF offsetAfter = m_d->coordinatesConverter->imageRectInViewportPixels().topLeft(); QPointF moveOffset = offsetAfter - offsetBefore; if (!m_d->currentCanvasIsOpenGL) m_d->prescaledProjection->viewportMoved(moveOffset); emit documentOffsetUpdateFinished(); updateCanvas(); m_d->regionOfInterestUpdateCompressor.start(); } void KisCanvas2::slotConfigChanged() { KisConfig cfg(true); m_d->vastScrolling = cfg.vastScrolling(); resetCanvas(cfg.useOpenGL()); setDisplayProfile(cfg.displayProfile(QApplication::desktop()->screenNumber(this->canvasWidget()))); initializeFpsDecoration(); } void KisCanvas2::refetchDataFromImage() { KisImageSP image = this->image(); KisImageBarrierLocker l(image); startUpdateInPatches(image->bounds()); } void KisCanvas2::setDisplayProfile(const KoColorProfile *monitorProfile) { if (m_d->displayColorConverter.monitorProfile() == monitorProfile) return; m_d->displayColorConverter.setMonitorProfile(monitorProfile); { KisImageSP image = this->image(); KisImageBarrierLocker l(image); m_d->canvasWidget->setDisplayColorConverter(&m_d->displayColorConverter); } refetchDataFromImage(); } void KisCanvas2::addDecoration(KisCanvasDecorationSP deco) { m_d->canvasWidget->addDecoration(deco); } KisCanvasDecorationSP KisCanvas2::decoration(const QString& id) const { return m_d->canvasWidget->decoration(id); } QPoint KisCanvas2::documentOrigin() const { /** * In Krita we don't use document origin anymore. * All the centering when needed (vastScrolling < 0.5) is done * automatically by the KisCoordinatesConverter. */ return QPoint(); } QPoint KisCanvas2::documentOffset() const { return m_d->coordinatesConverter->documentOffset(); } void KisCanvas2::setFavoriteResourceManager(KisFavoriteResourceManager* favoriteResourceManager) { m_d->popupPalette = new KisPopupPalette(viewManager(), m_d->coordinatesConverter, favoriteResourceManager, displayColorConverter()->displayRendererInterface(), m_d->view->resourceProvider(), m_d->canvasWidget->widget()); connect(m_d->popupPalette, SIGNAL(zoomLevelChanged(int)), this, SLOT(slotPopupPaletteRequestedZoomChange(int))); connect(m_d->popupPalette, SIGNAL(sigUpdateCanvas()), this, SLOT(updateCanvas())); connect(m_d->view->mainWindow(), SIGNAL(themeChanged()), m_d->popupPalette, SLOT(slotUpdateIcons())); m_d->popupPalette->showPopupPalette(false); } void KisCanvas2::slotPopupPaletteRequestedZoomChange(int zoom ) { m_d->view->viewManager()->zoomController()->setZoom(KoZoomMode::ZOOM_CONSTANT, (qreal)(zoom/100.0)); // 1.0 is 100% zoom notifyZoomChanged(); } void KisCanvas2::setCursor(const QCursor &cursor) { canvasWidget()->setCursor(cursor); } KisAnimationFrameCacheSP KisCanvas2::frameCache() const { return m_d->frameCache; } KisAnimationPlayer *KisCanvas2::animationPlayer() const { return m_d->animationPlayer; } void KisCanvas2::slotSelectionChanged() { KisShapeLayer* shapeLayer = dynamic_cast(viewManager()->activeLayer().data()); if (!shapeLayer) { return; } m_d->shapeManager.selection()->deselectAll(); Q_FOREACH (KoShape* shape, shapeLayer->shapeManager()->selection()->selectedShapes()) { m_d->shapeManager.selection()->select(shape); } } bool KisCanvas2::isPopupPaletteVisible() const { if (!m_d->popupPalette) { return false; } return m_d->popupPalette->isVisible(); } void KisCanvas2::setWrapAroundViewingMode(bool value) { KisCanvasDecorationSP infinityDecoration = m_d->canvasWidget->decoration(INFINITY_DECORATION_ID); if (infinityDecoration) { infinityDecoration->setVisible(!value); } m_d->canvasWidget->setWrapAroundViewingMode(value); } bool KisCanvas2::wrapAroundViewingMode() const { KisCanvasDecorationSP infinityDecoration = m_d->canvasWidget->decoration(INFINITY_DECORATION_ID); if (infinityDecoration) { return !(infinityDecoration->visible()); } return false; } void KisCanvas2::bootstrapFinished() { if (!m_d->bootstrapLodBlocked) return; m_d->bootstrapLodBlocked = false; setLodAllowedInCanvas(m_d->lodAllowedInImage); } void KisCanvas2::setLodAllowedInCanvas(bool value) { if (!KisOpenGL::supportsLoD()) { qWarning() << "WARNING: Level of Detail functionality is available only with openGL + GLSL 1.3 support"; } m_d->lodAllowedInImage = value && m_d->currentCanvasIsOpenGL && KisOpenGL::supportsLoD() && (m_d->openGLFilterMode == KisOpenGL::TrilinearFilterMode || m_d->openGLFilterMode == KisOpenGL::HighQualityFiltering); KisImageSP image = this->image(); if (m_d->effectiveLodAllowedInImage() != !image->levelOfDetailBlocked()) { image->setLevelOfDetailBlocked(!m_d->effectiveLodAllowedInImage()); } notifyLevelOfDetailChange(); KisConfig cfg(false); cfg.setLevelOfDetailEnabled(m_d->lodAllowedInImage); } bool KisCanvas2::lodAllowedInCanvas() const { return m_d->lodAllowedInImage; } void KisCanvas2::slotShowPopupPalette(const QPoint &p) { if (!m_d->popupPalette) { return; } m_d->popupPalette->showPopupPalette(p); } KisPaintingAssistantsDecorationSP KisCanvas2::paintingAssistantsDecoration() const { KisCanvasDecorationSP deco = decoration("paintingAssistantsDecoration"); return qobject_cast(deco.data()); } KisReferenceImagesDecorationSP KisCanvas2::referenceImagesDecoration() const { KisCanvasDecorationSP deco = decoration("referenceImagesDecoration"); return qobject_cast(deco.data()); } diff --git a/libs/ui/canvas/kis_coordinates_converter.cpp b/libs/ui/canvas/kis_coordinates_converter.cpp index c8e3f5c34e..2dab83e47f 100644 --- a/libs/ui/canvas/kis_coordinates_converter.cpp +++ b/libs/ui/canvas/kis_coordinates_converter.cpp @@ -1,464 +1,469 @@ /* * Copyright (c) 2010 Dmitry Kazakov * Copyright (c) 2011 Silvio Heinrich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include "kis_coordinates_converter.h" #include #include #include #include struct KisCoordinatesConverter::Private { Private(): isXAxisMirrored(false), isYAxisMirrored(false), rotationAngle(0.0), devicePixelRatio(1.0) { } KisImageWSP image; bool isXAxisMirrored; bool isYAxisMirrored; qreal rotationAngle; QSizeF canvasWidgetSize; qreal devicePixelRatio; QPointF documentOffset; QTransform flakeToWidget; QTransform imageToDocument; QTransform documentToFlake; QTransform widgetToViewport; }; /** * When vastScrolling value is less than 0.5 it is possible * that the whole scrolling area (viewport) will be smaller than * the size of the widget. In such cases the image should be * centered in the widget. Previously we used a special parameter * documentOrigin for this purpose, now the value for this * centering is calculated dynamically, helping the offset to * center the image inside the widget * * Note that the correction is null when the size of the document * plus vast scrolling reserve is larger than the widget. This * is always true for vastScrolling parameter > 0.5. */ QPointF KisCoordinatesConverter::centeringCorrection() const { KisConfig cfg(true); QSize documentSize = imageRectInWidgetPixels().toAlignedRect().size(); QPointF dPoint(documentSize.width(), documentSize.height()); QPointF wPoint(m_d->canvasWidgetSize.width(), m_d->canvasWidgetSize.height()); QPointF minOffset = -cfg.vastScrolling() * wPoint; QPointF maxOffset = dPoint - wPoint + cfg.vastScrolling() * wPoint; QPointF range = maxOffset - minOffset; range.rx() = qMin(range.x(), (qreal)0.0); range.ry() = qMin(range.y(), (qreal)0.0); range /= 2; return -range; } /** * The document offset and the position of the top left corner of the * image must always coincide, that is why we need to correct them to * and fro. * * When we change zoom level, the calculation of the new offset is * done by KoCanvasControllerWidget, that is why we just passively fix * the flakeToWidget transform to conform the offset and wait until * the canvas controller will recenter us. * * But when we do our own transformations of the canvas, like rotation * and mirroring, we cannot rely on the centering of the canvas * controller and we do it ourselves. Then we just set new offset and * return its value to be set in the canvas controller explicitly. */ void KisCoordinatesConverter::correctOffsetToTransformation() { m_d->documentOffset = -(imageRectInWidgetPixels().topLeft() - centeringCorrection()).toPoint(); } void KisCoordinatesConverter::correctTransformationToOffset() { QPointF topLeft = imageRectInWidgetPixels().topLeft(); QPointF diff = (-topLeft) - m_d->documentOffset; diff += centeringCorrection(); m_d->flakeToWidget *= QTransform::fromTranslate(diff.x(), diff.y()); } void KisCoordinatesConverter::recalculateTransformations() { if(!m_d->image) return; m_d->imageToDocument = QTransform::fromScale(1 / m_d->image->xRes(), 1 / m_d->image->yRes()); qreal zoomX, zoomY; KoZoomHandler::zoom(&zoomX, &zoomY); m_d->documentToFlake = QTransform::fromScale(zoomX, zoomY); correctTransformationToOffset(); QRectF irect = imageRectInWidgetPixels(); QRectF wrect = QRectF(QPoint(0,0), m_d->canvasWidgetSize); QRectF rrect = irect & wrect; QTransform reversedTransform = flakeToWidgetTransform().inverted(); QRectF canvasBounds = reversedTransform.mapRect(rrect); QPointF offset = canvasBounds.topLeft(); m_d->widgetToViewport = reversedTransform * QTransform::fromTranslate(-offset.x(), -offset.y()); } KisCoordinatesConverter::KisCoordinatesConverter() : m_d(new Private) { } KisCoordinatesConverter::~KisCoordinatesConverter() { delete m_d; } -void KisCoordinatesConverter::setCanvasWidgetSize(QSize size) +void KisCoordinatesConverter::setCanvasWidgetSize(QSizeF size) { m_d->canvasWidgetSize = size; recalculateTransformations(); } void KisCoordinatesConverter::setDevicePixelRatio(qreal value) { m_d->devicePixelRatio = value; } void KisCoordinatesConverter::setImage(KisImageWSP image) { m_d->image = image; recalculateTransformations(); } -void KisCoordinatesConverter::setDocumentOffset(const QPoint& offset) +void KisCoordinatesConverter::setDocumentOffset(const QPointF& offset) { QPointF diff = m_d->documentOffset - offset; m_d->documentOffset = offset; m_d->flakeToWidget *= QTransform::fromTranslate(diff.x(), diff.y()); recalculateTransformations(); } +qreal KisCoordinatesConverter::devicePixelRatio() const +{ + return m_d->devicePixelRatio; +} + QPoint KisCoordinatesConverter::documentOffset() const { return QPoint(int(m_d->documentOffset.x()), int(m_d->documentOffset.y())); } qreal KisCoordinatesConverter::rotationAngle() const { return m_d->rotationAngle; } void KisCoordinatesConverter::setZoom(qreal zoom) { KoZoomHandler::setZoom(zoom); recalculateTransformations(); } qreal KisCoordinatesConverter::effectiveZoom() const { qreal scaleX, scaleY; this->imageScale(&scaleX, &scaleY); if (scaleX != scaleY) { qWarning() << "WARNING: Zoom is not isotropic!" << ppVar(scaleX) << ppVar(scaleY) << ppVar(qFuzzyCompare(scaleX, scaleY)); } // zoom by average of x and y return 0.5 * (scaleX + scaleY); } QPoint KisCoordinatesConverter::rotate(QPointF center, qreal angle) { QTransform rot; rot.rotate(angle); m_d->flakeToWidget *= QTransform::fromTranslate(-center.x(),-center.y()); m_d->flakeToWidget *= rot; m_d->flakeToWidget *= QTransform::fromTranslate(center.x(), center.y()); m_d->rotationAngle = std::fmod(m_d->rotationAngle + angle, 360.0); correctOffsetToTransformation(); recalculateTransformations(); return m_d->documentOffset.toPoint(); } QPoint KisCoordinatesConverter::mirror(QPointF center, bool mirrorXAxis, bool mirrorYAxis) { bool keepOrientation = false; // XXX: Keep here for now, maybe some day we can restore the parameter again. bool doXMirroring = m_d->isXAxisMirrored ^ mirrorXAxis; bool doYMirroring = m_d->isYAxisMirrored ^ mirrorYAxis; qreal scaleX = doXMirroring ? -1.0 : 1.0; qreal scaleY = doYMirroring ? -1.0 : 1.0; QTransform mirror = QTransform::fromScale(scaleX, scaleY); QTransform rot; rot.rotate(m_d->rotationAngle); m_d->flakeToWidget *= QTransform::fromTranslate(-center.x(),-center.y()); if (keepOrientation) { m_d->flakeToWidget *= rot.inverted(); } m_d->flakeToWidget *= mirror; if (keepOrientation) { m_d->flakeToWidget *= rot; } m_d->flakeToWidget *= QTransform::fromTranslate(center.x(),center.y()); if (!keepOrientation && (doXMirroring ^ doYMirroring)) { m_d->rotationAngle = -m_d->rotationAngle; } m_d->isXAxisMirrored = mirrorXAxis; m_d->isYAxisMirrored = mirrorYAxis; correctOffsetToTransformation(); recalculateTransformations(); return m_d->documentOffset.toPoint(); } bool KisCoordinatesConverter::xAxisMirrored() const { return m_d->isXAxisMirrored; } bool KisCoordinatesConverter::yAxisMirrored() const { return m_d->isYAxisMirrored; } QPoint KisCoordinatesConverter::resetRotation(QPointF center) { QTransform rot; rot.rotate(-m_d->rotationAngle); m_d->flakeToWidget *= QTransform::fromTranslate(-center.x(), -center.y()); m_d->flakeToWidget *= rot; m_d->flakeToWidget *= QTransform::fromTranslate(center.x(), center.y()); m_d->rotationAngle = 0.0; correctOffsetToTransformation(); recalculateTransformations(); return m_d->documentOffset.toPoint(); } QTransform KisCoordinatesConverter::imageToWidgetTransform() const{ return m_d->imageToDocument * m_d->documentToFlake * m_d->flakeToWidget; } QTransform KisCoordinatesConverter::imageToDocumentTransform() const { return m_d->imageToDocument; } QTransform KisCoordinatesConverter::documentToFlakeTransform() const { return m_d->documentToFlake; } QTransform KisCoordinatesConverter::flakeToWidgetTransform() const { return m_d->flakeToWidget; } QTransform KisCoordinatesConverter::documentToWidgetTransform() const { return m_d->documentToFlake * m_d->flakeToWidget; } QTransform KisCoordinatesConverter::viewportToWidgetTransform() const { return m_d->widgetToViewport.inverted(); } QTransform KisCoordinatesConverter::imageToViewportTransform() const { return m_d->imageToDocument * m_d->documentToFlake * m_d->flakeToWidget * m_d->widgetToViewport; } void KisCoordinatesConverter::getQPainterCheckersInfo(QTransform *transform, QPointF *brushOrigin, QPolygonF *polygon, const bool scrollCheckers) const { /** * Qt has different rounding for QPainter::drawRect/drawImage. * The image is rounded mathematically, while rect in aligned * to the next integer. That causes transparent line appear on * the canvas. * * See: https://bugreports.qt.nokia.com/browse/QTBUG-22827 */ QRectF imageRect = imageRectInViewportPixels(); imageRect.adjust(0,0,-0.5,-0.5); if (scrollCheckers) { *transform = viewportToWidgetTransform(); *polygon = imageRect; *brushOrigin = imageToViewport(QPointF(0,0)); } else { *transform = QTransform(); *polygon = viewportToWidgetTransform().map(imageRect); *brushOrigin = QPoint(0,0); } } void KisCoordinatesConverter::getOpenGLCheckersInfo(const QRectF &viewportRect, QTransform *textureTransform, QTransform *modelTransform, QRectF *textureRect, QRectF *modelRect, const bool scrollCheckers) const { if(scrollCheckers) { *textureTransform = QTransform(); *textureRect = QRectF(0, 0, viewportRect.width(),viewportRect.height()); } else { *textureTransform = viewportToWidgetTransform(); *textureRect = viewportRect; } *modelTransform = viewportToWidgetTransform(); *modelRect = viewportRect; } QPointF KisCoordinatesConverter::imageCenterInWidgetPixel() const { if(!m_d->image) return QPointF(); QPolygonF poly = imageToWidget(QPolygon(m_d->image->bounds())); return (poly[0] + poly[1] + poly[2] + poly[3]) / 4.0; } // these functions return a bounding rect if the canvas is rotated QRectF KisCoordinatesConverter::imageRectInWidgetPixels() const { if(!m_d->image) return QRectF(); return imageToWidget(m_d->image->bounds()); } QRectF KisCoordinatesConverter::imageRectInViewportPixels() const { if(!m_d->image) return QRectF(); return imageToViewport(m_d->image->bounds()); } QRect KisCoordinatesConverter::imageRectInImagePixels() const { if(!m_d->image) return QRect(); return m_d->image->bounds(); } QRectF KisCoordinatesConverter::imageRectInDocumentPixels() const { if(!m_d->image) return QRectF(); return imageToDocument(m_d->image->bounds()); } QSizeF KisCoordinatesConverter::imageSizeInFlakePixels() const { if(!m_d->image) return QSizeF(); qreal scaleX, scaleY; imageScale(&scaleX, &scaleY); QSize imageSize = m_d->image->size(); return QSizeF(imageSize.width() * scaleX, imageSize.height() * scaleY); } QRectF KisCoordinatesConverter::widgetRectInFlakePixels() const { return widgetToFlake(QRectF(QPoint(0,0), m_d->canvasWidgetSize)); } QRectF KisCoordinatesConverter::widgetRectInImagePixels() const { return widgetToImage(QRectF(QPoint(0,0), m_d->canvasWidgetSize)); } QPointF KisCoordinatesConverter::flakeCenterPoint() const { QRectF widgetRect = widgetRectInFlakePixels(); return QPointF(widgetRect.left() + widgetRect.width() / 2, widgetRect.top() + widgetRect.height() / 2); } QPointF KisCoordinatesConverter::widgetCenterPoint() const { return QPointF(m_d->canvasWidgetSize.width() / 2.0, m_d->canvasWidgetSize.height() / 2.0); } void KisCoordinatesConverter::imageScale(qreal *scaleX, qreal *scaleY) const { if(!m_d->image) { *scaleX = 1.0; *scaleY = 1.0; return; } // get the x and y zoom level of the canvas qreal zoomX, zoomY; KoZoomHandler::zoom(&zoomX, &zoomY); // Get the KisImage resolution qreal resX = m_d->image->xRes(); qreal resY = m_d->image->yRes(); // Compute the scale factors *scaleX = zoomX / resX; *scaleY = zoomY / resY; } void KisCoordinatesConverter::imagePhysicalScale(qreal *scaleX, qreal *scaleY) const { imageScale(scaleX, scaleY); *scaleX *= m_d->devicePixelRatio; *scaleY *= m_d->devicePixelRatio; } diff --git a/libs/ui/canvas/kis_coordinates_converter.h b/libs/ui/canvas/kis_coordinates_converter.h index 9a7bd2061d..9d73c25b6d 100644 --- a/libs/ui/canvas/kis_coordinates_converter.h +++ b/libs/ui/canvas/kis_coordinates_converter.h @@ -1,166 +1,167 @@ /* * Copyright (c) 2010 Dmitry Kazakov * Copyright (c) 2011 Silvio Heinrich * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef KIS_COORDINATES_CONVERTER_H #define KIS_COORDINATES_CONVERTER_H #include #include #include "kritaui_export.h" #include "kis_types.h" #define EPSILON 1e-6 #define SCALE_LESS_THAN(scX, scY, value) \ (scX < (value) - EPSILON && scY < (value) - EPSILON) #define SCALE_MORE_OR_EQUAL_TO(scX, scY, value) \ (scX > (value) - EPSILON && scY > (value) - EPSILON) namespace _Private { template struct Traits { typedef T Result; static T map(const QTransform& transform, const T& obj) { return transform.map(obj); } }; template<> struct Traits { typedef QRectF Result; static QRectF map(const QTransform& transform, const QRectF& rc) { return transform.mapRect(rc); } }; template<> struct Traits: public Traits { }; template<> struct Traits: public Traits { }; template<> struct Traits: public Traits { }; template<> struct Traits: public Traits { }; } class KRITAUI_EXPORT KisCoordinatesConverter: public KoZoomHandler { public: KisCoordinatesConverter(); ~KisCoordinatesConverter() override; - void setCanvasWidgetSize(QSize size); + void setCanvasWidgetSize(QSizeF size); void setDevicePixelRatio(qreal value); void setImage(KisImageWSP image); - void setDocumentOffset(const QPoint &offset); + void setDocumentOffset(const QPointF &offset); + qreal devicePixelRatio() const; QPoint documentOffset() const; qreal rotationAngle() const; QPoint rotate(QPointF center, qreal angle); QPoint mirror(QPointF center, bool mirrorXAxis, bool mirrorYAxis); bool xAxisMirrored() const; bool yAxisMirrored() const; QPoint resetRotation(QPointF center); void setZoom(qreal zoom) override; /** * A composition of to scale methods: zoom level + image resolution */ qreal effectiveZoom() const; template typename _Private::Traits::Result imageToViewport(const T& obj) const { return _Private::Traits::map(imageToViewportTransform(), obj); } template typename _Private::Traits::Result viewportToImage(const T& obj) const { return _Private::Traits::map(imageToViewportTransform().inverted(), obj); } template typename _Private::Traits::Result flakeToWidget(const T& obj) const { return _Private::Traits::map(flakeToWidgetTransform(), obj); } template typename _Private::Traits::Result widgetToFlake(const T& obj) const { return _Private::Traits::map(flakeToWidgetTransform().inverted(), obj); } template typename _Private::Traits::Result widgetToViewport(const T& obj) const { return _Private::Traits::map(viewportToWidgetTransform().inverted(), obj); } template typename _Private::Traits::Result viewportToWidget(const T& obj) const { return _Private::Traits::map(viewportToWidgetTransform(), obj); } template typename _Private::Traits::Result documentToWidget(const T& obj) const { return _Private::Traits::map(documentToWidgetTransform(), obj); } template typename _Private::Traits::Result widgetToDocument(const T& obj) const { return _Private::Traits::map(documentToWidgetTransform().inverted(), obj); } template typename _Private::Traits::Result imageToDocument(const T& obj) const { return _Private::Traits::map(imageToDocumentTransform(), obj); } template typename _Private::Traits::Result documentToImage(const T& obj) const { return _Private::Traits::map(imageToDocumentTransform().inverted(), obj); } template typename _Private::Traits::Result documentToFlake(const T& obj) const { return _Private::Traits::map(documentToFlakeTransform(), obj); } template typename _Private::Traits::Result flakeToDocument(const T& obj) const { return _Private::Traits::map(documentToFlakeTransform().inverted(), obj); } template typename _Private::Traits::Result imageToWidget(const T& obj) const { return _Private::Traits::map(imageToWidgetTransform(), obj); } template typename _Private::Traits::Result widgetToImage(const T& obj) const { return _Private::Traits::map(imageToWidgetTransform().inverted(), obj); } QTransform imageToWidgetTransform() const; QTransform imageToDocumentTransform() const; QTransform documentToFlakeTransform() const; QTransform imageToViewportTransform() const; QTransform viewportToWidgetTransform() const; QTransform flakeToWidgetTransform() const; QTransform documentToWidgetTransform() const; void getQPainterCheckersInfo(QTransform *transform, QPointF *brushOrigin, QPolygonF *poligon, const bool scrollCheckers) const; void getOpenGLCheckersInfo(const QRectF &viewportRect, QTransform *textureTransform, QTransform *modelTransform, QRectF *textureRect, QRectF *modelRect, const bool scrollCheckers) const; QPointF imageCenterInWidgetPixel() const; QRectF imageRectInWidgetPixels() const; QRectF imageRectInViewportPixels() const; QSizeF imageSizeInFlakePixels() const; QRectF widgetRectInFlakePixels() const; QRectF widgetRectInImagePixels() const; QRect imageRectInImagePixels() const; QRectF imageRectInDocumentPixels() const; QPointF flakeCenterPoint() const; QPointF widgetCenterPoint() const; void imageScale(qreal *scaleX, qreal *scaleY) const; void imagePhysicalScale(qreal *scaleX, qreal *scaleY) const; private: friend class KisZoomAndPanTest; QPointF centeringCorrection() const; void correctOffsetToTransformation(); void correctTransformationToOffset(); void recalculateTransformations(); private: struct Private; Private * const m_d; }; #endif /* KIS_COORDINATES_CONVERTER_H */ diff --git a/libs/ui/opengl/kis_opengl_canvas2.cpp b/libs/ui/opengl/kis_opengl_canvas2.cpp index 2c88c10918..0bac26d5af 100644 --- a/libs/ui/opengl/kis_opengl_canvas2.cpp +++ b/libs/ui/opengl/kis_opengl_canvas2.cpp @@ -1,1001 +1,1035 @@ /* This file is part of the KDE project * Copyright (C) Boudewijn Rempt , (C) 2006-2013 * Copyright (C) 2015 Michael Abrahams * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #define GL_GLEXT_PROTOTYPES #include "opengl/kis_opengl_canvas2.h" #include "opengl/kis_opengl_canvas2_p.h" #include "opengl/kis_opengl_shader_loader.h" #include "opengl/kis_opengl_canvas_debugger.h" #include "canvas/kis_canvas2.h" #include "canvas/kis_coordinates_converter.h" #include "canvas/kis_display_filter.h" #include "canvas/kis_display_color_converter.h" #include "kis_config.h" #include "kis_config_notifier.h" #include "kis_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include "KisOpenGLModeProber.h" #include #ifndef Q_OS_OSX #include #endif #define NEAR_VAL -1000.0 #define FAR_VAL 1000.0 #ifndef GL_CLAMP_TO_EDGE #define GL_CLAMP_TO_EDGE 0x812F #endif #define PROGRAM_VERTEX_ATTRIBUTE 0 #define PROGRAM_TEXCOORD_ATTRIBUTE 1 static bool OPENGL_SUCCESS = false; struct KisOpenGLCanvas2::Private { public: ~Private() { delete displayShader; delete checkerShader; delete solidColorShader; Sync::deleteSync(glSyncObject); } bool canvasInitialized{false}; KisOpenGLImageTexturesSP openGLImageTextures; KisOpenGLShaderLoader shaderLoader; KisShaderProgram *displayShader{0}; KisShaderProgram *checkerShader{0}; KisShaderProgram *solidColorShader{0}; bool displayShaderCompiledWithDisplayFilterSupport{false}; GLfloat checkSizeScale; bool scrollCheckers; QSharedPointer displayFilter; KisOpenGL::FilterMode filterMode; bool proofingConfigIsUpdated=false; GLsync glSyncObject{0}; bool wrapAroundMode{false}; // Stores a quad for drawing the canvas QOpenGLVertexArrayObject quadVAO; QOpenGLBuffer quadBuffers[2]; // Stores data for drawing tool outlines QOpenGLVertexArrayObject outlineVAO; QOpenGLBuffer lineBuffer; QVector3D vertices[6]; QVector2D texCoords[6]; #ifndef Q_OS_OSX QOpenGLFunctions_2_1 *glFn201; #endif qreal pixelGridDrawingThreshold; bool pixelGridEnabled; QColor gridColor; QColor cursorColor; bool lodSwitchInProgress = false; int xToColWithWrapCompensation(int x, const QRect &imageRect) { int firstImageColumn = openGLImageTextures->xToCol(imageRect.left()); int lastImageColumn = openGLImageTextures->xToCol(imageRect.right()); int colsPerImage = lastImageColumn - firstImageColumn + 1; int numWraps = floor(qreal(x) / imageRect.width()); int remainder = x - imageRect.width() * numWraps; return colsPerImage * numWraps + openGLImageTextures->xToCol(remainder); } int yToRowWithWrapCompensation(int y, const QRect &imageRect) { int firstImageRow = openGLImageTextures->yToRow(imageRect.top()); int lastImageRow = openGLImageTextures->yToRow(imageRect.bottom()); int rowsPerImage = lastImageRow - firstImageRow + 1; int numWraps = floor(qreal(y) / imageRect.height()); int remainder = y - imageRect.height() * numWraps; return rowsPerImage * numWraps + openGLImageTextures->yToRow(remainder); } }; KisOpenGLCanvas2::KisOpenGLCanvas2(KisCanvas2 *canvas, KisCoordinatesConverter *coordinatesConverter, QWidget *parent, KisImageWSP image, KisDisplayColorConverter *colorConverter) : QOpenGLWidget(parent) , KisCanvasWidgetBase(canvas, coordinatesConverter) , d(new Private()) { KisConfig cfg(false); cfg.setCanvasState("OPENGL_STARTED"); d->openGLImageTextures = KisOpenGLImageTextures::getImageTextures(image, colorConverter->openGLCanvasSurfaceProfile(), colorConverter->renderingIntent(), colorConverter->conversionFlags()); setAcceptDrops(true); setAutoFillBackground(false); setFocusPolicy(Qt::StrongFocus); setAttribute(Qt::WA_NoSystemBackground, true); #ifdef Q_OS_OSX setAttribute(Qt::WA_AcceptTouchEvents, false); #else setAttribute(Qt::WA_AcceptTouchEvents, true); #endif setAttribute(Qt::WA_InputMethodEnabled, false); setAttribute(Qt::WA_DontCreateNativeAncestors, true); #if QT_VERSION >= QT_VERSION_CHECK(5, 10, 0) // we should make sure the texture doesn't have alpha channel, // otherwise blending will not work correctly. if (KisOpenGLModeProber::instance()->useHDRMode()) { setTextureFormat(GL_RGBA16F); } else { /** * When in pure OpenGL mode, the canvas surface will have alpha * channel. Therefore, if our canvas blending algorithm produces * semi-transparent pixels (and it does), then Krita window itself * will become transparent. Which is not good. * * In Angle mode, GL_RGB8 is not available (and the transparence effect * doesn't exist at all). */ if (!KisOpenGL::hasOpenGLES()) { setTextureFormat(GL_RGB8); } } #endif setDisplayFilterImpl(colorConverter->displayFilter(), true); connect(KisConfigNotifier::instance(), SIGNAL(configChanged()), SLOT(slotConfigChanged())); connect(KisConfigNotifier::instance(), SIGNAL(pixelGridModeChanged()), SLOT(slotPixelGridModeChanged())); slotConfigChanged(); slotPixelGridModeChanged(); cfg.writeEntry("canvasState", "OPENGL_SUCCESS"); } KisOpenGLCanvas2::~KisOpenGLCanvas2() { delete d; } void KisOpenGLCanvas2::setDisplayFilter(QSharedPointer displayFilter) { setDisplayFilterImpl(displayFilter, false); } void KisOpenGLCanvas2::setDisplayFilterImpl(QSharedPointer displayFilter, bool initializing) { bool needsInternalColorManagement = !displayFilter || displayFilter->useInternalColorManagement(); bool needsFullRefresh = d->openGLImageTextures->setInternalColorManagementActive(needsInternalColorManagement); d->displayFilter = displayFilter; if (!initializing && needsFullRefresh) { canvas()->startUpdateInPatches(canvas()->image()->bounds()); } else if (!initializing) { canvas()->updateCanvas(); } } void KisOpenGLCanvas2::notifyImageColorSpaceChanged(const KoColorSpace *cs) { // FIXME: on color space change the data is refetched multiple // times by different actors! if (d->openGLImageTextures->setImageColorSpace(cs)) { canvas()->startUpdateInPatches(canvas()->image()->bounds()); } } void KisOpenGLCanvas2::setWrapAroundViewingMode(bool value) { d->wrapAroundMode = value; update(); } inline void rectToVertices(QVector3D* vertices, const QRectF &rc) { vertices[0] = QVector3D(rc.left(), rc.bottom(), 0.f); vertices[1] = QVector3D(rc.left(), rc.top(), 0.f); vertices[2] = QVector3D(rc.right(), rc.bottom(), 0.f); vertices[3] = QVector3D(rc.left(), rc.top(), 0.f); vertices[4] = QVector3D(rc.right(), rc.top(), 0.f); vertices[5] = QVector3D(rc.right(), rc.bottom(), 0.f); } inline void rectToTexCoords(QVector2D* texCoords, const QRectF &rc) { texCoords[0] = QVector2D(rc.left(), rc.bottom()); texCoords[1] = QVector2D(rc.left(), rc.top()); texCoords[2] = QVector2D(rc.right(), rc.bottom()); texCoords[3] = QVector2D(rc.left(), rc.top()); texCoords[4] = QVector2D(rc.right(), rc.top()); texCoords[5] = QVector2D(rc.right(), rc.bottom()); } void KisOpenGLCanvas2::initializeGL() { KisOpenGL::initializeContext(context()); initializeOpenGLFunctions(); #ifndef Q_OS_OSX if (!KisOpenGL::hasOpenGLES()) { d->glFn201 = context()->versionFunctions(); if (!d->glFn201) { warnUI << "Cannot obtain QOpenGLFunctions_2_1, glLogicOp cannot be used"; } } else { d->glFn201 = nullptr; } #endif KisConfig cfg(true); d->openGLImageTextures->setProofingConfig(canvas()->proofingConfiguration()); d->openGLImageTextures->initGL(context()->functions()); d->openGLImageTextures->generateCheckerTexture(createCheckersImage(cfg.checkSize())); initializeShaders(); // If we support OpenGL 3.2, then prepare our VAOs and VBOs for drawing if (KisOpenGL::hasOpenGL3()) { d->quadVAO.create(); d->quadVAO.bind(); glEnableVertexAttribArray(PROGRAM_VERTEX_ATTRIBUTE); glEnableVertexAttribArray(PROGRAM_TEXCOORD_ATTRIBUTE); // Create the vertex buffer object, it has 6 vertices with 3 components d->quadBuffers[0].create(); d->quadBuffers[0].setUsagePattern(QOpenGLBuffer::StaticDraw); d->quadBuffers[0].bind(); d->quadBuffers[0].allocate(d->vertices, 6 * 3 * sizeof(float)); glVertexAttribPointer(PROGRAM_VERTEX_ATTRIBUTE, 3, GL_FLOAT, GL_FALSE, 0, 0); // Create the texture buffer object, it has 6 texture coordinates with 2 components d->quadBuffers[1].create(); d->quadBuffers[1].setUsagePattern(QOpenGLBuffer::StaticDraw); d->quadBuffers[1].bind(); d->quadBuffers[1].allocate(d->texCoords, 6 * 2 * sizeof(float)); glVertexAttribPointer(PROGRAM_TEXCOORD_ATTRIBUTE, 2, GL_FLOAT, GL_FALSE, 0, 0); // Create the outline buffer, this buffer will store the outlines of // tools and will frequently change data d->outlineVAO.create(); d->outlineVAO.bind(); glEnableVertexAttribArray(PROGRAM_VERTEX_ATTRIBUTE); // The outline buffer has a StreamDraw usage pattern, because it changes constantly d->lineBuffer.create(); d->lineBuffer.setUsagePattern(QOpenGLBuffer::StreamDraw); d->lineBuffer.bind(); glVertexAttribPointer(PROGRAM_VERTEX_ATTRIBUTE, 3, GL_FLOAT, GL_FALSE, 0, 0); } Sync::init(context()); d->canvasInitialized = true; } /** * Loads all shaders and reports compilation problems */ void KisOpenGLCanvas2::initializeShaders() { KIS_SAFE_ASSERT_RECOVER_RETURN(!d->canvasInitialized); delete d->checkerShader; delete d->solidColorShader; d->checkerShader = 0; d->solidColorShader = 0; try { d->checkerShader = d->shaderLoader.loadCheckerShader(); d->solidColorShader = d->shaderLoader.loadSolidColorShader(); } catch (const ShaderLoaderException &e) { reportFailedShaderCompilation(e.what()); } initializeDisplayShader(); } void KisOpenGLCanvas2::initializeDisplayShader() { KIS_SAFE_ASSERT_RECOVER_RETURN(!d->canvasInitialized); bool useHiQualityFiltering = d->filterMode == KisOpenGL::HighQualityFiltering; delete d->displayShader; d->displayShader = 0; try { d->displayShader = d->shaderLoader.loadDisplayShader(d->displayFilter, useHiQualityFiltering); d->displayShaderCompiledWithDisplayFilterSupport = d->displayFilter; } catch (const ShaderLoaderException &e) { reportFailedShaderCompilation(e.what()); } } /** * Displays a message box telling the user that * shader compilation failed and turns off OpenGL. */ void KisOpenGLCanvas2::reportFailedShaderCompilation(const QString &context) { KisConfig cfg(false); qDebug() << "Shader Compilation Failure: " << context; QMessageBox::critical(this, i18nc("@title:window", "Krita"), i18n("Krita could not initialize the OpenGL canvas:\n\n%1\n\n Krita will disable OpenGL and close now.", context), QMessageBox::Close); cfg.setUseOpenGL(false); cfg.setCanvasState("OPENGL_FAILED"); } -void KisOpenGLCanvas2::resizeGL(int width, int height) +void KisOpenGLCanvas2::resizeGL(int /*width*/, int /*height*/) { - coordinatesConverter()->setCanvasWidgetSize(QSize(width, height)); + // The given size is the widget size but here we actually want to give + // KisCoordinatesConverter the viewport size aligned to device pixels. + coordinatesConverter()->setCanvasWidgetSize(widgetSizeAlignedToDevicePixel()); paintGL(); } void KisOpenGLCanvas2::paintGL() { if (!OPENGL_SUCCESS) { KisConfig cfg(false); cfg.writeEntry("canvasState", "OPENGL_PAINT_STARTED"); } KisOpenglCanvasDebugger::instance()->nofityPaintRequested(); renderCanvasGL(); if (d->glSyncObject) { Sync::deleteSync(d->glSyncObject); } d->glSyncObject = Sync::getSync(); QPainter gc(this); renderDecorations(&gc); gc.end(); if (!OPENGL_SUCCESS) { KisConfig cfg(false); cfg.writeEntry("canvasState", "OPENGL_SUCCESS"); OPENGL_SUCCESS = true; } } void KisOpenGLCanvas2::paintToolOutline(const QPainterPath &path) { if (!d->solidColorShader->bind()) { return; } + QSizeF widgetSize = widgetSizeAlignedToDevicePixel(); + // setup the mvp transformation QMatrix4x4 projectionMatrix; projectionMatrix.setToIdentity(); - projectionMatrix.ortho(0, width(), height(), 0, NEAR_VAL, FAR_VAL); + // FIXME: It may be better to have the projection in device pixel, but + // this requires introducing a new coordinate system. + projectionMatrix.ortho(0, widgetSize.width(), widgetSize.height(), 0, NEAR_VAL, FAR_VAL); // Set view/projection matrices QMatrix4x4 modelMatrix(coordinatesConverter()->flakeToWidgetTransform()); modelMatrix.optimize(); modelMatrix = projectionMatrix * modelMatrix; d->solidColorShader->setUniformValue(d->solidColorShader->location(Uniform::ModelViewProjection), modelMatrix); if (!KisOpenGL::hasOpenGLES()) { glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); glEnable(GL_COLOR_LOGIC_OP); #ifndef Q_OS_OSX if (d->glFn201) { d->glFn201->glLogicOp(GL_XOR); } #else glLogicOp(GL_XOR); #endif } else { glEnable(GL_BLEND); glBlendFuncSeparate(GL_ONE_MINUS_DST_COLOR, GL_ZERO, GL_ONE, GL_ONE); } d->solidColorShader->setUniformValue( d->solidColorShader->location(Uniform::FragmentColor), QVector4D(d->cursorColor.redF(), d->cursorColor.greenF(), d->cursorColor.blueF(), 1.0f)); // Paint the tool outline if (KisOpenGL::hasOpenGL3()) { d->outlineVAO.bind(); d->lineBuffer.bind(); } // Convert every disjointed subpath to a polygon and draw that polygon QList subPathPolygons = path.toSubpathPolygons(); for (int i = 0; i < subPathPolygons.size(); i++) { const QPolygonF& polygon = subPathPolygons.at(i); QVector vertices; vertices.resize(polygon.count()); for (int j = 0; j < polygon.count(); j++) { QPointF p = polygon.at(j); vertices[j].setX(p.x()); vertices[j].setY(p.y()); } if (KisOpenGL::hasOpenGL3()) { d->lineBuffer.allocate(vertices.constData(), 3 * vertices.size() * sizeof(float)); } else { d->solidColorShader->enableAttributeArray(PROGRAM_VERTEX_ATTRIBUTE); d->solidColorShader->setAttributeArray(PROGRAM_VERTEX_ATTRIBUTE, vertices.constData()); } glDrawArrays(GL_LINE_STRIP, 0, vertices.size()); } if (KisOpenGL::hasOpenGL3()) { d->lineBuffer.release(); d->outlineVAO.release(); } if (!KisOpenGL::hasOpenGLES()) { glDisable(GL_COLOR_LOGIC_OP); } else { glDisable(GL_BLEND); } d->solidColorShader->release(); } bool KisOpenGLCanvas2::isBusy() const { const bool isBusyStatus = Sync::syncStatus(d->glSyncObject) == Sync::Unsignaled; KisOpenglCanvasDebugger::instance()->nofitySyncStatus(isBusyStatus); return isBusyStatus; } void KisOpenGLCanvas2::setLodResetInProgress(bool value) { d->lodSwitchInProgress = value; } void KisOpenGLCanvas2::drawCheckers() { if (!d->checkerShader) { return; } KisCoordinatesConverter *converter = coordinatesConverter(); QTransform textureTransform; QTransform modelTransform; QRectF textureRect; QRectF modelRect; + QSizeF widgetSize = widgetSizeAlignedToDevicePixel(); QRectF viewportRect = !d->wrapAroundMode ? converter->imageRectInViewportPixels() : - converter->widgetToViewport(this->rect()); + converter->widgetToViewport(QRectF(0, 0, widgetSize.width(), widgetSize.height())); if (!canvas()->renderingLimit().isEmpty()) { const QRect vrect = converter->imageToViewport(canvas()->renderingLimit()).toAlignedRect(); viewportRect &= vrect; } converter->getOpenGLCheckersInfo(viewportRect, &textureTransform, &modelTransform, &textureRect, &modelRect, d->scrollCheckers); textureTransform *= QTransform::fromScale(d->checkSizeScale / KisOpenGLImageTextures::BACKGROUND_TEXTURE_SIZE, d->checkSizeScale / KisOpenGLImageTextures::BACKGROUND_TEXTURE_SIZE); if (!d->checkerShader->bind()) { qWarning() << "Could not bind checker shader"; return; } QMatrix4x4 projectionMatrix; projectionMatrix.setToIdentity(); - projectionMatrix.ortho(0, width(), height(), 0, NEAR_VAL, FAR_VAL); + // FIXME: It may be better to have the projection in device pixel, but + // this requires introducing a new coordinate system. + projectionMatrix.ortho(0, widgetSize.width(), widgetSize.height(), 0, NEAR_VAL, FAR_VAL); // Set view/projection matrices QMatrix4x4 modelMatrix(modelTransform); modelMatrix.optimize(); modelMatrix = projectionMatrix * modelMatrix; d->checkerShader->setUniformValue(d->checkerShader->location(Uniform::ModelViewProjection), modelMatrix); QMatrix4x4 textureMatrix(textureTransform); d->checkerShader->setUniformValue(d->checkerShader->location(Uniform::TextureMatrix), textureMatrix); //Setup the geometry for rendering if (KisOpenGL::hasOpenGL3()) { rectToVertices(d->vertices, modelRect); d->quadBuffers[0].bind(); d->quadBuffers[0].write(0, d->vertices, 3 * 6 * sizeof(float)); rectToTexCoords(d->texCoords, textureRect); d->quadBuffers[1].bind(); d->quadBuffers[1].write(0, d->texCoords, 2 * 6 * sizeof(float)); } else { rectToVertices(d->vertices, modelRect); d->checkerShader->enableAttributeArray(PROGRAM_VERTEX_ATTRIBUTE); d->checkerShader->setAttributeArray(PROGRAM_VERTEX_ATTRIBUTE, d->vertices); rectToTexCoords(d->texCoords, textureRect); d->checkerShader->enableAttributeArray(PROGRAM_TEXCOORD_ATTRIBUTE); d->checkerShader->setAttributeArray(PROGRAM_TEXCOORD_ATTRIBUTE, d->texCoords); } // render checkers glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, d->openGLImageTextures->checkerTexture()); glDrawArrays(GL_TRIANGLES, 0, 6); glBindTexture(GL_TEXTURE_2D, 0); d->checkerShader->release(); glBindBuffer(GL_ARRAY_BUFFER, 0); } void KisOpenGLCanvas2::drawGrid() { if (!d->solidColorShader->bind()) { return; } + QSizeF widgetSize = widgetSizeAlignedToDevicePixel(); + QMatrix4x4 projectionMatrix; projectionMatrix.setToIdentity(); - projectionMatrix.ortho(0, width(), height(), 0, NEAR_VAL, FAR_VAL); + // FIXME: It may be better to have the projection in device pixel, but + // this requires introducing a new coordinate system. + projectionMatrix.ortho(0, widgetSize.width(), widgetSize.height(), 0, NEAR_VAL, FAR_VAL); // Set view/projection matrices QMatrix4x4 modelMatrix(coordinatesConverter()->imageToWidgetTransform()); modelMatrix.optimize(); modelMatrix = projectionMatrix * modelMatrix; d->solidColorShader->setUniformValue(d->solidColorShader->location(Uniform::ModelViewProjection), modelMatrix); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); d->solidColorShader->setUniformValue( d->solidColorShader->location(Uniform::FragmentColor), QVector4D(d->gridColor.redF(), d->gridColor.greenF(), d->gridColor.blueF(), 0.5f)); if (KisOpenGL::hasOpenGL3()) { d->outlineVAO.bind(); d->lineBuffer.bind(); } - QRectF widgetRect(0,0, width(), height()); + QRectF widgetRect(0,0, widgetSize.width(), widgetSize.height()); QRectF widgetRectInImagePixels = coordinatesConverter()->documentToImage(coordinatesConverter()->widgetToDocument(widgetRect)); QRect wr = widgetRectInImagePixels.toAlignedRect(); if (!d->wrapAroundMode) { wr &= d->openGLImageTextures->storedImageBounds(); } QPoint topLeftCorner = wr.topLeft(); QPoint bottomRightCorner = wr.bottomRight() + QPoint(1, 1); QVector grid; for (int i = topLeftCorner.x(); i <= bottomRightCorner.x(); ++i) { grid.append(QVector3D(i, topLeftCorner.y(), 0)); grid.append(QVector3D(i, bottomRightCorner.y(), 0)); } for (int i = topLeftCorner.y(); i <= bottomRightCorner.y(); ++i) { grid.append(QVector3D(topLeftCorner.x(), i, 0)); grid.append(QVector3D(bottomRightCorner.x(), i, 0)); } if (KisOpenGL::hasOpenGL3()) { d->lineBuffer.allocate(grid.constData(), 3 * grid.size() * sizeof(float)); } else { d->solidColorShader->enableAttributeArray(PROGRAM_VERTEX_ATTRIBUTE); d->solidColorShader->setAttributeArray(PROGRAM_VERTEX_ATTRIBUTE, grid.constData()); } glDrawArrays(GL_LINES, 0, grid.size()); if (KisOpenGL::hasOpenGL3()) { d->lineBuffer.release(); d->outlineVAO.release(); } d->solidColorShader->release(); glDisable(GL_BLEND); } void KisOpenGLCanvas2::drawImage() { if (!d->displayShader) { return; } glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); KisCoordinatesConverter *converter = coordinatesConverter(); d->displayShader->bind(); + QSizeF widgetSize = widgetSizeAlignedToDevicePixel(); + QMatrix4x4 projectionMatrix; projectionMatrix.setToIdentity(); - projectionMatrix.ortho(0, width(), height(), 0, NEAR_VAL, FAR_VAL); + // FIXME: It may be better to have the projection in device pixel, but + // this requires introducing a new coordinate system. + projectionMatrix.ortho(0, widgetSize.width(), widgetSize.height(), 0, NEAR_VAL, FAR_VAL); // Set view/projection matrices QMatrix4x4 modelMatrix(converter->imageToWidgetTransform()); modelMatrix.optimize(); modelMatrix = projectionMatrix * modelMatrix; d->displayShader->setUniformValue(d->displayShader->location(Uniform::ModelViewProjection), modelMatrix); QMatrix4x4 textureMatrix; textureMatrix.setToIdentity(); d->displayShader->setUniformValue(d->displayShader->location(Uniform::TextureMatrix), textureMatrix); - QRectF widgetRect(0,0, width(), height()); + QRectF widgetRect(0,0, widgetSize.width(), widgetSize.height()); QRectF widgetRectInImagePixels = converter->documentToImage(converter->widgetToDocument(widgetRect)); const QRect renderingLimit = canvas()->renderingLimit(); if (!renderingLimit.isEmpty()) { widgetRectInImagePixels &= renderingLimit; } qreal scaleX, scaleY; converter->imagePhysicalScale(&scaleX, &scaleY); d->displayShader->setUniformValue(d->displayShader->location(Uniform::ViewportScale), (GLfloat) scaleX); d->displayShader->setUniformValue(d->displayShader->location(Uniform::TexelSize), (GLfloat) d->openGLImageTextures->texelSize()); QRect ir = d->openGLImageTextures->storedImageBounds(); QRect wr = widgetRectInImagePixels.toAlignedRect(); if (!d->wrapAroundMode) { // if we don't want to paint wrapping images, just limit the // processing area, and the code will handle all the rest wr &= ir; } int firstColumn = d->xToColWithWrapCompensation(wr.left(), ir); int lastColumn = d->xToColWithWrapCompensation(wr.right(), ir); int firstRow = d->yToRowWithWrapCompensation(wr.top(), ir); int lastRow = d->yToRowWithWrapCompensation(wr.bottom(), ir); int minColumn = d->openGLImageTextures->xToCol(ir.left()); int maxColumn = d->openGLImageTextures->xToCol(ir.right()); int minRow = d->openGLImageTextures->yToRow(ir.top()); int maxRow = d->openGLImageTextures->yToRow(ir.bottom()); int imageColumns = maxColumn - minColumn + 1; int imageRows = maxRow - minRow + 1; for (int col = firstColumn; col <= lastColumn; col++) { for (int row = firstRow; row <= lastRow; row++) { int effectiveCol = col; int effectiveRow = row; QPointF tileWrappingTranslation; if (effectiveCol > maxColumn || effectiveCol < minColumn) { int translationStep = floor(qreal(col) / imageColumns); int originCol = translationStep * imageColumns; effectiveCol = col - originCol; tileWrappingTranslation.rx() = translationStep * ir.width(); } if (effectiveRow > maxRow || effectiveRow < minRow) { int translationStep = floor(qreal(row) / imageRows); int originRow = translationStep * imageRows; effectiveRow = row - originRow; tileWrappingTranslation.ry() = translationStep * ir.height(); } KisTextureTile *tile = d->openGLImageTextures->getTextureTileCR(effectiveCol, effectiveRow); if (!tile) { warnUI << "OpenGL: Trying to paint texture tile but it has not been created yet."; continue; } /* * We create a float rect here to workaround Qt's * "history reasons" in calculation of right() * and bottom() coordinates of integer rects. */ QRectF textureRect; QRectF modelRect; if (renderingLimit.isEmpty()) { textureRect = tile->tileRectInTexturePixels(); modelRect = tile->tileRectInImagePixels().translated(tileWrappingTranslation.x(), tileWrappingTranslation.y()); } else { const QRect limitedTileRect = tile->tileRectInImagePixels() & renderingLimit; textureRect = tile->imageRectInTexturePixels(limitedTileRect); modelRect = limitedTileRect.translated(tileWrappingTranslation.x(), tileWrappingTranslation.y()); } //Setup the geometry for rendering if (KisOpenGL::hasOpenGL3()) { rectToVertices(d->vertices, modelRect); d->quadBuffers[0].bind(); d->quadBuffers[0].write(0, d->vertices, 3 * 6 * sizeof(float)); rectToTexCoords(d->texCoords, textureRect); d->quadBuffers[1].bind(); d->quadBuffers[1].write(0, d->texCoords, 2 * 6 * sizeof(float)); } else { rectToVertices(d->vertices, modelRect); d->displayShader->enableAttributeArray(PROGRAM_VERTEX_ATTRIBUTE); d->displayShader->setAttributeArray(PROGRAM_VERTEX_ATTRIBUTE, d->vertices); rectToTexCoords(d->texCoords, textureRect); d->displayShader->enableAttributeArray(PROGRAM_TEXCOORD_ATTRIBUTE); d->displayShader->setAttributeArray(PROGRAM_TEXCOORD_ATTRIBUTE, d->texCoords); } if (d->displayFilter) { glActiveTexture(GL_TEXTURE0 + 1); glBindTexture(GL_TEXTURE_3D, d->displayFilter->lutTexture()); d->displayShader->setUniformValue(d->displayShader->location(Uniform::Texture1), 1); } glActiveTexture(GL_TEXTURE0); const int currentLodPlane = tile->bindToActiveTexture(d->lodSwitchInProgress); if (d->displayShader->location(Uniform::FixedLodLevel) >= 0) { d->displayShader->setUniformValue(d->displayShader->location(Uniform::FixedLodLevel), (GLfloat) currentLodPlane); } if (currentLodPlane > 0) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); } else if (SCALE_MORE_OR_EQUAL_TO(scaleX, scaleY, 2.0)) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); switch(d->filterMode) { case KisOpenGL::NearestFilterMode: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); break; case KisOpenGL::BilinearFilterMode: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); break; case KisOpenGL::TrilinearFilterMode: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); break; case KisOpenGL::HighQualityFiltering: if (SCALE_LESS_THAN(scaleX, scaleY, 0.5)) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } break; } } glDrawArrays(GL_TRIANGLES, 0, 6); } } glBindTexture(GL_TEXTURE_2D, 0); d->displayShader->release(); glBindBuffer(GL_ARRAY_BUFFER, 0); glDisable(GL_BLEND); } +QSize KisOpenGLCanvas2::viewportDevicePixelSize() const +{ + // This is how QOpenGLCanvas sets the FBO and the viewport size. If + // devicePixelRatioF() is non-integral, the result is truncated. + int viewportWidth = static_cast(width() * devicePixelRatioF()); + int viewportHeight = static_cast(height() * devicePixelRatioF()); + return QSize(viewportWidth, viewportHeight); +} + +QSizeF KisOpenGLCanvas2::widgetSizeAlignedToDevicePixel() const +{ + QSize viewportSize = viewportDevicePixelSize(); + qreal scaledWidth = viewportSize.width() / devicePixelRatioF(); + qreal scaledHeight = viewportSize.height() / devicePixelRatioF(); + return QSizeF(scaledWidth, scaledHeight); +} + void KisOpenGLCanvas2::slotConfigChanged() { KisConfig cfg(true); d->checkSizeScale = KisOpenGLImageTextures::BACKGROUND_TEXTURE_CHECK_SIZE / static_cast(cfg.checkSize()); d->scrollCheckers = cfg.scrollCheckers(); d->openGLImageTextures->generateCheckerTexture(createCheckersImage(cfg.checkSize())); d->openGLImageTextures->updateConfig(cfg.useOpenGLTextureBuffer(), cfg.numMipmapLevels()); d->filterMode = (KisOpenGL::FilterMode) cfg.openGLFilteringMode(); d->cursorColor = cfg.getCursorMainColor(); notifyConfigChanged(); } void KisOpenGLCanvas2::slotPixelGridModeChanged() { KisConfig cfg(true); d->pixelGridDrawingThreshold = cfg.getPixelGridDrawingThreshold(); d->pixelGridEnabled = cfg.pixelGridEnabled(); d->gridColor = cfg.getPixelGridColor(); update(); } QVariant KisOpenGLCanvas2::inputMethodQuery(Qt::InputMethodQuery query) const { return processInputMethodQuery(query); } void KisOpenGLCanvas2::inputMethodEvent(QInputMethodEvent *event) { processInputMethodEvent(event); } void KisOpenGLCanvas2::renderCanvasGL() { { // Draw the border (that is, clear the whole widget to the border color) QColor widgetBackgroundColor = borderColor(); KoColor convertedBackgroudColor = canvas()->displayColorConverter()->applyDisplayFiltering( KoColor(widgetBackgroundColor, KoColorSpaceRegistry::instance()->rgb8()), Float32BitsColorDepthID); const float *pixel = reinterpret_cast(convertedBackgroudColor.data()); glClearColor(pixel[0], pixel[1], pixel[2], 1.0); } glClear(GL_COLOR_BUFFER_BIT); if ((d->displayFilter && d->displayFilter->updateShader()) || (bool(d->displayFilter) != d->displayShaderCompiledWithDisplayFilterSupport)) { KIS_SAFE_ASSERT_RECOVER_NOOP(d->canvasInitialized); d->canvasInitialized = false; // TODO: check if actually needed? initializeDisplayShader(); d->canvasInitialized = true; } if (KisOpenGL::hasOpenGL3()) { d->quadVAO.bind(); } drawCheckers(); drawImage(); if ((coordinatesConverter()->effectiveZoom() > d->pixelGridDrawingThreshold - 0.00001) && d->pixelGridEnabled) { drawGrid(); } if (KisOpenGL::hasOpenGL3()) { d->quadVAO.release(); } } void KisOpenGLCanvas2::renderDecorations(QPainter *painter) { QRect boundingRect = coordinatesConverter()->imageRectInWidgetPixels().toAlignedRect(); drawDecorations(*painter, boundingRect); } void KisOpenGLCanvas2::setDisplayColorConverter(KisDisplayColorConverter *colorConverter) { d->openGLImageTextures->setMonitorProfile(colorConverter->openGLCanvasSurfaceProfile(), colorConverter->renderingIntent(), colorConverter->conversionFlags()); } void KisOpenGLCanvas2::channelSelectionChanged(const QBitArray &channelFlags) { d->openGLImageTextures->setChannelFlags(channelFlags); } void KisOpenGLCanvas2::finishResizingImage(qint32 w, qint32 h) { if (d->canvasInitialized) { d->openGLImageTextures->slotImageSizeChanged(w, h); } } KisUpdateInfoSP KisOpenGLCanvas2::startUpdateCanvasProjection(const QRect & rc, const QBitArray &channelFlags) { d->openGLImageTextures->setChannelFlags(channelFlags); if (canvas()->proofingConfigUpdated()) { d->openGLImageTextures->setProofingConfig(canvas()->proofingConfiguration()); canvas()->setProofingConfigUpdated(false); } return d->openGLImageTextures->updateCache(rc, d->openGLImageTextures->image()); } QRect KisOpenGLCanvas2::updateCanvasProjection(KisUpdateInfoSP info) { // See KisQPainterCanvas::updateCanvasProjection for more info bool isOpenGLUpdateInfo = dynamic_cast(info.data()); if (isOpenGLUpdateInfo) { d->openGLImageTextures->recalculateCache(info, d->lodSwitchInProgress); } return QRect(); // FIXME: Implement dirty rect for OpenGL } QVector KisOpenGLCanvas2::updateCanvasProjection(const QVector &infoObjects) { #ifdef Q_OS_OSX /** * On OSX openGL defferent (shared) contexts have different execution queues. * It means that the textures uploading and their painting can be easily reordered. * To overcome the issue, we should ensure that the textures are uploaded in the * same openGL context as the painting is done. */ QOpenGLContext *oldContext = QOpenGLContext::currentContext(); QSurface *oldSurface = oldContext ? oldContext->surface() : 0; this->makeCurrent(); #endif QVector result = KisCanvasWidgetBase::updateCanvasProjection(infoObjects); #ifdef Q_OS_OSX if (oldContext) { oldContext->makeCurrent(oldSurface); } else { this->doneCurrent(); } #endif return result; } bool KisOpenGLCanvas2::callFocusNextPrevChild(bool next) { return focusNextPrevChild(next); } KisOpenGLImageTexturesSP KisOpenGLCanvas2::openGLImageTextures() const { return d->openGLImageTextures; } diff --git a/libs/ui/opengl/kis_opengl_canvas2.h b/libs/ui/opengl/kis_opengl_canvas2.h index 5266968594..400e1ffdbf 100644 --- a/libs/ui/opengl/kis_opengl_canvas2.h +++ b/libs/ui/opengl/kis_opengl_canvas2.h @@ -1,130 +1,132 @@ /* * Copyright (C) Boudewijn Rempt , (C) 2006 * Copyright (C) Michael Abrahams , (C) 2015 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef KIS_OPENGL_CANVAS_2_H #define KIS_OPENGL_CANVAS_2_H #include #ifndef Q_OS_OSX #include #else #include #endif #include "canvas/kis_canvas_widget_base.h" #include "opengl/kis_opengl_image_textures.h" #include "kritaui_export.h" #include "kis_ui_types.h" class KisCanvas2; class KisDisplayColorConverter; class QOpenGLShaderProgram; class QPainterPath; #ifndef Q_MOC_RUN #ifndef Q_OS_OSX #define GLFunctions QOpenGLFunctions #else #define GLFunctions QOpenGLFunctions_3_2_Core #endif #endif /** * KisOpenGLCanvas is the widget that shows the actual image using OpenGL * * NOTE: if you change something in the event handling here, also change it * in the qpainter canvas. * */ class KRITAUI_EXPORT KisOpenGLCanvas2 : public QOpenGLWidget #ifndef Q_MOC_RUN , protected GLFunctions #endif , public KisCanvasWidgetBase { Q_OBJECT public: KisOpenGLCanvas2(KisCanvas2 *canvas, KisCoordinatesConverter *coordinatesConverter, QWidget *parent, KisImageWSP image, KisDisplayColorConverter *colorConverter); ~KisOpenGLCanvas2() override; public: // QOpenGLWidget void resizeGL(int width, int height) override; void initializeGL() override; void paintGL() override; QVariant inputMethodQuery(Qt::InputMethodQuery query) const override; void inputMethodEvent(QInputMethodEvent *event) override; public: void renderCanvasGL(); void renderDecorations(QPainter *painter); void paintToolOutline(const QPainterPath &path); public: // Implement kis_abstract_canvas_widget interface void setDisplayFilter(QSharedPointer displayFilter) override; void notifyImageColorSpaceChanged(const KoColorSpace *cs) override; void setWrapAroundViewingMode(bool value) override; void channelSelectionChanged(const QBitArray &channelFlags) override; void setDisplayColorConverter(KisDisplayColorConverter *colorConverter) override; void finishResizingImage(qint32 w, qint32 h) override; KisUpdateInfoSP startUpdateCanvasProjection(const QRect & rc, const QBitArray &channelFlags) override; QRect updateCanvasProjection(KisUpdateInfoSP info) override; QVector updateCanvasProjection(const QVector &infoObjects) override; QWidget *widget() override { return this; } bool isBusy() const override; void setLodResetInProgress(bool value) override; void setDisplayFilterImpl(QSharedPointer displayFilter, bool initializing); KisOpenGLImageTexturesSP openGLImageTextures() const; public Q_SLOTS: void slotConfigChanged(); void slotPixelGridModeChanged(); protected: // KisCanvasWidgetBase bool callFocusNextPrevChild(bool next) override; private: void initializeShaders(); void initializeDisplayShader(); void reportFailedShaderCompilation(const QString &context); void drawImage(); void drawCheckers(); void drawGrid(); + QSize viewportDevicePixelSize() const; + QSizeF widgetSizeAlignedToDevicePixel() const; private: struct Private; Private * const d; }; #endif // KIS_OPENGL_CANVAS_2_H