diff --git a/kstars/ekos/align/align.cpp b/kstars/ekos/align/align.cpp index b51573a48..f31dc54c5 100644 --- a/kstars/ekos/align/align.cpp +++ b/kstars/ekos/align/align.cpp @@ -1,6156 +1,6176 @@ /* Ekos Alignment Module Copyright (C) 2013 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "align.h" #include "alignadaptor.h" #include "alignview.h" #include "flagcomponent.h" #include "fov.h" #include "kstars.h" #include "kstarsdata.h" #include "ksuserdb.h" #include "offlineastrometryparser.h" #include "onlineastrometryparser.h" #include "astapastrometryparser.h" #include "opsalign.h" #include "opsastap.h" #include "opsastrometry.h" #include "opsastrometrycfg.h" #include "opsastrometryindexfiles.h" #include "Options.h" #include "remoteastrometryparser.h" #include "skymap.h" #include "skymapcomposite.h" #include "starobject.h" #include "auxiliary/QProgressIndicator.h" #include "auxiliary/ksmessagebox.h" #include "dialogs/finddialog.h" #include "ekos/manager.h" #include "ekos/auxiliary/darklibrary.h" #include "fitsviewer/fitsdata.h" #include "fitsviewer/fitstab.h" #include "indi/clientmanager.h" #include "indi/driverinfo.h" #include "indi/indifilter.h" #include "profileinfo.h" #include "ksnotification.h" #include #include #include #include #include #define PAH_CUTOFF_FOV 10 // Minimum FOV width in arcminutes for PAH to work #define MAXIMUM_SOLVER_ITERATIONS 10 #define AL_FORMAT_VERSION 1.0 namespace Ekos { // 30 arcminutes RA movement const double Align::RAMotion = 0.5; // Sidereal rate, degrees/s const double Align::SIDRATE = 0.004178; const QMap Align::PAHStages = { {PAH_IDLE, I18N_NOOP("Idle")}, {PAH_FIRST_CAPTURE, I18N_NOOP("First Capture"}), {PAH_FIND_CP, I18N_NOOP("Finding CP"}), {PAH_FIRST_ROTATE, I18N_NOOP("First Rotation"}), {PAH_SECOND_CAPTURE, I18N_NOOP("Second Capture"}), {PAH_SECOND_ROTATE, I18N_NOOP("Second Rotation"}), {PAH_THIRD_CAPTURE, I18N_NOOP("Third Capture"}), {PAH_STAR_SELECT, I18N_NOOP("Select Star"}), {PAH_PRE_REFRESH, I18N_NOOP("Select Refresh"}), {PAH_REFRESH, I18N_NOOP("Refreshing"}), {PAH_ERROR, I18N_NOOP("Error")}, }; Align::Align(ProfileInfo *activeProfile) : m_ActiveProfile(activeProfile) { setupUi(this); qRegisterMetaType("Ekos::AlignState"); qDBusRegisterMetaType(); new AlignAdaptor(this); QDBusConnection::sessionBus().registerObject("/KStars/Ekos/Align", this); dirPath = QDir::homePath(); //loadSlewMode = false; solverFOV.reset(new FOV()); solverFOV->setName(i18n("Solver FOV")); solverFOV->setLockCelestialPole(true); solverFOV->setColor(KStars::Instance()->data()->colorScheme()->colorNamed("SolverFOVColor").name()); sensorFOV.reset(new FOV()); sensorFOV->setLockCelestialPole(true); QAction *a = KStars::Instance()->actionCollection()->action("show_sensor_fov"); if (a) a->setEnabled(true); showFITSViewerB->setIcon( QIcon::fromTheme("kstars_fitsviewer")); showFITSViewerB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(showFITSViewerB, &QPushButton::clicked, this, &Ekos::Align::showFITSViewer); toggleFullScreenB->setIcon( QIcon::fromTheme("view-fullscreen")); toggleFullScreenB->setShortcut(Qt::Key_F4); toggleFullScreenB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(toggleFullScreenB, &QPushButton::clicked, this, &Ekos::Align::toggleAlignWidgetFullScreen); alignView = new AlignView(alignWidget, FITS_ALIGN); alignView->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); alignView->setBaseSize(alignWidget->size()); alignView->createFloatingToolBar(); QVBoxLayout *vlayout = new QVBoxLayout(); vlayout->addWidget(alignView); alignWidget->setLayout(vlayout); connect(solveB, &QPushButton::clicked, this, &Ekos::Align::captureAndSolve); connect(stopB, &QPushButton::clicked, this, &Ekos::Align::abort); connect(measureAltB, &QPushButton::clicked, this, &Ekos::Align::measureAltError); connect(measureAzB, &QPushButton::clicked, this, &Ekos::Align::measureAzError); // Effective FOV Edit connect(FOVOut, &QLineEdit::editingFinished, this, &Align::syncFOV); connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::setDefaultCCD); connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::checkCCD); connect(correctAltB, &QPushButton::clicked, this, &Ekos::Align::correctAltError); connect(correctAzB, &QPushButton::clicked, this, &Ekos::Align::correctAzError); connect(loadSlewB, &QPushButton::clicked, [&]() { loadAndSlew(); }); FilterDevicesCombo->addItem("--"); connect(FilterDevicesCombo, static_cast(&QComboBox::activated), [ = ](const QString & text) { syncSettings(); Options::setDefaultAlignFW(text); }); connect(FilterDevicesCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::checkFilter); connect(FilterPosCombo, static_cast(&QComboBox::activated), [ = ](int index) { syncSettings(); Options::setLockAlignFilterIndex(index); } ); connect(PAHSlewRateCombo, static_cast(&QComboBox::activated), [&](int index) { Options::setPAHMountSpeedIndex(index); }); gotoModeButtonGroup->setId(syncR, GOTO_SYNC); gotoModeButtonGroup->setId(slewR, GOTO_SLEW); gotoModeButtonGroup->setId(nothingR, GOTO_NOTHING); connect(gotoModeButtonGroup, static_cast(&QButtonGroup::buttonClicked), this, [ = ](int id) { this->currentGotoMode = static_cast(id); }); m_CaptureTimer.setSingleShot(true); m_CaptureTimer.setInterval(10000); connect(&m_CaptureTimer, &QTimer::timeout, [&]() { if (m_CaptureTimeoutCounter++ > 3) { appendLogText(i18n("Capture timed out.")); abort(); } else { ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (targetChip->isCapturing()) { targetChip->abortExposure(); m_CaptureTimer.start( m_CaptureTimer.interval() * 2); } else captureAndSolve(); } }); m_AlignTimer.setSingleShot(true); m_AlignTimer.setInterval(Options::astrometryTimeout() * 1000); connect(&m_AlignTimer, &QTimer::timeout, this, &Ekos::Align::checkAlignmentTimeout); currentGotoMode = static_cast(Options::solverGotoOption()); gotoModeButtonGroup->button(currentGotoMode)->setChecked(true); editOptionsB->setIcon(QIcon::fromTheme("document-edit")); editOptionsB->setAttribute(Qt::WA_LayoutUsesWidgetRect); KConfigDialog *dialog = new KConfigDialog(this, "alignsettings", Options::self()); #ifdef Q_OS_OSX dialog->setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); #endif opsAlign = new OpsAlign(this); connect(opsAlign, &OpsAlign::settingsUpdated, this, &Ekos::Align::refreshAlignOptions); KPageWidgetItem *page = dialog->addPage(opsAlign, i18n("Astrometry.net")); page->setIcon(QIcon(":/icons/astrometry.svg")); opsAstrometry = new OpsAstrometry(this); page = dialog->addPage(opsAstrometry, i18n("Solver Options")); page->setIcon(QIcon::fromTheme("configure")); #ifndef Q_OS_WIN opsAstrometryCfg = new OpsAstrometryCfg(this); page = dialog->addPage(opsAstrometryCfg, i18n("Astrometry.cfg")); page->setIcon(QIcon::fromTheme("document-edit")); opsAstrometryIndexFiles = new OpsAstrometryIndexFiles(this); page = dialog->addPage(opsAstrometryIndexFiles, i18n("Index Files")); page->setIcon(QIcon::fromTheme("map-flat")); #endif opsASTAP = new OpsASTAP(this); page = dialog->addPage(opsASTAP, i18n("ASTAP")); page->setIcon(QIcon(":/icons/astap.ico")); connect(editOptionsB, &QPushButton::clicked, dialog, &QDialog::show); appendLogText(i18n("Idle.")); pi.reset(new QProgressIndicator(this)); stopLayout->addWidget(pi.get()); exposureIN->setValue(Options::alignExposure()); connect(exposureIN, static_cast(&QDoubleSpinBox::valueChanged), [&]() { syncSettings(); }); altStage = ALT_INIT; azStage = AZ_INIT; rememberSolverWCS = Options::astrometrySolverWCS(); rememberAutoWCS = Options::autoWCS(); #if 0 // Online/Offline/Remote solver check solverTypeGroup->setId(onlineSolverR, SOLVER_ONLINE); solverTypeGroup->setId(offlineSolverR, SOLVER_OFFLINE); solverTypeGroup->setId(remoteSolverR, SOLVER_REMOTE); #ifdef Q_OS_WIN offlineSolverR->setEnabled(false); offlineSolverR->setToolTip( i18n("Offline solver is not supported under Windows. Please use either the Online or Remote solvers.")); #endif #endif solverTypeGroup->setId(astapSolverR, SOLVER_ASTAP); solverTypeGroup->setId(astrometrySolverR, SOLVER_ASTROMETRYNET); solverTypeGroup->button(Options::solverType())->setChecked(true); connect(solverTypeGroup, static_cast(&QButtonGroup::buttonClicked), this, &Align::setSolverType); astrometryTypeCombo->addItem(i18n("Online")); #ifndef Q_OS_WIN astrometryTypeCombo->addItem(i18n("Offline")); #endif astrometryTypeCombo->addItem(i18n("Remote")); switch (solverTypeGroup->checkedId()) { case SOLVER_ASTAP: astapParser.reset(new Ekos::ASTAPAstrometryParser()); parser = astapParser.get(); break; case SOLVER_ASTROMETRYNET: { switch (astrometryTypeCombo->currentIndex()) { case SOLVER_ONLINE: onlineParser.reset(new Ekos::OnlineAstrometryParser()); parser = onlineParser.get(); break; case SOLVER_OFFLINE: offlineParser.reset(new OfflineAstrometryParser()); parser = offlineParser.get(); break; case SOLVER_REMOTE: remoteParser.reset(new RemoteAstrometryParser()); parser = remoteParser.get(); break; } } break; } parser->setAlign(this); if (parser->init() == false) setEnabled(false); else { connect(parser, &Ekos::AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(parser, &Ekos::AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } //solverOptions->setText(Options::solverOptions()); // Which telescope info to use for FOV calculations //kcfg_solverOTA->setChecked(Options::solverOTA()); //guideScopeCCDs = Options::guideScopeCCDs(); FOVScopeCombo->setCurrentIndex(Options::solverScopeType()); connect(FOVScopeCombo, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::updateTelescopeType); //connect(FOVScopeCombo, SIGNAL(currentIndexChanged(int)), this, SIGNAL(newFOVTelescopeType(int))); accuracySpin->setValue(Options::solverAccuracyThreshold()); alignDarkFrameCheck->setChecked(Options::alignDarkFrame()); delaySpin->setValue(Options::settlingTime()); connect(delaySpin, &QSpinBox::editingFinished, this, &Ekos::Align::saveSettleTime); connect(binningCombo, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::setBinningIndex); // PAH Connections connect(this, &Align::PAHEnabled, [&](bool enabled) { PAHStartB->setEnabled(enabled); directionLabel->setEnabled(enabled); PAHDirectionCombo->setEnabled(enabled); PAHRotationSpin->setEnabled(enabled); PAHSlewRateCombo->setEnabled(enabled); PAHManual->setEnabled(enabled); }); connect(PAHStartB, &QPushButton::clicked, this, &Ekos::Align::startPAHProcess); // PAH StopB is just a shortcut for the regular stop connect(PAHStopB, &QPushButton::clicked, this, &Align::stopPAHProcess); connect(PAHCorrectionsNextB, &QPushButton::clicked, this, &Ekos::Align::setPAHCorrectionSelectionComplete); connect(PAHRefreshB, &QPushButton::clicked, this, &Ekos::Align::startPAHRefreshProcess); connect(PAHDoneB, &QPushButton::clicked, this, &Ekos::Align::setPAHRefreshComplete); // done buttons for manual slewing during polar alignment: connect(PAHfirstDone, &QPushButton::clicked, this, &Ekos::Align::setPAHSlewDone); connect(PAHsecondDone, &QPushButton::clicked, this, &Ekos::Align::setPAHSlewDone); if (solverOptions->text().contains("no-fits2fits")) appendLogText(i18n( "Warning: If using astrometry.net v0.68 or above, remove the --no-fits2fits from the astrometry options.")); hemisphere = KStarsData::Instance()->geo()->lat()->Degrees() > 0 ? NORTH_HEMISPHERE : SOUTH_HEMISPHERE; double accuracyRadius = accuracySpin->value(); alignPlot->setBackground(QBrush(Qt::black)); alignPlot->setSelectionTolerance(10); alignPlot->xAxis->setBasePen(QPen(Qt::white, 1)); alignPlot->yAxis->setBasePen(QPen(Qt::white, 1)); alignPlot->xAxis->setTickPen(QPen(Qt::white, 1)); alignPlot->yAxis->setTickPen(QPen(Qt::white, 1)); alignPlot->xAxis->setSubTickPen(QPen(Qt::white, 1)); alignPlot->yAxis->setSubTickPen(QPen(Qt::white, 1)); alignPlot->xAxis->setTickLabelColor(Qt::white); alignPlot->yAxis->setTickLabelColor(Qt::white); alignPlot->xAxis->setLabelColor(Qt::white); alignPlot->yAxis->setLabelColor(Qt::white); alignPlot->xAxis->setLabelFont(QFont(font().family(), 10)); alignPlot->yAxis->setLabelFont(QFont(font().family(), 10)); alignPlot->xAxis->setLabelPadding(2); alignPlot->yAxis->setLabelPadding(2); alignPlot->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); alignPlot->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); alignPlot->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); alignPlot->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); alignPlot->xAxis->grid()->setZeroLinePen(QPen(Qt::yellow)); alignPlot->yAxis->grid()->setZeroLinePen(QPen(Qt::yellow)); alignPlot->xAxis->setLabel(i18n("dRA (arcsec)")); alignPlot->yAxis->setLabel(i18n("dDE (arcsec)")); alignPlot->xAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->yAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->setInteractions(QCP::iRangeZoom); alignPlot->setInteraction(QCP::iRangeDrag, true); alignPlot->addGraph(); alignPlot->graph(0)->setLineStyle(QCPGraph::lsNone); alignPlot->graph(0)->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssDisc, Qt::white, 15)); buildTarget(); connect(alignPlot, &QCustomPlot::mouseMove, this, &Ekos::Align::handlePointTooltip); connect(rightLayout, &QSplitter::splitterMoved, this, &Ekos::Align::handleVerticalPlotSizeChange); connect(alignSplitter, &QSplitter::splitterMoved, this, &Ekos::Align::handleHorizontalPlotSizeChange); connect(accuracySpin, static_cast(&QSpinBox::valueChanged), this, &Ekos::Align::buildTarget); alignPlot->resize(190, 190); alignPlot->replot(); solutionTable->setColumnWidth(0, 70); solutionTable->setColumnWidth(1, 75); solutionTable->setColumnWidth(2, 80); solutionTable->setColumnWidth(3, 30); solutionTable->setColumnWidth(4, 100); solutionTable->setColumnWidth(5, 100); clearAllSolutionsB->setIcon( QIcon::fromTheme("application-exit")); clearAllSolutionsB->setAttribute(Qt::WA_LayoutUsesWidgetRect); removeSolutionB->setIcon(QIcon::fromTheme("list-remove")); removeSolutionB->setAttribute(Qt::WA_LayoutUsesWidgetRect); exportSolutionsCSV->setIcon( QIcon::fromTheme("document-save-as")); exportSolutionsCSV->setAttribute(Qt::WA_LayoutUsesWidgetRect); autoScaleGraphB->setIcon(QIcon::fromTheme("zoom-fit-best")); autoScaleGraphB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.setupUi(&mountModelDialog); mountModelDialog.setWindowTitle("Mount Model Tool"); mountModelDialog.setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); mountModel.alignTable->setColumnWidth(0, 70); mountModel.alignTable->setColumnWidth(1, 75); mountModel.alignTable->setColumnWidth(2, 130); mountModel.alignTable->setColumnWidth(3, 30); mountModel.wizardAlignB->setIcon( QIcon::fromTheme("tools-wizard")); mountModel.wizardAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.clearAllAlignB->setIcon( QIcon::fromTheme("application-exit")); mountModel.clearAllAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.removeAlignB->setIcon(QIcon::fromTheme("list-remove")); mountModel.removeAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.addAlignB->setIcon(QIcon::fromTheme("list-add")); mountModel.addAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.findAlignB->setIcon(QIcon::fromTheme("edit-find")); mountModel.findAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.alignTable->verticalHeader()->setDragDropOverwriteMode(false); mountModel.alignTable->verticalHeader()->setSectionsMovable(true); mountModel.alignTable->verticalHeader()->setDragEnabled(true); mountModel.alignTable->verticalHeader()->setDragDropMode(QAbstractItemView::InternalMove); connect(mountModel.alignTable->verticalHeader(), SIGNAL(sectionMoved(int, int, int)), this, SLOT(moveAlignPoint(int, int, int))); mountModel.loadAlignB->setIcon( QIcon::fromTheme("document-open")); mountModel.loadAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.saveAsAlignB->setIcon( QIcon::fromTheme("document-save-as")); mountModel.saveAsAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.saveAlignB->setIcon( QIcon::fromTheme("document-save")); mountModel.saveAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.previewB->setIcon(QIcon::fromTheme("kstars_grid")); mountModel.previewB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.previewB->setCheckable(true); mountModel.sortAlignB->setIcon(QIcon::fromTheme("svn-update")); mountModel.sortAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.stopAlignB->setIcon( QIcon::fromTheme("media-playback-stop")); mountModel.stopAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); mountModel.startAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(clearAllSolutionsB, &QPushButton::clicked, this, &Ekos::Align::slotClearAllSolutionPoints); connect(removeSolutionB, &QPushButton::clicked, this, &Ekos::Align::slotRemoveSolutionPoint); connect(exportSolutionsCSV, &QPushButton::clicked, this, &Ekos::Align::exportSolutionPoints); connect(autoScaleGraphB, &QPushButton::clicked, this, &Ekos::Align::slotAutoScaleGraph); connect(mountModelB, &QPushButton::clicked, this, &Ekos::Align::slotMountModel); connect(solutionTable, &QTableWidget::cellClicked, this, &Ekos::Align::selectSolutionTableRow); connect(mountModel.wizardAlignB, &QPushButton::clicked, this, &Ekos::Align::slotWizardAlignmentPoints); connect(mountModel.alignTypeBox, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::alignTypeChanged); connect(mountModel.starListBox, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::slotStarSelected); connect(mountModel.greekStarListBox, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::slotStarSelected); connect(mountModel.loadAlignB, &QPushButton::clicked, this, &Ekos::Align::slotLoadAlignmentPoints); connect(mountModel.saveAsAlignB, &QPushButton::clicked, this, &Ekos::Align::slotSaveAsAlignmentPoints); connect(mountModel.saveAlignB, &QPushButton::clicked, this, &Ekos::Align::slotSaveAlignmentPoints); connect(mountModel.clearAllAlignB, &QPushButton::clicked, this, &Ekos::Align::slotClearAllAlignPoints); connect(mountModel.removeAlignB, &QPushButton::clicked, this, &Ekos::Align::slotRemoveAlignPoint); connect(mountModel.addAlignB, &QPushButton::clicked, this, &Ekos::Align::slotAddAlignPoint); connect(mountModel.findAlignB, &QPushButton::clicked, this, &Ekos::Align::slotFindAlignObject); connect(mountModel.sortAlignB, &QPushButton::clicked, this, &Ekos::Align::slotSortAlignmentPoints); connect(mountModel.previewB, &QPushButton::clicked, this, &Ekos::Align::togglePreviewAlignPoints); connect(mountModel.stopAlignB, &QPushButton::clicked, this, &Ekos::Align::resetAlignmentProcedure); connect(mountModel.startAlignB, &QPushButton::clicked, this, &Ekos::Align::startStopAlignmentProcedure); //Note: This is to prevent a button from being called the default button //and then executing when the user hits the enter key such as when on a Text Box QList qButtons = findChildren(); for (auto &button : qButtons) button->setAutoDefault(false); } Align::~Align() { if (alignWidget->parent() == nullptr) toggleAlignWidgetFullScreen(); // Remove temporary FITS files left before by the solver QDir dir(QDir::tempPath()); dir.setNameFilters(QStringList() << "fits*" << "tmp.*"); dir.setFilter(QDir::Files); for (auto &dirFile : dir.entryList()) dir.remove(dirFile); } void Align::selectSolutionTableRow(int row, int column) { Q_UNUSED(column); solutionTable->selectRow(row); for (int i = 0; i < alignPlot->itemCount(); i++) { QCPAbstractItem *abstractItem = alignPlot->item(i); if (abstractItem) { QCPItemText *item = qobject_cast(abstractItem); if (item) { if (i == row) { item->setColor(Qt::black); item->setBrush(Qt::yellow); } else { item->setColor(Qt::red); item->setBrush(Qt::white); } } } } alignPlot->replot(); } void Align::handleHorizontalPlotSizeChange() { alignPlot->xAxis->setScaleRatio(alignPlot->yAxis, 1.0); alignPlot->replot(); } void Align::handleVerticalPlotSizeChange() { alignPlot->yAxis->setScaleRatio(alignPlot->xAxis, 1.0); alignPlot->replot(); } void Align::resizeEvent(QResizeEvent *event) { if (event->oldSize().width() != -1) { if (event->oldSize().width() != size().width()) handleHorizontalPlotSizeChange(); else if (event->oldSize().height() != size().height()) handleVerticalPlotSizeChange(); } else { QTimer::singleShot(10, this, &Ekos::Align::handleHorizontalPlotSizeChange); } } void Align::handlePointTooltip(QMouseEvent *event) { QCPAbstractItem *item = alignPlot->itemAt(event->localPos()); if (item) { QCPItemText *label = qobject_cast(item); if (label) { QString labelText = label->text(); int point = labelText.toInt() - 1; if (point < 0) return; QToolTip::showText(event->globalPos(), tr("" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "
Object %L1: %L2
RA:%L3
DE:%L4
dRA:%L5
dDE:%L6
") .arg(point + 1) .arg(solutionTable->item(point, 2)->text(), solutionTable->item(point, 0)->text(), solutionTable->item(point, 1)->text(), solutionTable->item(point, 4)->text(), solutionTable->item(point, 5)->text()), alignPlot, alignPlot->rect()); } } } void Align::buildTarget() { double accuracyRadius = accuracySpin->value(); if (centralTarget) { concentricRings->data()->clear(); redTarget->data()->clear(); yellowTarget->data()->clear(); centralTarget->data()->clear(); } else { concentricRings = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); redTarget = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); yellowTarget = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); centralTarget = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); } const int pointCount = 200; QVector circleRings( pointCount * (5)); //Have to multiply by the number of rings, Rings at : 25%, 50%, 75%, 125%, 175% QVector circleCentral(pointCount); QVector circleYellow(pointCount); QVector circleRed(pointCount); int circleRingPt = 0; for (int i = 0; i < pointCount; i++) { double theta = i / static_cast(pointCount) * 2 * M_PI; for (double ring = 1; ring < 8; ring++) { if (ring != 4 && ring != 6) { if (i % (9 - static_cast(ring)) == 0) //This causes fewer points to draw on the inner circles. { circleRings[circleRingPt] = QCPCurveData(circleRingPt, accuracyRadius * ring * 0.25 * qCos(theta), accuracyRadius * ring * 0.25 * qSin(theta)); circleRingPt++; } } } circleCentral[i] = QCPCurveData(i, accuracyRadius * qCos(theta), accuracyRadius * qSin(theta)); circleYellow[i] = QCPCurveData(i, accuracyRadius * 1.5 * qCos(theta), accuracyRadius * 1.5 * qSin(theta)); circleRed[i] = QCPCurveData(i, accuracyRadius * 2 * qCos(theta), accuracyRadius * 2 * qSin(theta)); } concentricRings->setLineStyle(QCPCurve::lsNone); concentricRings->setScatterSkip(0); concentricRings->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssDisc, QColor(255, 255, 255, 150), 1)); concentricRings->data()->set(circleRings, true); redTarget->data()->set(circleRed, true); yellowTarget->data()->set(circleYellow, true); centralTarget->data()->set(circleCentral, true); concentricRings->setPen(QPen(Qt::white)); redTarget->setPen(QPen(Qt::red)); yellowTarget->setPen(QPen(Qt::yellow)); centralTarget->setPen(QPen(Qt::green)); concentricRings->setBrush(Qt::NoBrush); redTarget->setBrush(QBrush(QColor(255, 0, 0, 50))); yellowTarget->setBrush( QBrush(QColor(0, 255, 0, 50))); //Note this is actually yellow. It is green on top of red with equal opacity. centralTarget->setBrush(QBrush(QColor(0, 255, 0, 50))); if (alignPlot->size().width() > 0) alignPlot->replot(); } void Align::slotAutoScaleGraph() { double accuracyRadius = accuracySpin->value(); alignPlot->xAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->yAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->xAxis->setScaleRatio(alignPlot->yAxis, 1.0); alignPlot->replot(); } void Align::slotWizardAlignmentPoints() { int points = mountModel.alignPtNum->value(); if (points < 2) //The minimum is 2 because the wizard calculations require the calculation of an angle between points. return; //It should not be less than 2 because the minimum in the spin box is 2. int minAlt = mountModel.minAltBox->value(); KStarsData *data = KStarsData::Instance(); GeoLocation *geo = data->geo(); double lat = geo->lat()->Degrees(); if (mountModel.alignTypeBox->currentIndex() == OBJECT_FIXED_DEC) { double decAngle = mountModel.alignDec->value(); //Dec that never rises. if (lat > 0) { if (decAngle < lat - 90 + minAlt) //Min altitude possible at minAlt deg above horizon { KSNotification::sorry(i18n("DEC is below the altitude limit")); return; } } else { if (decAngle > lat + 90 - minAlt) //Max altitude possible at minAlt deg above horizon { KSNotification::sorry(i18n("DEC is below the altitude limit")); return; } } } //If there are less than 6 points, keep them all in the same DEC, //any more, set the num per row to be the sqrt of the points to evenly distribute in RA and DEC int numRAperDEC = 5; if (points > 5) numRAperDEC = qSqrt(points); //These calculations rely on modulus and int division counting beginning at 0, but the #s start at 1. int decPoints = (points - 1) / numRAperDEC + 1; int lastSetRAPoints = (points - 1) % numRAperDEC + 1; double decIncrement = -1; double initDEC = -1; SkyPoint spTest; if (mountModel.alignTypeBox->currentIndex() == OBJECT_FIXED_DEC) { decPoints = 1; initDEC = mountModel.alignDec->value(); decIncrement = 0; } else if (decPoints == 1) { decIncrement = 0; spTest.setAlt( minAlt); //The goal here is to get the point exactly West at the minAlt so that we can use that DEC spTest.setAz(270); spTest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); initDEC = spTest.dec().Degrees(); } else { spTest.setAlt( minAlt + 10); //We don't want to be right at the minAlt because there would be only 1 point on the dec circle above the alt. spTest.setAz(180); spTest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); initDEC = spTest.dec().Degrees(); if (lat > 0) decIncrement = (80 - initDEC) / (decPoints); //Don't quite want to reach NCP else decIncrement = (initDEC - 80) / (decPoints); //Don't quite want to reach SCP } for (int d = 0; d < decPoints; d++) { double initRA = -1; double raPoints = -1; double raIncrement = -1; double dec; if (lat > 0) dec = initDEC + d * decIncrement; else dec = initDEC - d * decIncrement; if (mountModel.alignTypeBox->currentIndex() == OBJECT_FIXED_DEC) { raPoints = points; } else if (d == decPoints - 1) { raPoints = lastSetRAPoints; } else { raPoints = numRAperDEC; } //This computes both the initRA and the raIncrement. calculateAngleForRALine(raIncrement, initRA, dec, lat, raPoints, minAlt); if (raIncrement == -1 || decIncrement == -1) { KSNotification::sorry(i18n("Point calculation error.")); return; } for (int i = 0; i < raPoints; i++) { double ra = initRA + i * raIncrement; const SkyObject *original = getWizardAlignObject(ra, dec); QString ra_report, dec_report, name; if (original) { SkyObject *o = original->clone(); o->updateCoords(data->updateNum(), true, data->geo()->lat(), data->lst(), false); getFormattedCoords(o->ra0().Hours(), o->dec0().Degrees(), ra_report, dec_report); name = o->longname(); } else { getFormattedCoords(dms(ra).Hours(), dec, ra_report, dec_report); name = i18n("Sky Point"); } int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ra_report); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(dec_report); DECReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DECReport); QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(name); ObjNameReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjNameReport); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); } } if (previewShowing) updatePreviewAlignPoints(); } void Align::calculateAngleForRALine(double &raIncrement, double &initRA, double initDEC, double lat, double raPoints, double minAlt) { SkyPoint spEast; SkyPoint spWest; //Circumpolar dec if (fabs(initDEC) > (90 - fabs(lat) + minAlt)) { if (raPoints > 1) raIncrement = 360 / (raPoints - 1); else raIncrement = 0; initRA = 0; } else { dms AZEast, AZWest; calculateAZPointsForDEC(dms(initDEC), dms(minAlt), AZEast, AZWest); spEast.setAlt(minAlt); spEast.setAz(AZEast.Degrees()); spEast.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); spWest.setAlt(minAlt); spWest.setAz(AZWest.Degrees()); spWest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); dms angleSep = spEast.ra().deltaAngle(spWest.ra()); //dms angleSep; // if (spEast.ra().Degrees() > spWest.ra().Degrees()) // angleSep = spEast.ra() - spWest.ra(); // else // angleSep = spEast.ra() + dms(360) - spWest.ra(); initRA = spWest.ra().Degrees(); if (raPoints > 1) raIncrement = fabs(angleSep.Degrees() / (raPoints - 1)); else raIncrement = 0; } } void Align::calculateAZPointsForDEC(dms dec, dms alt, dms &AZEast, dms &AZWest) { KStarsData *data = KStarsData::Instance(); GeoLocation *geo = data->geo(); double AZRad; double sindec, cosdec, sinlat, coslat; double sinAlt, cosAlt; geo->lat()->SinCos(sinlat, coslat); dec.SinCos(sindec, cosdec); alt.SinCos(sinAlt, cosAlt); double arg = (sindec - sinlat * sinAlt) / (coslat * cosAlt); AZRad = acos(arg); AZEast.setRadians(AZRad); AZWest.setRadians(2.0 * dms::PI - AZRad); } const SkyObject *Align::getWizardAlignObject(double ra, double dec) { double maxSearch = 5.0; switch (mountModel.alignTypeBox->currentIndex()) { case OBJECT_ANY_OBJECT: return KStarsData::Instance()->skyComposite()->objectNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); case OBJECT_FIXED_DEC: case OBJECT_FIXED_GRID: return nullptr; case OBJECT_ANY_STAR: return KStarsData::Instance()->skyComposite()->starNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); } // if (mountModel.alignTypeBox->currentText() == "Any Object") // return KStarsData::Instance()->skyComposite()->objectNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); // else if (mountModel.alignTypeBox->currentText() == "Fixed DEC" || // mountModel.alignTypeBox->currentText() == "Fixed Grid") // return nullptr; // else if (mountModel.alignTypeBox->currentText() == "Any Stars") // return KStarsData::Instance()->skyComposite()->starNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); //If they want named stars, then try to search for and return the closest Align Star to the requested location dms bestDiff = dms(360); double index = -1; for (int i = 0; i < alignStars.size(); i++) { const StarObject *star = alignStars.value(i); if (star) { if (star->hasName()) { SkyPoint thisPt(ra / 15.0, dec); dms thisDiff = thisPt.angularDistanceTo(star); if (thisDiff.Degrees() < bestDiff.Degrees()) { index = i; bestDiff = thisDiff; } } } } if (index == -1) return KStarsData::Instance()->skyComposite()->starNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); return alignStars.value(index); } void Align::alignTypeChanged(int alignType) { if (alignType == OBJECT_FIXED_DEC) mountModel.alignDec->setEnabled(true); else mountModel.alignDec->setEnabled(false); } void Align::slotStarSelected(const QString selectedStar) { for (int i = 0; i < alignStars.size(); i++) { const StarObject *star = alignStars.value(i); if (star) { if (star->name() == selectedStar || star->gname().simplified() == selectedStar) { int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QString ra_report, dec_report; getFormattedCoords(star->ra0().Hours(), star->dec0().Degrees(), ra_report, dec_report); QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ra_report); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(dec_report); DECReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DECReport); QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(star->longname()); ObjNameReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjNameReport); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); mountModel.starListBox->setCurrentIndex(0); mountModel.greekStarListBox->setCurrentIndex(0); return; } } } if (previewShowing) updatePreviewAlignPoints(); } void Align::generateAlignStarList() { alignStars.clear(); mountModel.starListBox->clear(); mountModel.greekStarListBox->clear(); KStarsData *data = KStarsData::Instance(); QVector> listStars; listStars.append(data->skyComposite()->objectLists(SkyObject::STAR)); for (int i = 0; i < listStars.size(); i++) { QPair pair = listStars.value(i); const StarObject *star = dynamic_cast(pair.second); if (star) { StarObject *alignStar = star->clone(); alignStar->updateCoords(data->updateNum(), true, data->geo()->lat(), data->lst(), false); alignStars.append(alignStar); } } QStringList boxNames; QStringList greekBoxNames; for (int i = 0; i < alignStars.size(); i++) { const StarObject *star = alignStars.value(i); if (star) { if (!isVisible(star)) { alignStars.remove(i); i--; } else { if (star->hasLatinName()) boxNames << star->name(); else { if (!star->gname().isEmpty()) greekBoxNames << star->gname().simplified(); } } } } boxNames.sort(Qt::CaseInsensitive); boxNames.removeDuplicates(); greekBoxNames.removeDuplicates(); qSort(greekBoxNames.begin(), greekBoxNames.end(), [](const QString & a, const QString & b) { QStringList aParts = a.split(' '); QStringList bParts = b.split(' '); if (aParts.length() < 2 || bParts.length() < 2) return a < b; //This should not happen, they should all have 2 words in the string. if (aParts[1] == bParts[1]) { return aParts[0] < bParts[0]; //This compares the greek letter when the constellation is the same } else return aParts[1] < bParts[1]; //This compares the constellation names }); mountModel.starListBox->addItem("Select one:"); mountModel.greekStarListBox->addItem("Select one:"); for (int i = 0; i < boxNames.size(); i++) mountModel.starListBox->addItem(boxNames.at(i)); for (int i = 0; i < greekBoxNames.size(); i++) mountModel.greekStarListBox->addItem(greekBoxNames.at(i)); } bool Align::isVisible(const SkyObject *so) { return (getAltitude(so) > 30); } double Align::getAltitude(const SkyObject *so) { KStarsData *data = KStarsData::Instance(); SkyPoint sp = so->recomputeCoords(data->ut(), data->geo()); //check altitude of object at this time. sp.EquatorialToHorizontal(data->lst(), data->geo()->lat()); return sp.alt().Degrees(); } void Align::togglePreviewAlignPoints() { previewShowing = !previewShowing; mountModel.previewB->setChecked(previewShowing); updatePreviewAlignPoints(); } void Align::updatePreviewAlignPoints() { FlagComponent *flags = KStarsData::Instance()->skyComposite()->flags(); for (int i = 0; i < flags->size(); i++) { if (flags->label(i).startsWith(QLatin1String("Align"))) { flags->remove(i); i--; } } if (previewShowing) { for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); QTableWidgetItem *objNameCell = mountModel.alignTable->item(i, 2); if (raCell && deCell && objNameCell) { QString raString = raCell->text(); QString deString = deCell->text(); dms raDMS = dms::fromString(raString, false); dms decDMS = dms::fromString(deString, true); QString objString = objNameCell->text(); SkyPoint flagPoint(raDMS, decDMS); flags->add(flagPoint, "J2000", "Default", "Align " + QString::number(i + 1) + ' ' + objString, "white"); } } } KStars::Instance()->map()->forceUpdate(true); } void Align::slotLoadAlignmentPoints() { QUrl fileURL = QFileDialog::getOpenFileUrl(&mountModelDialog, i18n("Open Ekos Alignment List"), alignURLPath, "Ekos AlignmentList (*.eal)"); if (fileURL.isEmpty()) return; if (fileURL.isValid() == false) { QString message = i18n("Invalid URL: %1", fileURL.toLocalFile()); KSNotification::sorry(message, i18n("Invalid URL")); return; } alignURLPath = QUrl(fileURL.url(QUrl::RemoveFilename)); loadAlignmentPoints(fileURL.toLocalFile()); if (previewShowing) updatePreviewAlignPoints(); } bool Align::loadAlignmentPoints(const QString &fileURL) { QFile sFile; sFile.setFileName(fileURL); if (!sFile.open(QIODevice::ReadOnly)) { QString message = i18n("Unable to open file %1", fileURL); KSNotification::sorry(message, i18n("Could Not Open File")); return false; } mountModel.alignTable->setRowCount(0); LilXML *xmlParser = newLilXML(); char errmsg[MAXRBUF]; XMLEle *root = nullptr; char c; while (sFile.getChar(&c)) { root = readXMLEle(xmlParser, c, errmsg); if (root) { double sqVersion = atof(findXMLAttValu(root, "version")); if (sqVersion < AL_FORMAT_VERSION) { appendLogText(i18n("Deprecated sequence file format version %1. Please construct a new sequence file.", sqVersion)); return false; } XMLEle *ep = nullptr; XMLEle *subEP = nullptr; int currentRow = 0; for (ep = nextXMLEle(root, 1); ep != nullptr; ep = nextXMLEle(root, 0)) { if (!strcmp(tagXMLEle(ep), "AlignmentPoint")) { mountModel.alignTable->insertRow(currentRow); subEP = findXMLEle(ep, "RA"); if (subEP) { QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(pcdataXMLEle(subEP)); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); } else return false; subEP = findXMLEle(ep, "DE"); if (subEP) { QTableWidgetItem *DEReport = new QTableWidgetItem(); DEReport->setText(pcdataXMLEle(subEP)); DEReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DEReport); } else return false; subEP = findXMLEle(ep, "NAME"); if (subEP) { QTableWidgetItem *ObjReport = new QTableWidgetItem(); ObjReport->setText(pcdataXMLEle(subEP)); ObjReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjReport); } else return false; } currentRow++; } return true; } } return false; } void Align::slotSaveAsAlignmentPoints() { alignURL.clear(); slotSaveAlignmentPoints(); } void Align::slotSaveAlignmentPoints() { QUrl backupCurrent = alignURL; if (alignURL.toLocalFile().startsWith(QLatin1String("/tmp/")) || alignURL.toLocalFile().contains("/Temp")) alignURL.clear(); if (alignURL.isEmpty()) { alignURL = QFileDialog::getSaveFileUrl(&mountModelDialog, i18n("Save Ekos Alignment List"), alignURLPath, "Ekos Alignment List (*.eal)"); // if user presses cancel if (alignURL.isEmpty()) { alignURL = backupCurrent; return; } alignURLPath = QUrl(alignURL.url(QUrl::RemoveFilename)); if (alignURL.toLocalFile().endsWith(QLatin1String(".eal")) == false) alignURL.setPath(alignURL.toLocalFile() + ".eal"); if (QFile::exists(alignURL.toLocalFile())) { int r = KMessageBox::warningContinueCancel(nullptr, i18n("A file named \"%1\" already exists. " "Overwrite it?", alignURL.fileName()), i18n("Overwrite File?"), KStandardGuiItem::overwrite()); if (r == KMessageBox::Cancel) return; } } if (alignURL.isValid()) { if ((saveAlignmentPoints(alignURL.toLocalFile())) == false) { KSNotification::error(i18n("Failed to save alignment list"), i18n("Save")); return; } } else { QString message = i18n("Invalid URL: %1", alignURL.url()); KSNotification::sorry(message, i18n("Invalid URL")); } } bool Align::saveAlignmentPoints(const QString &path) { QFile file; file.setFileName(path); if (!file.open(QIODevice::WriteOnly)) { QString message = i18n("Unable to write to file %1", path); KSNotification::sorry(message, i18n("Could Not Open File")); return false; } QTextStream outstream(&file); outstream << "" << endl; outstream << "" << endl; for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); QTableWidgetItem *objNameCell = mountModel.alignTable->item(i, 2); if (!raCell || !deCell || !objNameCell) return false; QString raString = raCell->text(); QString deString = deCell->text(); QString objString = objNameCell->text(); outstream << "" << endl; outstream << "" << raString << "" << endl; outstream << "" << deString << "" << endl; outstream << "" << objString << "" << endl; outstream << "" << endl; } outstream << "" << endl; appendLogText(i18n("Alignment List saved to %1", path)); file.close(); return true; } void Align::slotSortAlignmentPoints() { int firstAlignmentPt = findClosestAlignmentPointToTelescope(); if (firstAlignmentPt != -1) { swapAlignPoints(firstAlignmentPt, 0); } for (int i = 0; i < mountModel.alignTable->rowCount() - 1; i++) { int nextAlignmentPoint = findNextAlignmentPointAfter(i); if (nextAlignmentPoint != -1) { swapAlignPoints(nextAlignmentPoint, i + 1); } } if (previewShowing) updatePreviewAlignPoints(); } int Align::findClosestAlignmentPointToTelescope() { dms bestDiff = dms(360); double index = -1; for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); if (raCell && deCell) { dms raDMS = dms::fromString(raCell->text(), false); dms deDMS = dms::fromString(deCell->text(), true); dms thisDiff = telescopeCoord.angularDistanceTo(new SkyPoint(raDMS, deDMS)); if (thisDiff.Degrees() < bestDiff.Degrees()) { index = i; bestDiff = thisDiff; } } } return index; } int Align::findNextAlignmentPointAfter(int currentSpot) { QTableWidgetItem *currentRACell = mountModel.alignTable->item(currentSpot, 0); QTableWidgetItem *currentDECell = mountModel.alignTable->item(currentSpot, 1); if (currentRACell && currentDECell) { dms thisRADMS = dms::fromString(currentRACell->text(), false); dms thisDEDMS = dms::fromString(currentDECell->text(), true); SkyPoint thisPt(thisRADMS, thisDEDMS); dms bestDiff = dms(360); double index = -1; for (int i = currentSpot + 1; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); if (raCell && deCell) { dms raDMS = dms::fromString(raCell->text(), false); dms deDMS = dms::fromString(deCell->text(), true); SkyPoint point(raDMS, deDMS); dms thisDiff = thisPt.angularDistanceTo(&point); if (thisDiff.Degrees() < bestDiff.Degrees()) { index = i; bestDiff = thisDiff; } } } return index; } else return -1; } void Align::exportSolutionPoints() { if (solutionTable->rowCount() == 0) return; QUrl exportFile = QFileDialog::getSaveFileUrl(KStars::Instance(), i18n("Export Solution Points"), alignURLPath, "CSV File (*.csv)"); if (exportFile.isEmpty()) // if user presses cancel return; if (exportFile.toLocalFile().endsWith(QLatin1String(".csv")) == false) exportFile.setPath(exportFile.toLocalFile() + ".csv"); QString path = exportFile.toLocalFile(); if (QFile::exists(path)) { int r = KMessageBox::warningContinueCancel(nullptr, i18n("A file named \"%1\" already exists. " "Overwrite it?", exportFile.fileName()), i18n("Overwrite File?"), KStandardGuiItem::overwrite()); if (r == KMessageBox::Cancel) return; } if (!exportFile.isValid()) { QString message = i18n("Invalid URL: %1", exportFile.url()); KSNotification::sorry(message, i18n("Invalid URL")); return; } QFile file; file.setFileName(path); if (!file.open(QIODevice::WriteOnly)) { QString message = i18n("Unable to write to file %1", path); KSNotification::sorry(message, i18n("Could Not Open File")); return; } QTextStream outstream(&file); QString epoch = QString::number(KStarsDateTime::currentDateTime().epoch()); outstream << "RA (J" << epoch << "),DE (J" << epoch << "),RA (degrees),DE (degrees),Name,RA Error (arcsec),DE Error (arcsec)" << endl; for (int i = 0; i < solutionTable->rowCount(); i++) { QTableWidgetItem *raCell = solutionTable->item(i, 0); QTableWidgetItem *deCell = solutionTable->item(i, 1); QTableWidgetItem *objNameCell = solutionTable->item(i, 2); QTableWidgetItem *raErrorCell = solutionTable->item(i, 4); QTableWidgetItem *deErrorCell = solutionTable->item(i, 5); if (!raCell || !deCell || !objNameCell || !raErrorCell || !deErrorCell) { KSNotification::sorry(i18n("Error in table structure.")); return; } dms raDMS = dms::fromString(raCell->text(), false); dms deDMS = dms::fromString(deCell->text(), true); outstream << raDMS.toHMSString() << ',' << deDMS.toDMSString() << ',' << raDMS.Degrees() << ',' << deDMS.Degrees() << ',' << objNameCell->text() << ',' << raErrorCell->text().remove('\"') << ',' << deErrorCell->text().remove('\"') << endl; } appendLogText(i18n("Solution Points Saved as: %1", path)); file.close(); } void Align::slotClearAllSolutionPoints() { if (solutionTable->rowCount() == 0) return; // if (Options::autonomousMode() || KMessageBox::questionYesNo( // KStars::Instance(), i18n("Are you sure you want to clear all of the solution points?"), // i18n("Clear Solution Points"), KStandardGuiItem::yes(), KStandardGuiItem::no()) == KMessageBox::Yes) // { // solutionTable->setRowCount(0); // alignPlot->graph(0)->data()->clear(); // alignPlot->clearItems(); // buildTarget(); // slotAutoScaleGraph(); // } connect(KSMessageBox::Instance(), &KSMessageBox::accepted, this, [this]() { //QObject::disconnect(KSMessageBox::Instance(), &KSMessageBox::accepted, this, nullptr); KSMessageBox::Instance()->disconnect(this); solutionTable->setRowCount(0); alignPlot->graph(0)->data()->clear(); alignPlot->clearItems(); buildTarget(); slotAutoScaleGraph(); }); KSMessageBox::Instance()->questionYesNo(i18n("Are you sure you want to clear all of the solution points?"), i18n("Clear Solution Points"), 60); } void Align::slotClearAllAlignPoints() { if (mountModel.alignTable->rowCount() == 0) return; if (KMessageBox::questionYesNo(&mountModelDialog, i18n("Are you sure you want to clear all the alignment points?"), i18n("Clear Align Points")) == KMessageBox::Yes) mountModel.alignTable->setRowCount(0); if (previewShowing) updatePreviewAlignPoints(); } void Align::slotRemoveSolutionPoint() { QCPAbstractItem *abstractItem = alignPlot->item(solutionTable->currentRow()); if (abstractItem) { QCPItemText *item = qobject_cast(abstractItem); if (item) { double point = item->position->key(); alignPlot->graph(0)->data()->remove(point); } } alignPlot->removeItem(solutionTable->currentRow()); for (int i = 0; i < alignPlot->itemCount(); i++) { QCPAbstractItem *abstractItem = alignPlot->item(i); if (abstractItem) { QCPItemText *item = qobject_cast(abstractItem); if (item) item->setText(QString::number(i + 1)); } } solutionTable->removeRow(solutionTable->currentRow()); alignPlot->replot(); } void Align::slotRemoveAlignPoint() { mountModel.alignTable->removeRow(mountModel.alignTable->currentRow()); if (previewShowing) updatePreviewAlignPoints(); } void Align::moveAlignPoint(int logicalIndex, int oldVisualIndex, int newVisualIndex) { Q_UNUSED(logicalIndex); for (int i = 0; i < mountModel.alignTable->columnCount(); i++) { QTableWidgetItem *oldItem = mountModel.alignTable->takeItem(oldVisualIndex, i); QTableWidgetItem *newItem = mountModel.alignTable->takeItem(newVisualIndex, i); mountModel.alignTable->setItem(newVisualIndex, i, oldItem); mountModel.alignTable->setItem(oldVisualIndex, i, newItem); } mountModel.alignTable->verticalHeader()->blockSignals(true); mountModel.alignTable->verticalHeader()->moveSection(newVisualIndex, oldVisualIndex); mountModel.alignTable->verticalHeader()->blockSignals(false); if (previewShowing) updatePreviewAlignPoints(); } void Align::swapAlignPoints(int firstPt, int secondPt) { for (int i = 0; i < mountModel.alignTable->columnCount(); i++) { QTableWidgetItem *firstPtItem = mountModel.alignTable->takeItem(firstPt, i); QTableWidgetItem *secondPtItem = mountModel.alignTable->takeItem(secondPt, i); mountModel.alignTable->setItem(firstPt, i, secondPtItem); mountModel.alignTable->setItem(secondPt, i, firstPtItem); } } void Align::slotMountModel() { generateAlignStarList(); SkyPoint spWest; spWest.setAlt(30); spWest.setAz(270); spWest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); mountModel.alignDec->setValue(static_cast(spWest.dec().Degrees())); mountModelDialog.show(); } void Align::slotAddAlignPoint() { int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); } void Align::slotFindAlignObject() { KStarsData *data = KStarsData::Instance(); if (FindDialog::Instance()->exec() == QDialog::Accepted) { SkyObject *object = FindDialog::Instance()->targetObject(); if (object != nullptr) { SkyObject *o = object->clone(); o->updateCoords(data->updateNum(), true, data->geo()->lat(), data->lst(), false); int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QString ra_report, dec_report; getFormattedCoords(o->ra0().Hours(), o->dec0().Degrees(), ra_report, dec_report); QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ra_report); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(dec_report); DECReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DECReport); QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(o->longname()); ObjNameReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjNameReport); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); } } if (previewShowing) updatePreviewAlignPoints(); } void Align::resetAlignmentProcedure() { mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setFlags(Qt::ItemIsSelectable); statusReport->setIcon(QIcon(":/icons/AlignWarning.svg")); mountModel.alignTable->setItem(currentAlignmentPoint, 3, statusReport); appendLogText(i18n("The Mount Model Tool is Reset.")); mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); mountModelRunning = false; currentAlignmentPoint = 0; abort(); } bool Align::alignmentPointsAreBad() { for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); if (!raCell) return true; QString raString = raCell->text(); if (dms().setFromString(raString, false) == false) return true; QTableWidgetItem *decCell = mountModel.alignTable->item(i, 1); if (!decCell) return true; QString decString = decCell->text(); if (dms().setFromString(decString, true) == false) return true; } return false; } void Align::startStopAlignmentProcedure() { if (!mountModelRunning) { if (mountModel.alignTable->rowCount() > 0) { if (alignmentPointsAreBad()) { KSNotification::error(i18n("Please Check the Alignment Points.")); return; } if (currentGotoMode == GOTO_NOTHING) { int r = KMessageBox::warningContinueCancel( nullptr, i18n("In the Align Module, \"Nothing\" is Selected for the Solver Action. This means that the " "mount model tool will not sync/align your mount but will only report the pointing model " "errors. Do you wish to continue?"), i18n("Pointing Model Report Only?"), KStandardGuiItem::cont(), KStandardGuiItem::cancel(), "nothing_selected_warning"); if (r == KMessageBox::Cancel) return; } if (currentAlignmentPoint == 0) { for (int row = 0; row < mountModel.alignTable->rowCount(); row++) { QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon()); mountModel.alignTable->setItem(row, 3, statusReport); } } mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-pause")); mountModelRunning = true; appendLogText(i18n("The Mount Model Tool is Starting.")); startAlignmentPoint(); } } else { mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, new QWidget()); appendLogText(i18n("The Mount Model Tool is Paused.")); abort(); mountModelRunning = false; QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setFlags(Qt::ItemIsSelectable); statusReport->setIcon(QIcon(":/icons/AlignWarning.svg")); mountModel.alignTable->setItem(currentAlignmentPoint, 3, statusReport); } } void Align::startAlignmentPoint() { if (mountModelRunning && currentAlignmentPoint >= 0 && currentAlignmentPoint < mountModel.alignTable->rowCount()) { QTableWidgetItem *raCell = mountModel.alignTable->item(currentAlignmentPoint, 0); QString raString = raCell->text(); dms raDMS = dms::fromString(raString, false); double ra = raDMS.Hours(); QTableWidgetItem *decCell = mountModel.alignTable->item(currentAlignmentPoint, 1); QString decString = decCell->text(); dms decDMS = dms::fromString(decString, true); double dec = decDMS.Degrees(); QProgressIndicator *alignIndicator = new QProgressIndicator(this); mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, alignIndicator); alignIndicator->startAnimation(); targetCoord.setRA0(ra); targetCoord.setDec0(dec); targetCoord.updateCoordsNow(KStarsData::Instance()->updateNum()); Slew(); } } void Align::finishAlignmentPoint(bool solverSucceeded) { if (mountModelRunning && currentAlignmentPoint >= 0 && currentAlignmentPoint < mountModel.alignTable->rowCount()) { mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setFlags(Qt::ItemIsSelectable); if (solverSucceeded) statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); else statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); mountModel.alignTable->setItem(currentAlignmentPoint, 3, statusReport); currentAlignmentPoint++; if (currentAlignmentPoint < mountModel.alignTable->rowCount()) { startAlignmentPoint(); } else { mountModelRunning = false; mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); appendLogText(i18n("The Mount Model Tool is Finished.")); currentAlignmentPoint = 0; } } } bool Align::isParserOK() { bool rc = parser->init(); if (rc) { connect(parser, &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(parser, &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } return rc; } void Align::checkAlignmentTimeout() { if (loadSlewState != IPS_IDLE || ++solverIterations == MAXIMUM_SOLVER_ITERATIONS) abort(); else if (loadSlewState == IPS_IDLE) { appendLogText(i18n("Solver timed out.")); parser->stopSolver(); captureAndSolve(); } // TODO must also account for loadAndSlew. Retain file name } void Align::setSolverType(int type) { if (sender() == nullptr && type >= 0 && type <= 2) solverTypeGroup->button(type)->setChecked(true); syncSettings(); Options::setSolverType(type); switch (type) { case SOLVER_ONLINE: loadSlewB->setEnabled(true); if (onlineParser.get() != nullptr) { parser = onlineParser.get(); return; } onlineParser.reset(new Ekos::OnlineAstrometryParser()); parser = onlineParser.get(); break; case SOLVER_OFFLINE: loadSlewB->setEnabled(true); if (offlineParser.get() != nullptr) { parser = offlineParser.get(); return; } offlineParser.reset(new Ekos::OfflineAstrometryParser()); parser = offlineParser.get(); break; case SOLVER_REMOTE: loadSlewB->setEnabled(true); if (remoteParser.get() != nullptr && remoteParserDevice != nullptr) { parser = remoteParser.get(); (dynamic_cast(parser))->setAstrometryDevice(remoteParserDevice); return; } remoteParser.reset(new Ekos::RemoteAstrometryParser()); parser = remoteParser.get(); (dynamic_cast(parser))->setAstrometryDevice(remoteParserDevice); if (currentCCD) (dynamic_cast(parser))->setCCD(currentCCD->getDeviceName()); break; } parser->setAlign(this); if (parser->init()) { connect(parser, &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(parser, &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } else parser->disconnect(); } bool Align::setCamera(const QString &device) { for (int i = 0; i < CCDCaptureCombo->count(); i++) if (device == CCDCaptureCombo->itemText(i)) { CCDCaptureCombo->setCurrentIndex(i); checkCCD(i); return true; } return false; } QString Align::camera() { if (currentCCD) return currentCCD->getDeviceName(); return QString(); } void Align::setDefaultCCD(QString ccd) { syncSettings(); Options::setDefaultAlignCCD(ccd); } void Align::checkCCD(int ccdNum) { if (ccdNum == -1 || ccdNum >= CCDs.count()) { ccdNum = CCDCaptureCombo->currentIndex(); if (ccdNum == -1) return; } currentCCD = CCDs.at(ccdNum); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip && targetChip->isCapturing()) return; if (solverTypeGroup->checkedId() == SOLVER_REMOTE && remoteParser.get() != nullptr) (dynamic_cast(remoteParser.get()))->setCCD(currentCCD->getDeviceName()); syncCCDInfo(); /* FOVScopeCombo->blockSignals(true); ISD::CCD::TelescopeType type = currentCCD->getTelescopeType(); FOVScopeCombo->setCurrentIndex(type == ISD::CCD::TELESCOPE_UNKNOWN ? 0 : type); FOVScopeCombo->blockSignals(false); */ syncTelescopeInfo(); } void Align::addCCD(ISD::GDInterface *newCCD) { if (CCDs.contains(static_cast(newCCD))) { syncCCDInfo(); return; } CCDs.append(static_cast(newCCD)); CCDCaptureCombo->addItem(newCCD->getDeviceName()); checkCCD(); syncSettings(); } void Align::setTelescope(ISD::GDInterface *newTelescope) { currentTelescope = static_cast(newTelescope); currentTelescope->disconnect(this); connect(currentTelescope, &ISD::GDInterface::numberUpdated, this, &Ekos::Align::processNumber, Qt::UniqueConnection); connect(currentTelescope, &ISD::GDInterface::Disconnected, this, [this]() { m_isRateSynced = false; }); if (m_isRateSynced == false) { PAHSlewRateCombo->blockSignals(true); PAHSlewRateCombo->clear(); PAHSlewRateCombo->addItems(currentTelescope->slewRates()); if (Options::pAHMountSpeedIndex() >= 0) PAHSlewRateCombo->setCurrentIndex(Options::pAHMountSpeedIndex()); else PAHSlewRateCombo->setCurrentIndex(currentTelescope->getSlewRate()); PAHSlewRateCombo->blockSignals(false); m_isRateSynced = !currentTelescope->slewRates().empty(); } syncTelescopeInfo(); } void Align::setDome(ISD::GDInterface *newDome) { currentDome = static_cast(newDome); connect(currentDome, &ISD::GDInterface::switchUpdated, this, &Ekos::Align::processSwitch, Qt::UniqueConnection); } void Align::removeDevice(ISD::GDInterface *device) { device->disconnect(this); if (currentTelescope && !strcmp(currentTelescope->getDeviceName(), device->getDeviceName())) { currentTelescope = nullptr; m_isRateSynced = false; } else if (currentDome && !strcmp(currentDome->getDeviceName(), device->getDeviceName())) { currentDome = nullptr; } else if (currentRotator && !strcmp(currentRotator->getDeviceName(), device->getDeviceName())) { currentRotator = nullptr; } if (CCDs.contains(static_cast(device))) { CCDs.removeAll(static_cast(device)); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(device->getDeviceName())); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(device->getDeviceName() + QString(" Guider"))); if (CCDs.empty()) currentCCD = nullptr; checkCCD(); } if (Filters.contains(static_cast(device))) { Filters.removeAll(static_cast(device)); filterManager->removeDevice(device); FilterDevicesCombo->removeItem(FilterDevicesCombo->findText(device->getDeviceName())); if (Filters.empty()) currentFilter = nullptr; checkFilter(); } } bool Align::syncTelescopeInfo() { if (currentTelescope == nullptr || currentTelescope->isConnected() == false) return false; canSync = currentTelescope->canSync(); if (canSync == false && syncR->isEnabled()) { slewR->setChecked(true); appendLogText(i18n("Mount does not support syncing.")); } syncR->setEnabled(canSync); INumberVectorProperty *nvp = currentTelescope->getBaseDevice()->getNumber("TELESCOPE_INFO"); if (nvp) { INumber *np = IUFindNumber(nvp, "TELESCOPE_APERTURE"); if (np && np->value > 0) primaryAperture = np->value; np = IUFindNumber(nvp, "GUIDER_APERTURE"); if (np && np->value > 0) guideAperture = np->value; aperture = primaryAperture; //if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) if (FOVScopeCombo->currentIndex() == ISD::CCD::TELESCOPE_GUIDE) aperture = guideAperture; np = IUFindNumber(nvp, "TELESCOPE_FOCAL_LENGTH"); if (np && np->value > 0) primaryFL = np->value; np = IUFindNumber(nvp, "GUIDER_FOCAL_LENGTH"); if (np && np->value > 0) guideFL = np->value; focal_length = primaryFL; //if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) if (FOVScopeCombo->currentIndex() == ISD::CCD::TELESCOPE_GUIDE) focal_length = guideFL; } if (focal_length == -1 || aperture == -1) return false; if (ccd_hor_pixel != -1 && ccd_ver_pixel != -1 && focal_length != -1 && aperture != -1) { FOVScopeCombo->setItemData( ISD::CCD::TELESCOPE_PRIMARY, i18nc("F-Number, Focal Length, Aperture", "F%1 Focal Length: %2 mm Aperture: %3 mm2", QString::number(primaryFL / primaryAperture, 'f', 1), QString::number(primaryFL, 'f', 2), QString::number(primaryAperture, 'f', 2)), Qt::ToolTipRole); FOVScopeCombo->setItemData( ISD::CCD::TELESCOPE_GUIDE, i18nc("F-Number, Focal Length, Aperture", "F%1 Focal Length: %2 mm Aperture: %3 mm2", QString::number(guideFL / guideAperture, 'f', 1), QString::number(guideFL, 'f', 2), QString::number(guideAperture, 'f', 2)), Qt::ToolTipRole); calculateFOV(); generateArgs(); return true; } return false; } void Align::setTelescopeInfo(double primaryFocalLength, double primaryAperture, double guideFocalLength, double guideAperture) { if (primaryFocalLength > 0) primaryFL = primaryFocalLength; if (guideFocalLength > 0) guideFL = guideFocalLength; if (primaryAperture > 0) this->primaryAperture = primaryAperture; if (guideAperture > 0) this->guideAperture = guideAperture; focal_length = primaryFL; if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) focal_length = guideFL; aperture = primaryAperture; if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) aperture = guideAperture; syncTelescopeInfo(); } void Align::syncCCDInfo() { INumberVectorProperty *nvp = nullptr; if (currentCCD == nullptr) return; if (useGuideHead) nvp = currentCCD->getBaseDevice()->getNumber("GUIDER_INFO"); else nvp = currentCCD->getBaseDevice()->getNumber("CCD_INFO"); if (nvp) { INumber *np = IUFindNumber(nvp, "CCD_PIXEL_SIZE_X"); if (np && np->value > 0) ccd_hor_pixel = ccd_ver_pixel = np->value; np = IUFindNumber(nvp, "CCD_PIXEL_SIZE_Y"); if (np && np->value > 0) ccd_ver_pixel = np->value; np = IUFindNumber(nvp, "CCD_PIXEL_SIZE_Y"); if (np && np->value > 0) ccd_ver_pixel = np->value; } ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); ISwitchVectorProperty *svp = currentCCD->getBaseDevice()->getSwitch("WCS_CONTROL"); if (svp) setWCSEnabled(Options::astrometrySolverWCS()); targetChip->setImageView(alignView, FITS_ALIGN); targetChip->getFrameMinMax(nullptr, nullptr, nullptr, nullptr, nullptr, &ccd_width, nullptr, &ccd_height); //targetChip->getFrame(&x,&y,&ccd_width,&ccd_height); binningCombo->setEnabled(targetChip->canBin()); if (targetChip->canBin()) { binningCombo->blockSignals(true); int binx = 1, biny = 1; targetChip->getMaxBin(&binx, &biny); binningCombo->clear(); for (int i = 0; i < binx; i++) binningCombo->addItem(QString("%1x%2").arg(i + 1).arg(i + 1)); // By default, set to maximum binning since the solver behaves better this way // solverBinningIndex is set by default to 4, but as soon as the user changes the binning, it changes // to whatever value the user selected. if (Options::solverBinningIndex() == 4 && binningCombo->count() <= 4) { binningCombo->setCurrentIndex(binningCombo->count() - 1); Options::setSolverBinningIndex(binningCombo->count() - 1); } else binningCombo->setCurrentIndex(Options::solverBinningIndex()); binningCombo->blockSignals(false); } if (ccd_hor_pixel == -1 || ccd_ver_pixel == -1) return; if (ccd_hor_pixel != -1 && ccd_ver_pixel != -1 && focal_length != -1 && aperture != -1) { calculateFOV(); generateArgs(); } } void Align::getFOVScale(double &fov_w, double &fov_h, double &fov_scale) { fov_w = fov_x; fov_h = fov_y; fov_scale = fov_pixscale; } QList Align::fov() { QList result; result << fov_x << fov_y << fov_pixscale; return result; } QList Align::cameraInfo() { QList result; result << ccd_width << ccd_height << ccd_hor_pixel << ccd_ver_pixel; return result; } QList Align::telescopeInfo() { QList result; result << focal_length << aperture; return result; } void Align::getCalculatedFOVScale(double &fov_w, double &fov_h, double &fov_scale) { // FOV in arcsecs fov_w = 206264.8062470963552 * ccd_width * ccd_hor_pixel / 1000.0 / focal_length; fov_h = 206264.8062470963552 * ccd_height * ccd_ver_pixel / 1000.0 / focal_length; // Pix Scale fov_scale = (fov_w * (Options::solverBinningIndex() + 1)) / ccd_width; // FOV in arcmins fov_w /= 60.0; fov_h /= 60.0; } void Align::calculateFOV() { // Calculate FOV // FOV in arcsecs fov_x = 206264.8062470963552 * ccd_width * ccd_hor_pixel / 1000.0 / focal_length; fov_y = 206264.8062470963552 * ccd_height * ccd_ver_pixel / 1000.0 / focal_length; // Pix Scale fov_pixscale = (fov_x * (Options::solverBinningIndex() + 1)) / ccd_width; // FOV in arcmins fov_x /= 60.0; fov_y /= 60.0; + double calculated_fov_x = fov_x; + double calculated_fov_y = fov_y; + QString calculatedFOV = (QString("%1' x %2'").arg(fov_x, 0, 'g', 3).arg(fov_y, 0, 'g', 3)); // JM 2018-04-20 Above calculations are for RAW FOV. Starting from 2.9.5, we are using EFFECTIVE FOV // Which is the real FOV as measured from the plate solution. The effective FOVs are stored in the database and are unique // per profile/pixel_size/focal_length combinations. It defaults to 0' x 0' and gets updated after the first successful solver is complete. getEffectiveFOV(); if (fov_x == 0) { //FOVOut->setReadOnly(false); FOVOut->setToolTip(i18n("

Effective field of view size in arcminutes.

Please capture and solve once to measure the effective FOV or enter the values manually.

Calculated FOV: %1

", calculatedFOV)); + fov_x = calculated_fov_x; + fov_y = calculated_fov_y; + m_EffectiveFOVPending = true; } else { + m_EffectiveFOVPending = false; FOVOut->setToolTip(i18n("

Effective field of view size in arcminutes.

")); //FOVOut->setReadOnly(true); } solverFOV->setSize(fov_x, fov_y); sensorFOV->setSize(fov_x, fov_y); if (currentCCD) sensorFOV->setName(currentCCD->getDeviceName()); FOVOut->setText(QString("%1' x %2'").arg(fov_x, 0, 'g', 3).arg(fov_y, 0, 'g', 3)); if (((fov_x + fov_y) / 2.0) > PAH_CUTOFF_FOV) { if (isPAHReady == false) { PAHWidgets->setEnabled(true); isPAHReady = true; emit PAHEnabled(true); PAHWidgets->setToolTip(QString()); FOVDisabledLabel->hide(); } } else if (PAHWidgets->isEnabled()) { PAHWidgets->setEnabled(false); isPAHReady = false; emit PAHEnabled(false); PAHWidgets->setToolTip(i18n( "

Polar Alignment Helper tool requires the following:

1. German Equatorial Mount

2. FOV >" " 0.5 degrees

For small FOVs, use the Legacy Polar Alignment Tool.

")); FOVDisabledLabel->show(); } if (opsAstrometry->kcfg_AstrometryUseImageScale->isChecked()) { int unitType = opsAstrometry->kcfg_AstrometryImageScaleUnits->currentIndex(); // Degrees if (unitType == 0) { double fov_low = qMin(fov_x / 60, fov_y / 60); double fov_high = qMax(fov_x / 60, fov_y / 60); opsAstrometry->kcfg_AstrometryImageScaleLow->setValue(fov_low); opsAstrometry->kcfg_AstrometryImageScaleHigh->setValue(fov_high); Options::setAstrometryImageScaleLow(fov_low); Options::setAstrometryImageScaleHigh(fov_high); } // Arcmins else if (unitType == 1) { double fov_low = qMin(fov_x, fov_y); double fov_high = qMax(fov_x, fov_y); opsAstrometry->kcfg_AstrometryImageScaleLow->setValue(fov_low); opsAstrometry->kcfg_AstrometryImageScaleHigh->setValue(fov_high); Options::setAstrometryImageScaleLow(fov_low); Options::setAstrometryImageScaleHigh(fov_high); } // Arcsec per pixel else { opsAstrometry->kcfg_AstrometryImageScaleLow->setValue(fov_pixscale * 0.9); opsAstrometry->kcfg_AstrometryImageScaleHigh->setValue(fov_pixscale * 1.1); // 10% boundary Options::setAstrometryImageScaleLow(fov_pixscale * 0.9); Options::setAstrometryImageScaleHigh(fov_pixscale * 1.1); } } } QStringList Align::generateOptions(const QVariantMap &optionsMap) { // -O overwrite // -3 Expected RA // -4 Expected DEC // -5 Radius (deg) // -L lower scale of image in arcminutes // -H upper scale of image in arcminutes // -u aw set scale to be in arcminutes // -W solution.wcs name of solution file // apog1.jpg name of target file to analyze //solve-field -O -3 06:40:51 -4 +09:49:53 -5 1 -L 40 -H 100 -u aw -W solution.wcs apod1.jpg QStringList solver_args; // Start with always-used arguments solver_args << "-O" << "--no-plots"; // Now go over boolean options // noverify if (optionsMap.contains("noverify")) solver_args << "--no-verify"; // noresort if (optionsMap.contains("resort")) solver_args << "--resort"; // fits2fits if (optionsMap.contains("nofits2fits")) solver_args << "--no-fits2fits"; // downsample if (optionsMap.contains("downsample")) solver_args << "--downsample" << QString::number(optionsMap.value("downsample", 2).toInt()); // image scale low if (optionsMap.contains("scaleL")) solver_args << "-L" << QString::number(optionsMap.value("scaleL").toDouble()); // image scale high if (optionsMap.contains("scaleH")) solver_args << "-H" << QString::number(optionsMap.value("scaleH").toDouble()); // image scale units if (optionsMap.contains("scaleUnits")) solver_args << "-u" << optionsMap.value("scaleUnits").toString(); // RA if (optionsMap.contains("ra")) solver_args << "-3" << QString::number(optionsMap.value("ra").toDouble()); // DE if (optionsMap.contains("de")) solver_args << "-4" << QString::number(optionsMap.value("de").toDouble()); // Radius if (optionsMap.contains("radius")) solver_args << "-5" << QString::number(optionsMap.value("radius").toDouble()); // Custom if (optionsMap.contains("custom")) solver_args << optionsMap.value("custom").toString(); return solver_args; } //This will generate the high and low scale of the imager field size based on the stated units. -void Align::generateFOVBounds(double fov_h, double fov_v, QString &fov_low, QString &fov_high) +void Align::generateFOVBounds(double fov_h, QString &fov_low, QString &fov_high, double tolerance) { - double fov_lower, fov_upper; + // This sets the percentage we search outside the lower and upper boundary limits + // by default, we stretch the limits by 5% (tolerance = 0.05) + double lower_boundary = 1.0 - tolerance; + double upper_boundary = 1.0 + tolerance; + // let's stretch the boundaries by 5% - fov_lower = ((fov_h < fov_v) ? (fov_h * 0.95) : (fov_v * 0.95)); - fov_upper = ((fov_h > fov_v) ? (fov_h * 1.05) : (fov_v * 1.05)); + // fov_lower = ((fov_h < fov_v) ? (fov_h * lower_boundary) : (fov_v * lower_boundary)); + // fov_upper = ((fov_h > fov_v) ? (fov_h * upper_boundary) : (fov_v * upper_boundary)); + + // JM 2019-10-20: The bounds consider image width only, not height. + double fov_lower = fov_h * lower_boundary; + double fov_upper = fov_h * upper_boundary; //No need to do anything if they are aw, since that is the default fov_low = QString::number(fov_lower); fov_high = QString::number(fov_upper); } void Align::generateArgs() { // -O overwrite // -3 Expected RA // -4 Expected DEC // -5 Radius (deg) // -L lower scale of image in arcminutes // -H upper scale of image in arcminutes // -u aw set scale to be in arcminutes // -W solution.wcs name of solution file // apog1.jpg name of target file to analyze //solve-field -O -3 06:40:51 -4 +09:49:53 -5 1 -L 40 -H 100 -u aw -W solution.wcs apod1.jpg QVariantMap optionsMap; if (Options::astrometryUseNoVerify()) optionsMap["noverify"] = true; if (Options::astrometryUseResort()) optionsMap["resort"] = true; if (Options::astrometryUseNoFITS2FITS()) optionsMap["nofits2fits"] = true; if (Options::astrometryUseDownsample()) { if (Options::astrometryAutoDownsample() && ccd_width && ccd_height) { uint8_t bin = qMax(Options::solverBinningIndex() + 1, 1u); uint16_t w = ccd_width / bin; optionsMap["downsample"] = getSolverDownsample(w); } else optionsMap["downsample"] = Options::astrometryDownsample(); } if (Options::astrometryUseImageScale() && fov_x > 0 && fov_y > 0) { QString units = ImageScales[Options::astrometryImageScaleUnits()]; if (Options::astrometryAutoUpdateImageScale()) { QString fov_low, fov_high; double fov_w = fov_x; double fov_h = fov_y; if (units == "dw") { fov_w /= 60; fov_h /= 60; } else if (units == "app") { fov_w = fov_pixscale; fov_h = fov_pixscale; } - generateFOVBounds(fov_w, fov_h, fov_low, fov_high); + // If effective FOV is pending, let's set a wider tolerance range + generateFOVBounds(fov_w, fov_low, fov_high, m_EffectiveFOVPending ? 0.3 : 0.05); optionsMap["scaleL"] = fov_low; optionsMap["scaleH"] = fov_high; optionsMap["scaleUnits"] = units; } else { optionsMap["scaleL"] = Options::astrometryImageScaleLow(); optionsMap["scaleH"] = Options::astrometryImageScaleHigh(); optionsMap["scaleUnits"] = units; } } if (Options::astrometryUsePosition() && currentTelescope != nullptr) { double ra = 0, dec = 0; currentTelescope->getEqCoords(&ra, &dec); optionsMap["ra"] = ra * 15.0; optionsMap["de"] = dec; optionsMap["radius"] = Options::astrometryRadius(); } if (Options::astrometryCustomOptions().isEmpty() == false) optionsMap["custom"] = Options::astrometryCustomOptions(); QStringList solverArgs = generateOptions(optionsMap); QString options = solverArgs.join(" "); solverOptions->setText(options); solverOptions->setToolTip(options); } bool Align::captureAndSolve() { m_AlignTimer.stop(); m_CaptureTimer.stop(); #ifdef Q_OS_OSX if(solverTypeGroup->checkedId() == SOLVER_OFFLINE) { if(Options::useDefaultPython()) { if( !opsAlign->astropyInstalled() || !opsAlign->pythonInstalled() ) { KSNotification::error(i18n("Astrometry.net uses python3 and the astropy package for plate solving images offline. These were not detected on your system. Please go into the Align Options and either click the setup button to install them or uncheck the default button and enter the path to python3 on your system and manually install astropy.")); return false; } } } #endif if (currentCCD == nullptr) return false; if (currentCCD->isConnected() == false) { appendLogText(i18n("Error: lost connection to CCD.")); KSNotification::event(QLatin1String("AlignFailed"), i18n("Astrometry alignment failed"), KSNotification::EVENT_ALERT); return false; } if (currentCCD->isBLOBEnabled() == false) { currentCCD->setBLOBEnabled(true); } // If CCD Telescope Type does not match desired scope type, change it // but remember current value so that it can be reset once capture is complete or is aborted. if (currentCCD->getTelescopeType() != FOVScopeCombo->currentIndex()) { rememberTelescopeType = currentCCD->getTelescopeType(); currentCCD->setTelescopeType(static_cast(FOVScopeCombo->currentIndex())); } if (parser->init() == false) return false; if (focal_length == -1 || aperture == -1) { KSNotification::error(i18n("Telescope aperture and focal length are missing. Please check your driver settings and try again.")); return false; } if (ccd_hor_pixel == -1 || ccd_ver_pixel == -1) { KSNotification::error(i18n("CCD pixel size is missing. Please check your driver settings and try again.")); return false; } if (currentFilter != nullptr) { if (currentFilter->isConnected() == false) { appendLogText(i18n("Error: lost connection to filter wheel.")); return false; } int targetPosition = FilterPosCombo->currentIndex() + 1; if (targetPosition > 0 && targetPosition != currentFilterPosition) { filterPositionPending = true; filterManager->setFilterPosition(targetPosition); state = ALIGN_PROGRESS; return true; } } if (currentCCD->getDriverInfo()->getClientManager()->getBLOBMode(currentCCD->getDeviceName(), "CCD1") == B_NEVER) { if (KMessageBox::questionYesNo( nullptr, i18n("Image transfer is disabled for this camera. Would you like to enable it?")) == KMessageBox::Yes) { currentCCD->getDriverInfo()->getClientManager()->setBLOBMode(B_ONLY, currentCCD->getDeviceName(), "CCD1"); currentCCD->getDriverInfo()->getClientManager()->setBLOBMode(B_ONLY, currentCCD->getDeviceName(), "CCD2"); } else { return false; } } double seqExpose = exposureIN->value(); ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (focusState >= FOCUS_PROGRESS) { appendLogText(i18n("Cannot capture while focus module is busy. Retrying in 10 seconds...")); m_CaptureTimer.start(); return false; } if (targetChip->isCapturing()) { appendLogText(i18n("Cannot capture while CCD exposure is in progress. Retrying in 10 seconds...")); m_CaptureTimer.start(); return false; } alignView->setBaseSize(alignWidget->size()); connect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Align::newFITS); connect(currentCCD, &ISD::CCD::newExposureValue, this, &Ekos::Align::checkCCDExposureProgress); // In case of remote solver, check if we need to update active CCD if (solverTypeGroup->checkedId() == SOLVER_REMOTE && remoteParser.get() != nullptr) { // Update ACTIVE_CCD of the remote astrometry driver so it listens to BLOB emitted by the CCD ITextVectorProperty *activeDevices = remoteParserDevice->getBaseDevice()->getText("ACTIVE_DEVICES"); if (activeDevices) { IText *activeCCD = IUFindText(activeDevices, "ACTIVE_CCD"); if (QString(activeCCD->text) != CCDCaptureCombo->currentText()) { IUSaveText(activeCCD, CCDCaptureCombo->currentText().toLatin1().data()); remoteParserDevice->getDriverInfo()->getClientManager()->sendNewText(activeDevices); } } // Enable remote parse dynamic_cast(remoteParser.get())->setEnabled(true); QString options = solverOptions->text().simplified(); QStringList solverArgs = options.split(' '); dynamic_cast(remoteParser.get())->sendArgs(solverArgs); // If mount model was reset, we do not update targetCoord // since the RA/DE is now different immediately after the reset // so we still try to lock for the coordinates before the reset. if (solverIterations == 0 && mountModelReset == false) { double ra, dec; currentTelescope->getEqCoords(&ra, &dec); targetCoord.setRA(ra); targetCoord.setDec(dec); } mountModelReset = false; solverTimer.start(); } //else //{ if (currentCCD->getUploadMode() == ISD::CCD::UPLOAD_LOCAL) { rememberUploadMode = ISD::CCD::UPLOAD_LOCAL; currentCCD->setUploadMode(ISD::CCD::UPLOAD_CLIENT); } rememberCCDExposureLooping = currentCCD->isLooping(); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(false); // Remove temporary FITS files left before by the solver QDir dir(QDir::tempPath()); dir.setNameFilters(QStringList() << "fits*" << "tmp.*"); dir.setFilter(QDir::Files); for (auto &dirFile : dir.entryList()) dir.remove(dirFile); //} currentCCD->setTransformFormat(ISD::CCD::FORMAT_FITS); targetChip->resetFrame(); targetChip->setBatchMode(false); targetChip->setCaptureMode(FITS_ALIGN); targetChip->setFrameType(FRAME_LIGHT); int bin = Options::solverBinningIndex() + 1; targetChip->setBinning(bin, bin); // In case we're in refresh phase of the polar alignment helper then we use capture value from there if (pahStage == PAH_REFRESH) targetChip->capture(PAHExposure->value()); else targetChip->capture(seqExpose); Options::setAlignExposure(seqExpose); solveB->setEnabled(false); stopB->setEnabled(true); pi->startAnimation(); differentialSlewingActivated = false; state = ALIGN_PROGRESS; emit newStatus(state); // If we're just refreshing, then we're done if (pahStage == PAH_REFRESH) return true; appendLogText(i18n("Capturing image...")); //This block of code will create the row in the solution table and populate RA, DE, and object name. //It also starts the progress indicator. double ra, dec; currentTelescope->getEqCoords(&ra, &dec); if (loadSlewState == IPS_IDLE) { int currentRow = solutionTable->rowCount(); solutionTable->insertRow(currentRow); for (int i = 4; i < 6; i++) { QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, i, disabledBox); } QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ScopeRAOut->text()); RAReport->setTextAlignment(Qt::AlignHCenter); RAReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(ScopeDecOut->text()); DECReport->setTextAlignment(Qt::AlignHCenter); DECReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 1, DECReport); double maxrad = 1.0; SkyObject *so = KStarsData::Instance()->skyComposite()->objectNearest(new SkyPoint(dms(ra * 15), dms(dec)), maxrad); QString name; if (so) { name = so->longname(); } else { name = "None"; } QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(name); ObjNameReport->setTextAlignment(Qt::AlignHCenter); ObjNameReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 2, ObjNameReport); #ifdef Q_OS_OSX repaint(); //This is a band-aid for a bug in QT 5.10.0 #endif QProgressIndicator *alignIndicator = new QProgressIndicator(this); solutionTable->setCellWidget(currentRow, 3, alignIndicator); alignIndicator->startAnimation(); #ifdef Q_OS_OSX repaint(); //This is a band-aid for a bug in QT 5.10.0 #endif } return true; } void Align::newFITS(IBLOB *bp) { // Ignore guide head if there is any. if (!strcmp(bp->name, "CCD2")) return; disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Align::newFITS); disconnect(currentCCD, &ISD::CCD::newExposureValue, this, &Ekos::Align::checkCCDExposureProgress); blobType = *(static_cast(bp->aux1)); blobFileName = QString(static_cast(bp->aux2)); // If it's Refresh, we're done if (pahStage == PAH_REFRESH) { setCaptureComplete(); return; } appendLogText(i18n("Image received.")); if (solverTypeGroup->checkedId() != SOLVER_REMOTE) { if (blobType == ISD::CCD::BLOB_FITS) { ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (alignDarkFrameCheck->isChecked()) { int x, y, w, h, binx = 1, biny = 1; targetChip->getFrame(&x, &y, &w, &h); targetChip->getBinning(&binx, &biny); uint16_t offsetX = x / binx; uint16_t offsetY = y / biny; FITSData *darkData = DarkLibrary::Instance()->getDarkFrame(targetChip, exposureIN->value()); connect(DarkLibrary::Instance(), &DarkLibrary::darkFrameCompleted, this, [&](bool completed) { DarkLibrary::Instance()->disconnect(this); alignDarkFrameCheck->setChecked(completed); if (completed) setCaptureComplete(); else abort(); }); connect(DarkLibrary::Instance(), &DarkLibrary::newLog, this, &Ekos::Align::appendLogText); if (darkData) DarkLibrary::Instance()->subtract(darkData, alignView, FITS_NONE, offsetX, offsetY); else { DarkLibrary::Instance()->captureAndSubtract(targetChip, alignView, exposureIN->value(), offsetX, offsetY); } return; } } setCaptureComplete(); } } void Align::setCaptureComplete() { DarkLibrary::Instance()->disconnect(this); if (pahStage == PAH_REFRESH) { newFrame(alignView); captureAndSolve(); return; } emit newImage(alignView); if (solverTypeGroup->checkedId() == SOLVER_ONLINE && Options::astrometryUseJPEG()) { ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (targetChip) { QString jpegFile = blobFileName + ".jpg"; bool rc = alignView->getDisplayImage().save(jpegFile, "JPG"); if (rc) blobFileName = jpegFile; } } if (getSolverFOV()) getSolverFOV()->setImage(alignView->getDisplayImage()); startSolving(blobFileName); } void Align::setSolverAction(int mode) { gotoModeButtonGroup->button(mode)->setChecked(true); currentGotoMode = static_cast(mode); } void Align::startSolving(const QString &filename, bool isGenerated) { QStringList solverArgs; QString options = solverOptions->text().simplified(); if (isGenerated) { solverArgs = options.split(' '); // Replace RA and DE with LST & 90/-90 pole if (pahStage == PAH_FIRST_CAPTURE) { for (int i = 0; i < solverArgs.count(); i++) { // RA if (solverArgs[i] == "-3") solverArgs[i + 1] = QString::number(KStarsData::Instance()->lst()->Degrees()); // DE. +90 for Northern hemisphere. -90 for southern hemisphere else if (solverArgs[i] == "-4") solverArgs[i + 1] = QString::number(hemisphere == NORTH_HEMISPHERE ? 90 : -90); } } } else if (filename.endsWith(QLatin1String("fits")) || filename.endsWith(QLatin1String("fit"))) { solverArgs = getSolverOptionsFromFITS(filename); appendLogText(i18n("Using solver options: %1", solverArgs.join(' '))); } else { KGuiItem blindItem(i18n("Blind solver"), QString(), i18n("Blind solver takes a very long time to solve but can reliably solve any image any " "where in the sky given enough time.")); KGuiItem existingItem(i18n("Use existing settings"), QString(), i18n("Mount must be pointing close to the target location and current field of view must " "match the image's field of view.")); int rc = KMessageBox::questionYesNoCancel(nullptr, i18n("No metadata is available in this image. Do you want to use the " "blind solver or the existing solver settings?"), i18n("Astrometry solver"), blindItem, existingItem, KStandardGuiItem::cancel(), "blind_solver_or_existing_solver_option"); if (rc == KMessageBox::Yes) { QVariantMap optionsMap; if (Options::astrometryUseNoVerify()) optionsMap["noverify"] = true; if (Options::astrometryUseResort()) optionsMap["resort"] = true; if (Options::astrometryUseNoFITS2FITS()) optionsMap["nofits2fits"] = true; if (Options::astrometryUseDownsample()) optionsMap["downsample"] = Options::astrometryDownsample(); solverArgs = generateOptions(optionsMap); } else if (rc == KMessageBox::No) solverArgs = options.split(' '); else { abort(); return; } } if (solverIterations == 0 && mountModelReset == false) { double ra, dec; currentTelescope->getEqCoords(&ra, &dec); targetCoord.setRA(ra); targetCoord.setDec(dec); } mountModelReset = false; //Options::setSolverOptions(solverOptions->text()); //Options::setGuideScopeCCDs(guideScopeCCDs); Options::setSolverAccuracyThreshold(accuracySpin->value()); Options::setAlignDarkFrame(alignDarkFrameCheck->isChecked()); Options::setSolverGotoOption(currentGotoMode); //m_isSolverComplete = false; //m_isSolverSuccessful = false; if (fov_x > 0) parser->verifyIndexFiles(fov_x, fov_y); solverTimer.start(); m_AlignTimer.start(); if (currentGotoMode == GOTO_SLEW) appendLogText(i18n("Solver iteration #%1", solverIterations + 1)); state = ALIGN_PROGRESS; emit newStatus(state); parser->startSovler(filename, solverArgs, isGenerated); } void Align::solverFinished(double orientation, double ra, double dec, double pixscale) { pi->stopAnimation(); stopB->setEnabled(false); solveB->setEnabled(true); sOrientation = orientation; sRA = ra; sDEC = dec; // Reset Telescope Type to remembered value if (rememberTelescopeType != ISD::CCD::TELESCOPE_UNKNOWN) { currentCCD->setTelescopeType(rememberTelescopeType); rememberTelescopeType = ISD::CCD::TELESCOPE_UNKNOWN; } m_AlignTimer.stop(); if (solverTypeGroup->checkedId() == SOLVER_REMOTE && remoteParser.get() != nullptr) { // Disable remote parse dynamic_cast(remoteParser.get())->setEnabled(false); } int binx, biny; ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); targetChip->getBinning(&binx, &biny); if (Options::alignmentLogging()) appendLogText(i18n("Solver RA (%1) DEC (%2) Orientation (%3) Pixel Scale (%4)", QString::number(ra, 'g', 5), QString::number(dec, 'g', 5), QString::number(orientation, 'g', 5), QString::number(pixscale, 'g', 5))); #if 0 if (pixscale > 0 && loadSlewState == IPS_IDLE) { double solver_focal_length = (206.264 * ccd_hor_pixel) / pixscale * binx; if (fabs(focal_length - solver_focal_length) > 1) appendLogText(i18n("Current focal length is %1 mm while computed focal length from the solver is %2 mm. " "Please update the mount focal length to obtain accurate results.", QString::number(focal_length, 'g', 5), QString::number(solver_focal_length, 'g', 5))); } #endif - if (fov_x == 0 && pixscale > 0) + if ( (fov_x == 0 || m_EffectiveFOVPending) && pixscale > 0) { double newFOVW = ccd_width * pixscale / binx / 60.0; double newFOVH = ccd_height * pixscale / biny / 60.0; saveNewEffectiveFOV(newFOVW, newFOVH); + + m_EffectiveFOVPending = false; } alignCoord.setRA0(ra / 15.0); alignCoord.setDec0(dec); RotOut->setText(QString::number(orientation, 'g', 5)); // Convert to JNow alignCoord.apparentCoord(static_cast(J2000), KStars::Instance()->data()->ut().djd()); // Get horizontal coords alignCoord.EquatorialToHorizontal(KStarsData::Instance()->lst(), KStarsData::Instance()->geo()->lat()); // double raDiff = (alignCoord.ra().Degrees() - targetCoord.ra().Degrees()) * 3600; // double deDiff = (alignCoord.dec().Degrees() - targetCoord.dec().Degrees()) * 3600; double raDiff = (alignCoord.ra().deltaAngle(targetCoord.ra())).Degrees() * 3600; double deDiff = (alignCoord.dec().deltaAngle(targetCoord.dec())).Degrees() * 3600; dms RADiff(fabs(raDiff) / 3600.0), DEDiff(deDiff / 3600.0); dRAOut->setText(QString("%1%2").arg((raDiff > 0 ? "+" : "-"), RADiff.toHMSString())); dDEOut->setText(DEDiff.toDMSString(true)); pixScaleOut->setText(QString::number(pixscale, 'f', 2)); //emit newSolutionDeviation(raDiff, deDiff); targetDiff = sqrt(raDiff * raDiff + deDiff * deDiff); // Because astrometry reads image upside-down (bottom to top), the orientation is rotated 180 degrees when compared to PA // PA = Orientation + 180 double solverPA = orientation + 180; // Limit PA to -180 to +180 if (solverPA > 180) solverPA -= 360; if (solverPA < -180) solverPA += 360; solverFOV->setCenter(alignCoord); solverFOV->setPA(solverPA); solverFOV->setImageDisplay(Options::astrometrySolverOverlay()); sensorFOV->setPA(solverPA); QString ra_dms, dec_dms; getFormattedCoords(alignCoord.ra().Hours(), alignCoord.dec().Degrees(), ra_dms, dec_dms); SolverRAOut->setText(ra_dms); SolverDecOut->setText(dec_dms); //This block of code will write the result into the solution table and plot it on the graph. int currentRow = solutionTable->rowCount() - 1; if (loadSlewState == IPS_IDLE) { QTableWidgetItem *dRAReport = new QTableWidgetItem(); if (dRAReport) { dRAReport->setText(QString::number(raDiff, 'f', 3) + "\""); dRAReport->setTextAlignment(Qt::AlignHCenter); dRAReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 4, dRAReport); } QTableWidgetItem *dDECReport = new QTableWidgetItem(); if (dDECReport) { dDECReport->setText(QString::number(deDiff, 'f', 3) + "\""); dDECReport->setTextAlignment(Qt::AlignHCenter); dDECReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 5, dDECReport); } double raPlot = raDiff; double decPlot = deDiff; alignPlot->graph(0)->addData(raPlot, decPlot); QCPItemText *textLabel = new QCPItemText(alignPlot); textLabel->setPositionAlignment(Qt::AlignVCenter | Qt::AlignHCenter); textLabel->position->setType(QCPItemPosition::ptPlotCoords); textLabel->position->setCoords(raPlot, decPlot); textLabel->setColor(Qt::red); textLabel->setPadding(QMargins(0, 0, 0, 0)); textLabel->setBrush(Qt::white); //textLabel->setBrush(Qt::NoBrush); textLabel->setPen(Qt::NoPen); textLabel->setText(' ' + QString::number(solutionTable->rowCount()) + ' '); textLabel->setFont(QFont(font().family(), 8)); if (!alignPlot->xAxis->range().contains(raDiff)) { alignPlot->graph(0)->rescaleKeyAxis(true); alignPlot->yAxis->setScaleRatio(alignPlot->xAxis, 1.0); } if (!alignPlot->yAxis->range().contains(deDiff)) { alignPlot->graph(0)->rescaleValueAxis(true); alignPlot->xAxis->setScaleRatio(alignPlot->yAxis, 1.0); } alignPlot->replot(); } if (Options::astrometrySolverWCS()) { INumberVectorProperty *ccdRotation = currentCCD->getBaseDevice()->getNumber("CCD_ROTATION"); if (ccdRotation) { INumber *rotation = IUFindNumber(ccdRotation, "CCD_ROTATION_VALUE"); if (rotation) { ClientManager *clientManager = currentCCD->getDriverInfo()->getClientManager(); rotation->value = orientation; clientManager->sendNewNumber(ccdRotation); if (m_wcsSynced == false) { appendLogText( i18n("WCS information updated. Images captured from this point forward shall have valid WCS.")); // Just send telescope info in case the CCD driver did not pick up before. INumberVectorProperty *telescopeInfo = currentTelescope->getBaseDevice()->getNumber("TELESCOPE_INFO"); if (telescopeInfo) clientManager->sendNewNumber(telescopeInfo); m_wcsSynced = true; } } } } m_CaptureErrorCounter = 0; m_SlewErrorCounter = 0; m_CaptureTimeoutCounter = 0; appendLogText(i18n("Solution coordinates: RA (%1) DEC (%2) Telescope Coordinates: RA (%3) DEC (%4)", alignCoord.ra().toHMSString(), alignCoord.dec().toDMSString(), telescopeCoord.ra().toHMSString(), telescopeCoord.dec().toDMSString())); if (loadSlewState == IPS_IDLE && currentGotoMode == GOTO_SLEW) { dms diffDeg(targetDiff / 3600.0); appendLogText(i18n("Target is within %1 degrees of solution coordinates.", diffDeg.toDMSString())); } if (rememberUploadMode != currentCCD->getUploadMode()) currentCCD->setUploadMode(rememberUploadMode); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); //if (syncR->isChecked() || nothingR->isChecked() || targetDiff <= accuracySpin->value()) // CONTINUE HERE //This block of code along with some sections in the switch below will set the status report in the solution table for this item. std::unique_ptr statusReport(new QTableWidgetItem()); if (loadSlewState == IPS_IDLE) { solutionTable->setCellWidget(currentRow, 3, new QWidget()); statusReport->setFlags(Qt::ItemIsSelectable); } // Update Rotator offsets if (currentRotator != nullptr) { // When Load&Slew image is solved, we check if we need to rotate the rotator to match the position angle of the image if (loadSlewState == IPS_BUSY && Options::astrometryUseRotator()) { loadSlewTargetPA = solverPA; qCDebug(KSTARS_EKOS_ALIGN) << "loaSlewTargetPA:" << loadSlewTargetPA; } else { INumberVectorProperty *absAngle = currentRotator->getBaseDevice()->getNumber("ABS_ROTATOR_ANGLE"); if (absAngle) { // PA = RawAngle * Multiplier + Offset currentRotatorPA = solverPA; double rawAngle = absAngle->np[0].value; double offset = solverPA - (rawAngle * Options::pAMultiplier()); qCDebug(KSTARS_EKOS_ALIGN) << "Raw Rotator Angle:" << rawAngle << "Rotator PA:" << currentRotatorPA << "Rotator Offset:" << offset; Options::setPAOffset(offset); } if (absAngle && std::isnan(loadSlewTargetPA) == false && fabs(currentRotatorPA - loadSlewTargetPA) * 60 > Options::astrometryRotatorThreshold()) { double rawAngle = (loadSlewTargetPA - Options::pAOffset()) / Options::pAMultiplier(); if (rawAngle < 0) rawAngle += 360; else if (rawAngle > 360) rawAngle -= 360; absAngle->np[0].value = rawAngle; ClientManager *clientManager = currentRotator->getDriverInfo()->getClientManager(); clientManager->sendNewNumber(absAngle); appendLogText(i18n("Setting position angle to %1 degrees E of N...", loadSlewTargetPA)); return; } } } emit newSolverResults(orientation, ra, dec, pixscale); QJsonObject solution = { {"ra", SolverRAOut->text()}, {"de", SolverDecOut->text()}, {"dRA", dRAOut->text()}, {"dDE", dDEOut->text()}, {"pix", pixscale}, {"rot", orientation}, {"fov", FOVOut->text()}, }; emit newSolution(solution.toVariantMap()); switch (currentGotoMode) { case GOTO_SYNC: executeGOTO(); if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } return; case GOTO_SLEW: if (loadSlewState == IPS_BUSY || targetDiff > static_cast(accuracySpin->value())) { if (loadSlewState == IPS_IDLE && ++solverIterations == MAXIMUM_SOLVER_ITERATIONS) { appendLogText(i18n("Maximum number of iterations reached. Solver failed.")); if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } solverFailed(); if (mountModelRunning) finishAlignmentPoint(false); return; } targetAccuracyNotMet = true; if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignWarning.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } executeGOTO(); return; } if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } appendLogText(i18n("Target is within acceptable range. Astrometric solver is successful.")); if (mountModelRunning) { finishAlignmentPoint(true); if (mountModelRunning) return; } break; case GOTO_NOTHING: if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } if (mountModelRunning) { finishAlignmentPoint(true); if (mountModelRunning) return; } break; } KSNotification::event(QLatin1String("AlignSuccessful"), i18n("Astrometry alignment completed successfully")); state = ALIGN_COMPLETE; emit newStatus(state); solverIterations = 0; if (pahStage != PAH_IDLE) processPAHStage(orientation, ra, dec, pixscale); else if (azStage > AZ_INIT || altStage > ALT_INIT) executePolarAlign(); else { solveB->setEnabled(true); loadSlewB->setEnabled(true); } } void Align::solverFailed() { KSNotification::event(QLatin1String("AlignFailed"), i18n("Astrometry alignment failed with errors"), KSNotification::EVENT_ALERT); pi->stopAnimation(); stopB->setEnabled(false); solveB->setEnabled(true); m_AlignTimer.stop(); azStage = AZ_INIT; altStage = ALT_INIT; //loadSlewMode = false; loadSlewState = IPS_IDLE; solverIterations = 0; m_CaptureErrorCounter = 0; m_CaptureTimeoutCounter = 0; m_SlewErrorCounter = 0; //emit solverComplete(false); state = ALIGN_FAILED; emit newStatus(state); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); } void Align::abort() { parser->stopSolver(); pi->stopAnimation(); stopB->setEnabled(false); solveB->setEnabled(true); loadSlewB->setEnabled(true); // Reset Telescope Type to remembered value if (rememberTelescopeType != ISD::CCD::TELESCOPE_UNKNOWN) { currentCCD->setTelescopeType(rememberTelescopeType); rememberTelescopeType = ISD::CCD::TELESCOPE_UNKNOWN; } azStage = AZ_INIT; altStage = ALT_INIT; //loadSlewMode = false; loadSlewState = IPS_IDLE; solverIterations = 0; m_CaptureErrorCounter = 0; m_CaptureTimeoutCounter = 0; m_SlewErrorCounter = 0; m_AlignTimer.stop(); //currentCCD->disconnect(this); disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Align::newFITS); disconnect(currentCCD, &ISD::CCD::newExposureValue, this, &Ekos::Align::checkCCDExposureProgress); if (rememberUploadMode != currentCCD->getUploadMode()) currentCCD->setUploadMode(rememberUploadMode); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); // If capture is still in progress, let's stop that. if (pahStage == PAH_REFRESH) { if (targetChip->isCapturing()) targetChip->abortExposure(); appendLogText(i18n("Refresh is complete.")); } else { if (targetChip->isCapturing()) { targetChip->abortExposure(); appendLogText(i18n("Capture aborted.")); } else { int elapsed = static_cast(round(solverTimer.elapsed() / 1000.0)); appendLogText(i18np("Solver aborted after %1 second.", "Solver aborted after %1 seconds", elapsed)); } } state = ALIGN_ABORTED; emit newStatus(state); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); } QList Align::getSolutionResult() { QList result; result << sOrientation << sRA << sDEC; return result; } void Align::appendLogText(const QString &text) { m_LogText.insert(0, i18nc("log entry; %1 is the date, %2 is the text", "%1 %2", KStarsData::Instance()->lt().toString("yyyy-MM-ddThh:mm:ss"), text)); qCInfo(KSTARS_EKOS_ALIGN) << text; emit newLog(text); } void Align::clearLog() { m_LogText.clear(); emit newLog(QString()); } void Align::processSwitch(ISwitchVectorProperty *svp) { if (!strcmp(svp->name, "DOME_MOTION")) { // If dome is not ready and state is now if (domeReady == false && svp->s == IPS_OK) { domeReady = true; // trigger process number for mount so that it proceeds with normal workflow since // it was stopped by dome not being ready INumberVectorProperty *nvp = nullptr; if (currentTelescope->isJ2000()) nvp = currentTelescope->getBaseDevice()->getNumber("EQUATORIAL_COORD"); else nvp = currentTelescope->getBaseDevice()->getNumber("EQUATORIAL_EOD_COORD"); if (nvp) processNumber(nvp); } } } void Align::processNumber(INumberVectorProperty *nvp) { if (!strcmp(nvp->name, "EQUATORIAL_EOD_COORD") || !strcmp(nvp->name, "EQUATORIAL_COORD")) { QString ra_dms, dec_dms; if (!strcmp(nvp->name, "EQUATORIAL_COORD")) { telescopeCoord.setRA0(nvp->np[0].value); telescopeCoord.setDec0(nvp->np[1].value); // Get JNow as well telescopeCoord.apparentCoord(static_cast(J2000), KStars::Instance()->data()->ut().djd()); } else { telescopeCoord.setRA(nvp->np[0].value); telescopeCoord.setDec(nvp->np[1].value); } getFormattedCoords(telescopeCoord.ra().Hours(), telescopeCoord.dec().Degrees(), ra_dms, dec_dms); telescopeCoord.EquatorialToHorizontal(KStarsData::Instance()->lst(), KStarsData::Instance()->geo()->lat()); ScopeRAOut->setText(ra_dms); ScopeDecOut->setText(dec_dms); // qCDebug(KSTARS_EKOS_ALIGN) << "## RA" << ra_dms << "DE" << dec_dms // << "state:" << pstateStr(nvp->s) << "slewStarted?" << m_wasSlewStarted; switch (nvp->s) { // Idle --> Mount not tracking or slewing case IPS_IDLE: m_wasSlewStarted = false; //qCDebug(KSTARS_EKOS_ALIGN) << "## IPS_IDLE --> setting slewStarted to FALSE"; break; // Ok --> Mount Tracking. If m_wasSlewStarted is true // then it just finished slewing case IPS_OK: { // Update the boxes as the mount just finished slewing if (m_wasSlewStarted && Options::astrometryAutoUpdatePosition()) { //qCDebug(KSTARS_EKOS_ALIGN) << "## IPS_OK --> Auto Update Position..."; opsAstrometry->estRA->setText(ra_dms); opsAstrometry->estDec->setText(dec_dms); Options::setAstrometryPositionRA(nvp->np[0].value * 15); Options::setAstrometryPositionDE(nvp->np[1].value); generateArgs(); } // If dome is syncing, wait until it stops if (currentDome && currentDome->isMoving()) { domeReady = false; return; } // If we are looking for celestial pole if (m_wasSlewStarted && pahStage == PAH_FIND_CP) { //qCDebug(KSTARS_EKOS_ALIGN) << "## PAH_FIND_CP--> setting slewStarted to FALSE"; m_wasSlewStarted = false; appendLogText(i18n("Mount completed slewing near celestial pole. Capture again to verify.")); setSolverAction(GOTO_NOTHING); pahStage = PAH_FIRST_CAPTURE; emit newPAHStage(pahStage); return; } // if (m_wasSlewStarted && pahStage == PAH_FIRST_ROTATE) // { // m_wasSlewStarted = false; // appendLogText(i18n("Mount first rotation is complete.")); // pahStage = PAH_SECOND_CAPTURE; // emit newPAHStage(pahStage); // PAHWidgets->setCurrentWidget(PAHSecondCapturePage); // emit newPAHMessage(secondCaptureText->text()); // if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) // appendLogText(i18n("Settling...")); // QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); // return; // } // else if (m_wasSlewStarted && pahStage == PAH_SECOND_ROTATE) // { // m_wasSlewStarted = false; // appendLogText(i18n("Mount second rotation is complete.")); // pahStage = PAH_THIRD_CAPTURE; // emit newPAHStage(pahStage); // PAHWidgets->setCurrentWidget(PAHThirdCapturePage); // emit newPAHMessage(thirdCaptureText->text()); // if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) // appendLogText(i18n("Settling...")); // QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); // return; // } switch (state) { case ALIGN_PROGRESS: break; case ALIGN_SYNCING: { m_wasSlewStarted = false; //qCDebug(KSTARS_EKOS_ALIGN) << "## ALIGN_SYNCING --> setting slewStarted to FALSE"; if (currentGotoMode == GOTO_SLEW) { Slew(); return; } else { appendLogText(i18n("Mount is synced to solution coordinates. Astrometric solver is successful.")); KSNotification::event(QLatin1String("AlignSuccessful"), i18n("Astrometry alignment completed successfully")); state = ALIGN_COMPLETE; emit newStatus(state); solverIterations = 0; if (mountModelRunning) finishAlignmentPoint(true); } } break; case ALIGN_SLEWING: // If mount has not started slewing yet, then skip //qCDebug(KSTARS_EKOS_ALIGN) << "## Mount has not started slewing yet..."; if (m_wasSlewStarted == false) break; //qCDebug(KSTARS_EKOS_ALIGN) << "## ALIGN_SLEWING --> setting slewStarted to FALSE"; m_wasSlewStarted = false; if (loadSlewState == IPS_BUSY) { loadSlewState = IPS_IDLE; qCDebug(KSTARS_EKOS_ALIGN) << "loadSlewState is IDLE."; state = ALIGN_PROGRESS; emit newStatus(state); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); return; } else if (differentialSlewingActivated) { appendLogText(i18n("Differential slewing complete. Astrometric solver is successful.")); KSNotification::event(QLatin1String("AlignSuccessful"), i18n("Astrometry alignment completed successfully")); state = ALIGN_COMPLETE; emit newStatus(state); solverIterations = 0; if (mountModelRunning) finishAlignmentPoint(true); } else if (currentGotoMode == GOTO_SLEW || mountModelRunning) { if (targetAccuracyNotMet) appendLogText(i18n("Slew complete. Target accuracy is not met, running solver again...")); else appendLogText(i18n("Slew complete. Solving Alignment Point. . .")); targetAccuracyNotMet = false; state = ALIGN_PROGRESS; emit newStatus(state); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); return; } break; default: { //qCDebug(KSTARS_EKOS_ALIGN) << "## Align State " << state << "--> setting slewStarted to FALSE"; m_wasSlewStarted = false; } break; } } break; // Busy --> Mount Slewing or Moving (NSWE buttons) case IPS_BUSY: { //qCDebug(KSTARS_EKOS_ALIGN) << "## IPS_BUSY --> setting slewStarted to TRUE"; m_wasSlewStarted = true; } break; // Alert --> Mount has problem moving or communicating. case IPS_ALERT: { //qCDebug(KSTARS_EKOS_ALIGN) << "## IPS_ALERT --> setting slewStarted to FALSE"; m_wasSlewStarted = false; if (state == ALIGN_SYNCING || state == ALIGN_SLEWING) { if (state == ALIGN_SYNCING) appendLogText(i18n("Syncing failed.")); else appendLogText(i18n("Slewing failed.")); if (++m_SlewErrorCounter == 3) { abort(); return; } else { if (currentGotoMode == GOTO_SLEW) Slew(); else Sync(); } } return; } } if (pahStage == PAH_FIRST_ROTATE) { // only wait for telescope to slew to new position if manual slewing is switched off if(!PAHManual->isChecked()) { double deltaAngle = fabs(telescopeCoord.ra().deltaAngle(targetPAH.ra()).Degrees()); qCDebug(KSTARS_EKOS_ALIGN) << "First mount rotation remaining degrees:" << deltaAngle; if (deltaAngle <= PAH_ROTATION_THRESHOLD) { currentTelescope->StopWE(); appendLogText(i18n("Mount first rotation is complete.")); pahStage = PAH_SECOND_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondCapturePage); emit newPAHMessage(secondCaptureText->text()); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); } // If for some reason we didn't stop, let's stop if we get too far else if (deltaAngle > PAHRotationSpin->value() * 1.25) { currentTelescope->Abort(); appendLogText(i18n("Mount aborted. Please restart the process and reduce the speed.")); stopPAHProcess(); } return; } // endif not manual slew } else if (pahStage == PAH_SECOND_ROTATE) { // only wait for telescope to slew to new position if manual slewing is switched off if(!PAHManual->isChecked()) { double deltaAngle = fabs(telescopeCoord.ra().deltaAngle(targetPAH.ra()).Degrees()); qCDebug(KSTARS_EKOS_ALIGN) << "Second mount rotation remaining degrees:" << deltaAngle; if (deltaAngle <= PAH_ROTATION_THRESHOLD) { currentTelescope->StopWE(); appendLogText(i18n("Mount second rotation is complete.")); pahStage = PAH_THIRD_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHThirdCapturePage); emit newPAHMessage(thirdCaptureText->text()); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); } // If for some reason we didn't stop, let's stop if we get too far else if (deltaAngle > PAHRotationSpin->value() * 1.25) { currentTelescope->Abort(); appendLogText(i18n("Mount aborted. Please restart the process and reduce the speed.")); stopPAHProcess(); } return; } // endif not manual slew } switch (azStage) { case AZ_SYNCING: if (currentTelescope->isSlewing()) azStage = AZ_SLEWING; break; case AZ_SLEWING: if (currentTelescope->isSlewing() == false) { azStage = AZ_SECOND_TARGET; measureAzError(); } break; case AZ_CORRECTING: if (currentTelescope->isSlewing() == false) { appendLogText(i18n( "Slew complete. Please adjust azimuth knob until the target is in the center of the view.")); azStage = AZ_INIT; } break; default: break; } switch (altStage) { case ALT_SYNCING: if (currentTelescope->isSlewing()) altStage = ALT_SLEWING; break; case ALT_SLEWING: if (currentTelescope->isSlewing() == false) { altStage = ALT_SECOND_TARGET; measureAltError(); } break; case ALT_CORRECTING: if (currentTelescope->isSlewing() == false) { appendLogText(i18n( "Slew complete. Please adjust altitude knob until the target is in the center of the view.")); altStage = ALT_INIT; } break; default: break; } } else if (!strcmp(nvp->name, "ABS_ROTATOR_ANGLE")) { // PA = RawAngle * Multiplier + Offset currentRotatorPA = (nvp->np[0].value * Options::pAMultiplier()) + Options::pAOffset(); if (currentRotatorPA > 180) currentRotatorPA -= 360; if (currentRotatorPA < -180) currentRotatorPA += 360; if (std::isnan(loadSlewTargetPA) == false && fabs(currentRotatorPA - loadSlewTargetPA) * 60 <= Options::astrometryRotatorThreshold()) { appendLogText(i18n("Rotator reached target position angle.")); targetAccuracyNotMet = true; loadSlewTargetPA = std::numeric_limits::quiet_NaN(); QTimer::singleShot(Options::settlingTime(), this, &Ekos::Align::executeGOTO); } } // N.B. Ekos::Manager already manages TELESCOPE_INFO, why here again? //if (!strcmp(coord->name, "TELESCOPE_INFO")) //syncTelescopeInfo(); } void Align::executeGOTO() { if (loadSlewState == IPS_BUSY) { //if (loadSlewIterations == loadSlewIterationsSpin->value()) //loadSlewCoord = alignCoord; //targetCoord = loadSlewCoord; targetCoord = alignCoord; SlewToTarget(); } else if (currentGotoMode == GOTO_SYNC) Sync(); else if (currentGotoMode == GOTO_SLEW) SlewToTarget(); } void Align::Sync() { state = ALIGN_SYNCING; if (currentTelescope->Sync(&alignCoord)) { emit newStatus(state); appendLogText( i18n("Syncing to RA (%1) DEC (%2)", alignCoord.ra().toHMSString(), alignCoord.dec().toDMSString())); } else { state = ALIGN_IDLE; emit newStatus(state); appendLogText(i18n("Syncing failed.")); } } void Align::Slew() { state = ALIGN_SLEWING; emit newStatus(state); //qCDebug(KSTARS_EKOS_ALIGN) << "## Before SLEW command: wasSlewStarted -->" << m_wasSlewStarted; //m_wasSlewStarted = currentTelescope->Slew(&targetCoord); //qCDebug(KSTARS_EKOS_ALIGN) << "## After SLEW command: wasSlewStarted -->" << m_wasSlewStarted; // JM 2019-08-23: Do not assume that slew was started immediately. Wait until IPS_BUSY state is triggered // from Goto currentTelescope->Slew(&targetCoord); appendLogText(i18n("Slewing to target coordinates: RA (%1) DEC (%2).", targetCoord.ra().toHMSString(), targetCoord.dec().toDMSString())); } void Align::SlewToTarget() { if (canSync && loadSlewState == IPS_IDLE) { // 2018-01-24 JM: This is ugly. Maybe use DBus? Signal/Slots? Ekos Manager usage like this should be avoided if (KStars::Instance()->ekosManager() && !KStars::Instance()->ekosManager()->getCurrentJobName().isEmpty()) { KSNotification::event(QLatin1String("EkosSchedulerTelescopeSynced"), i18n("Ekos job (%1) - Telescope synced", KStars::Instance()->ekosManager()->getCurrentJobName())); } // Do we perform a regular sync or use differential slewing? if (Options::astrometryDifferentialSlewing()) { dms raDiff = alignCoord.ra().deltaAngle(targetCoord.ra()); dms deDiff = alignCoord.dec().deltaAngle(targetCoord.dec()); targetCoord.setRA(targetCoord.ra() - raDiff); targetCoord.setDec(targetCoord.dec() - deDiff); differentialSlewingActivated = true; qCDebug(KSTARS_EKOS_ALIGN) << "Using differential slewing..."; Slew(); } else Sync(); return; } Slew(); } void Align::executePolarAlign() { appendLogText(i18n("Processing solution for polar alignment...")); switch (azStage) { case AZ_FIRST_TARGET: case AZ_FINISHED: measureAzError(); break; default: break; } switch (altStage) { case ALT_FIRST_TARGET: case ALT_FINISHED: measureAltError(); break; default: break; } } void Align::measureAzError() { static double initRA = 0, initDEC = 0, finalRA = 0, finalDEC = 0, initAz = 0; if (pahStage != PAH_IDLE && (KMessageBox::warningContinueCancel(KStars::Instance(), i18n("Polar Alignment Helper is still active. Do you want to continue " "using legacy polar alignment tool?")) != KMessageBox::Continue)) return; pahStage = PAH_IDLE; emit newPAHStage(pahStage); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Measuring Azimuth Error..."; switch (azStage) { case AZ_INIT: // Display message box confirming user point scope near meridian and south // N.B. This action cannot be automated. if (KMessageBox::warningContinueCancel( nullptr, hemisphere == NORTH_HEMISPHERE ? i18n("Point the telescope at the southern meridian. Press Continue when ready.") : i18n("Point the telescope at the northern meridian. Press Continue when ready."), i18n("Polar Alignment Measurement"), KStandardGuiItem::cont(), KStandardGuiItem::cancel(), "ekos_measure_az_error") != KMessageBox::Continue) return; appendLogText(i18n("Solving first frame near the meridian.")); azStage = AZ_FIRST_TARGET; captureAndSolve(); break; case AZ_FIRST_TARGET: // start solving there, find RA/DEC initRA = alignCoord.ra().Degrees(); initDEC = alignCoord.dec().Degrees(); initAz = alignCoord.az().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar initRA " << alignCoord.ra().toHMSString() << " initDEC " << alignCoord.dec().toDMSString() << " initlAz " << alignCoord.az().toDMSString() << " initAlt " << alignCoord.alt().toDMSString(); // Now move 30 arcminutes in RA if (canSync) { azStage = AZ_SYNCING; currentTelescope->Sync(initRA / 15.0, initDEC); currentTelescope->Slew((initRA - RAMotion) / 15.0, initDEC); } // If telescope doesn't sync, we slew relative to its current coordinates else { azStage = AZ_SLEWING; currentTelescope->Slew(telescopeCoord.ra().Hours() - RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing 30 arcminutes in RA...")); break; case AZ_SECOND_TARGET: // We reached second target now // Let now solver for RA/DEC appendLogText(i18n("Solving second frame near the meridian.")); azStage = AZ_FINISHED; captureAndSolve(); break; case AZ_FINISHED: // Measure deviation in DEC // Call function to report error // set stage to AZ_FIRST_TARGET again appendLogText(i18n("Calculating azimuth alignment error...")); finalRA = alignCoord.ra().Degrees(); finalDEC = alignCoord.dec().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar finalRA " << alignCoord.ra().toHMSString() << " finalDEC " << alignCoord.dec().toDMSString() << " finalAz " << alignCoord.az().toDMSString() << " finalAlt " << alignCoord.alt().toDMSString(); // Slew back to original position if (canSync) currentTelescope->Slew(initRA / 15.0, initDEC); else { currentTelescope->Slew(telescopeCoord.ra().Hours() + RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing back to original position...")); calculatePolarError(initRA, initDEC, finalRA, finalDEC, initAz); azStage = AZ_INIT; break; default: break; } } void Align::measureAltError() { static double initRA = 0, initDEC = 0, finalRA = 0, finalDEC = 0, initAz = 0; if (pahStage != PAH_IDLE && (KMessageBox::warningContinueCancel(KStars::Instance(), i18n("Polar Alignment Helper is still active. Do you want to continue " "using legacy polar alignment tool?")) != KMessageBox::Continue)) return; pahStage = PAH_IDLE; emit newPAHStage(pahStage); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Measuring Altitude Error..."; switch (altStage) { case ALT_INIT: // Display message box confirming user point scope near meridian and south // N.B. This action cannot be automated. if (KMessageBox::warningContinueCancel(nullptr, i18n("Point the telescope to the eastern or western horizon with a " "minimum altitude of 20 degrees. Press continue when ready."), i18n("Polar Alignment Measurement"), KStandardGuiItem::cont(), KStandardGuiItem::cancel(), "ekos_measure_alt_error") != KMessageBox::Continue) return; appendLogText(i18n("Solving first frame.")); altStage = ALT_FIRST_TARGET; if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); break; case ALT_FIRST_TARGET: // start solving there, find RA/DEC initRA = alignCoord.ra().Degrees(); initDEC = alignCoord.dec().Degrees(); initAz = alignCoord.az().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar initRA " << alignCoord.ra().toHMSString() << " initDEC " << alignCoord.dec().toDMSString() << " initlAz " << alignCoord.az().toDMSString() << " initAlt " << alignCoord.alt().toDMSString(); // Now move 30 arcminutes in RA if (canSync) { altStage = ALT_SYNCING; currentTelescope->Sync(initRA / 15.0, initDEC); currentTelescope->Slew((initRA - RAMotion) / 15.0, initDEC); } // If telescope doesn't sync, we slew relative to its current coordinates else { altStage = ALT_SLEWING; currentTelescope->Slew(telescopeCoord.ra().Hours() - RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing 30 arcminutes in RA...")); break; case ALT_SECOND_TARGET: // We reached second target now // Let now solver for RA/DEC appendLogText(i18n("Solving second frame.")); altStage = ALT_FINISHED; if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); break; case ALT_FINISHED: // Measure deviation in DEC // Call function to report error appendLogText(i18n("Calculating altitude alignment error...")); finalRA = alignCoord.ra().Degrees(); finalDEC = alignCoord.dec().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar finalRA " << alignCoord.ra().toHMSString() << " finalDEC " << alignCoord.dec().toDMSString() << " finalAz " << alignCoord.az().toDMSString() << " finalAlt " << alignCoord.alt().toDMSString(); // Slew back to original position if (canSync) currentTelescope->Slew(initRA / 15.0, initDEC); // If telescope doesn't sync, we slew relative to its current coordinates else { currentTelescope->Slew(telescopeCoord.ra().Hours() + RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing back to original position...")); calculatePolarError(initRA, initDEC, finalRA, finalDEC, initAz); altStage = ALT_INIT; break; default: break; } } void Align::calculatePolarError(double initRA, double initDEC, double finalRA, double finalDEC, double initAz) { double raMotion = finalRA - initRA; decDeviation = finalDEC - initDEC; // East/West of meridian int horizon = (initAz > 0 && initAz <= 180) ? 0 : 1; // How much time passed siderrally form initRA to finalRA? //double RATime = fabs(raMotion / SIDRATE) / 60.0; // 2016-03-30: Diff in RA is sufficient for time difference // raMotion in degrees. RATime in minutes. double RATime = fabs(raMotion) * 60.0; // Equation by Frank Berret (Measuring Polar Axis Alignment Error, page 4) // In degrees double deviation = (3.81 * (decDeviation * 3600)) / (RATime * cos(initDEC * dms::DegToRad)) / 60.0; dms devDMS(fabs(deviation)); KLocalizedString deviationDirection; switch (hemisphere) { // Northern hemisphere case NORTH_HEMISPHERE: if (azStage == AZ_FINISHED) { if (decDeviation > 0) deviationDirection = ki18n("%1 too far east"); else deviationDirection = ki18n("%1 too far west"); } else if (altStage == ALT_FINISHED) { switch (horizon) { // East case 0: if (decDeviation > 0) deviationDirection = ki18n("%1 too far high"); else deviationDirection = ki18n("%1 too far low"); break; // West case 1: if (decDeviation > 0) deviationDirection = ki18n("%1 too far low"); else deviationDirection = ki18n("%1 too far high"); break; default: break; } } break; // Southern hemisphere case SOUTH_HEMISPHERE: if (azStage == AZ_FINISHED) { if (decDeviation > 0) deviationDirection = ki18n("%1 too far west"); else deviationDirection = ki18n("%1 too far east"); } else if (altStage == ALT_FINISHED) { switch (horizon) { // East case 0: if (decDeviation > 0) deviationDirection = ki18n("%1 too far low"); else deviationDirection = ki18n("%1 too far high"); break; // West case 1: if (decDeviation > 0) deviationDirection = ki18n("%1 too far high"); else deviationDirection = ki18n("%1 too far low"); break; default: break; } } break; } qCDebug(KSTARS_EKOS_ALIGN) << "Polar Hemisphere is " << ((hemisphere == NORTH_HEMISPHERE) ? "North" : "South") << " --- initAz " << initAz; qCDebug(KSTARS_EKOS_ALIGN) << "Polar initRA " << initRA << " initDEC " << initDEC << " finalRA " << finalRA << " finalDEC " << finalDEC; qCDebug(KSTARS_EKOS_ALIGN) << "Polar decDeviation " << decDeviation * 3600 << " arcsec " << " RATime " << RATime << " minutes"; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Raw Deviation " << deviation << " degrees."; if (azStage == AZ_FINISHED) { azError->setText(deviationDirection.subs(QString("%1").arg(devDMS.toDMSString())).toString()); //azError->setText(deviationDirection.subs(QString("%1")azDMS.toDMSString()); azDeviation = deviation * (decDeviation > 0 ? 1 : -1); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Azimuth Deviation " << azDeviation << " degrees."; correctAzB->setEnabled(true); } if (altStage == ALT_FINISHED) { //altError->setText(deviationDirection.subs(QString("%1").arg(fabs(deviation), 0, 'g', 3)).toString()); altError->setText(deviationDirection.subs(QString("%1").arg(devDMS.toDMSString())).toString()); altDeviation = deviation * (decDeviation > 0 ? 1 : -1); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Altitude Deviation " << altDeviation << " degrees."; correctAltB->setEnabled(true); } } void Align::correctAltError() { double newRA, newDEC; SkyPoint currentCoord(telescopeCoord); dms targetLat; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Correcting Altitude Error..."; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Current Mount RA " << currentCoord.ra().toHMSString() << " DEC " << currentCoord.dec().toDMSString() << "Az " << currentCoord.az().toDMSString() << " Alt " << currentCoord.alt().toDMSString(); // An error in polar alignment altitude reflects a deviation in the latitude of the mount from actual latitude of the site // Calculating the latitude accounting for the altitude deviation. This is the latitude at which the altitude deviation should be zero. targetLat.setD(KStars::Instance()->data()->geo()->lat()->Degrees() + altDeviation); // Calculate the Az/Alt of the mount if it were located at the corrected latitude currentCoord.EquatorialToHorizontal(KStars::Instance()->data()->lst(), &targetLat); // Convert corrected Az/Alt to RA/DEC given the local sideral time and current (not corrected) latitude currentCoord.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); // New RA/DEC should reflect the position in the sky at which the polar alignment altitude error is minimal. newRA = currentCoord.ra().Hours(); newDEC = currentCoord.dec().Degrees(); altStage = ALT_CORRECTING; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Target Latitude = Latitude " << KStars::Instance()->data()->geo()->lat()->Degrees() << " + Altitude Deviation " << altDeviation << " = " << targetLat.Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Slewing to calibration position..."; currentTelescope->Slew(newRA, newDEC); appendLogText(i18n("Slewing to calibration position, please wait until telescope completes slewing.")); } void Align::correctAzError() { double newRA, newDEC, currentAlt, currentAz; SkyPoint currentCoord(telescopeCoord); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Correcting Azimuth Error..."; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Current Mount RA " << currentCoord.ra().toHMSString() << " DEC " << currentCoord.dec().toDMSString() << "Az " << currentCoord.az().toDMSString() << " Alt " << currentCoord.alt().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Target Azimuth = Current Azimuth " << currentCoord.az().Degrees() << " + Azimuth Deviation " << azDeviation << " = " << currentCoord.az().Degrees() + azDeviation; // Get current horizontal coordinates of the mount currentCoord.EquatorialToHorizontal(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); // Keep Altitude as it is and change Azimuth to account for the azimuth deviation // The new sky position should be where the polar alignment azimuth error is minimal currentAlt = currentCoord.alt().Degrees(); currentAz = currentCoord.az().Degrees() + azDeviation; // Update current Alt and Azimuth to new values currentCoord.setAlt(currentAlt); currentCoord.setAz(currentAz); // Convert Alt/Az back to equatorial coordinates currentCoord.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); // Get new RA and DEC newRA = currentCoord.ra().Hours(); newDEC = currentCoord.dec().Degrees(); azStage = AZ_CORRECTING; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Slewing to calibration position..."; currentTelescope->Slew(newRA, newDEC); appendLogText(i18n("Slewing to calibration position, please wait until telescope completes slewing.")); } void Align::getFormattedCoords(double ra, double dec, QString &ra_str, QString &dec_str) { dms ra_s, dec_s; ra_s.setH(ra); dec_s.setD(dec); ra_str = QString("%1:%2:%3") .arg(ra_s.hour(), 2, 10, QChar('0')) .arg(ra_s.minute(), 2, 10, QChar('0')) .arg(ra_s.second(), 2, 10, QChar('0')); if (dec_s.Degrees() < 0) dec_str = QString("-%1:%2:%3") .arg(abs(dec_s.degree()), 2, 10, QChar('0')) .arg(abs(dec_s.arcmin()), 2, 10, QChar('0')) .arg(dec_s.arcsec(), 2, 10, QChar('0')); else dec_str = QString("%1:%2:%3") .arg(dec_s.degree(), 2, 10, QChar('0')) .arg(dec_s.arcmin(), 2, 10, QChar('0')) .arg(dec_s.arcsec(), 2, 10, QChar('0')); } bool Align::loadAndSlew(QString fileURL) { /*if (solverTypeGroup->checkedId() == SOLVER_REMOTE) { appendLogText(i18n("Load and Slew is not supported in remote solver mode.")); loadSlewB->setEnabled(false); return; }*/ #ifdef Q_OS_OSX if(solverTypeGroup->checkedId() == SOLVER_OFFLINE) { if(Options::useDefaultPython()) { if( !opsAlign->astropyInstalled() || !opsAlign->pythonInstalled() ) { KSNotification::error(i18n("Astrometry.net uses python3 and the astropy package for plate solving images offline. These were not detected on your system. Please go into the Align Options and either click the setup button to install them or uncheck the default button and enter the path to python3 on your system and manually install astropy.")); return false; } } } #endif if (fileURL.isEmpty()) fileURL = QFileDialog::getOpenFileName(KStars::Instance(), i18n("Load Image"), dirPath, "Images (*.fits *.fit *.jpg *.jpeg)"); if (fileURL.isEmpty()) return false; QFileInfo fileInfo(fileURL); dirPath = fileInfo.absolutePath(); differentialSlewingActivated = false; loadSlewState = IPS_BUSY; stopPAHProcess(); slewR->setChecked(true); currentGotoMode = GOTO_SLEW; solveB->setEnabled(false); stopB->setEnabled(true); pi->startAnimation(); startSolving(fileURL, false); return true; } void Align::setExposure(double value) { exposureIN->setValue(value); } void Align::setBinningIndex(int binIndex) { syncSettings(); Options::setSolverBinningIndex(binIndex); // If sender is not our combo box, then we need to update the combobox itself if (dynamic_cast(sender()) != binningCombo) { binningCombo->blockSignals(true); binningCombo->setCurrentIndex(binIndex); binningCombo->blockSignals(false); } // Need to calculate FOV and args for APP if (Options::astrometryImageScaleUnits() == OpsAstrometry::SCALE_ARCSECPERPIX) { calculateFOV(); generateArgs(); } } void Align::setSolverArguments(const QString &value) { solverOptions->setText(value); } QString Align::solverArguments() { return solverOptions->text(); } void Align::setFOVTelescopeType(int index) { FOVScopeCombo->setCurrentIndex(index); } FOV *Align::getSolverFOV() { if (sOrientation == -1) return nullptr; else return solverFOV.get(); } void Align::addFilter(ISD::GDInterface *newFilter) { for (auto filter : Filters) { if (!strcmp(filter->getDeviceName(), newFilter->getDeviceName())) return; } FilterCaptureLabel->setEnabled(true); FilterDevicesCombo->setEnabled(true); FilterPosLabel->setEnabled(true); FilterPosCombo->setEnabled(true); FilterDevicesCombo->addItem(newFilter->getDeviceName()); Filters.append(static_cast(newFilter)); checkFilter(1); FilterDevicesCombo->setCurrentIndex(1); } bool Align::setFilterWheel(const QString &device) { bool deviceFound = false; for (int i = 1; i < FilterDevicesCombo->count(); i++) if (device == FilterDevicesCombo->itemText(i)) { checkFilter(i); deviceFound = true; break; } if (deviceFound == false) return false; return true; } QString Align::filterWheel() { if (FilterDevicesCombo->currentIndex() >= 1) return FilterDevicesCombo->currentText(); return QString(); } bool Align::setFilter(const QString &filter) { if (FilterDevicesCombo->currentIndex() >= 1) { FilterPosCombo->setCurrentText(filter); return true; } return false; } QString Align::filter() { return FilterPosCombo->currentText(); } void Align::checkFilter(int filterNum) { if (filterNum == -1) { filterNum = FilterDevicesCombo->currentIndex(); if (filterNum == -1) return; } // "--" is no filter if (filterNum == 0) { currentFilter = nullptr; currentFilterPosition = -1; FilterPosCombo->clear(); return; } if (filterNum <= Filters.count()) currentFilter = Filters.at(filterNum - 1); FilterPosCombo->clear(); FilterPosCombo->addItems(filterManager->getFilterLabels()); currentFilterPosition = filterManager->getFilterPosition(); FilterPosCombo->setCurrentIndex(Options::lockAlignFilterIndex()); syncSettings(); } void Align::setWCSEnabled(bool enable) { if (currentCCD == nullptr) return; ISwitchVectorProperty *wcsControl = currentCCD->getBaseDevice()->getSwitch("WCS_CONTROL"); ISwitch *wcs_enable = IUFindSwitch(wcsControl, "WCS_ENABLE"); ISwitch *wcs_disable = IUFindSwitch(wcsControl, "WCS_DISABLE"); if (!wcs_enable || !wcs_disable) return; if ((wcs_enable->s == ISS_ON && enable) || (wcs_disable->s == ISS_ON && !enable)) return; IUResetSwitch(wcsControl); if (enable) { appendLogText(i18n("World Coordinate System (WCS) is enabled. CCD rotation must be set either manually in the " "CCD driver or by solving an image before proceeding to capture any further images, " "otherwise the WCS information may be invalid.")); wcs_enable->s = ISS_ON; } else { wcs_disable->s = ISS_ON; m_wcsSynced = false; appendLogText(i18n("World Coordinate System (WCS) is disabled.")); } ClientManager *clientManager = currentCCD->getDriverInfo()->getClientManager(); clientManager->sendNewSwitch(wcsControl); } void Align::checkCCDExposureProgress(ISD::CCDChip *targetChip, double remaining, IPState state) { INDI_UNUSED(targetChip); INDI_UNUSED(remaining); if (state == IPS_ALERT) { if (++m_CaptureErrorCounter == 3 && pahStage != PAH_REFRESH) { appendLogText(i18n("Capture error. Aborting...")); abort(); return; } appendLogText(i18n("Restarting capture attempt #%1", m_CaptureErrorCounter)); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); captureAndSolve(); } } void Align::setFocusStatus(Ekos::FocusState state) { focusState = state; } QStringList Align::getSolverOptionsFromFITS(const QString &filename) { int status = 0, fits_ccd_width, fits_ccd_height, fits_binx = 1, fits_biny = 1; char comment[128], error_status[512]; fitsfile *fptr = nullptr; double ra = 0, dec = 0, fits_fov_x, fits_fov_y, fov_lower, fov_upper, fits_ccd_hor_pixel = -1, fits_ccd_ver_pixel = -1, fits_focal_length = -1; QString fov_low, fov_high; QStringList solver_args; QVariantMap optionsMap; if (Options::astrometryUseNoVerify()) optionsMap["noverify"] = true; if (Options::astrometryUseResort()) optionsMap["resort"] = true; if (Options::astrometryUseNoFITS2FITS()) optionsMap["nofits2fits"] = true; if (Options::astrometryUseDownsample()) optionsMap["downsample"] = Options::astrometryDownsample(); if (Options::astrometryCustomOptions().isEmpty() == false) optionsMap["custom"] = Options::astrometryCustomOptions(); solver_args = generateOptions(optionsMap); status = 0; #if 0 if (fits_open_image(&fptr, filename.toLatin1(), READONLY, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); qCritical(KSTARS_EKOS_ALIGN) << "Could not open file " << filename << " Error: " << QString::fromUtf8(error_status); return solver_args; } #endif // Use open diskfile as it does not use extended file names which has problems opening // files with [ ] or ( ) in their names. if (fits_open_diskfile(&fptr, filename.toLatin1(), READONLY, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); qCCritical(KSTARS_EKOS_ALIGN) << QString::fromUtf8(error_status); return solver_args; } status = 0; if (fits_movabs_hdu(fptr, 1, IMAGE_HDU, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); qCCritical(KSTARS_EKOS_ALIGN) << QString::fromUtf8(error_status); return solver_args; } status = 0; if (fits_read_key(fptr, TINT, "NAXIS1", &fits_ccd_width, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find NAXIS1.")); return solver_args; } status = 0; if (fits_read_key(fptr, TINT, "NAXIS2", &fits_ccd_height, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find NAXIS2.")); return solver_args; } // If we need to auto downsample, let us figure out the scale and regenerate options if (Options::astrometryAutoDownsample()) { optionsMap["downsample"] = getSolverDownsample(fits_ccd_width); solver_args = generateOptions(optionsMap); } bool coord_ok = true; status = 0; char objectra_str[32]; if (fits_read_key(fptr, TSTRING, "OBJCTRA", objectra_str, comment, &status)) { if (fits_read_key(fptr, TDOUBLE, "RA", &ra, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); coord_ok = false; appendLogText(i18n("FITS header: cannot find OBJCTRA (%1).", QString(error_status))); } else // Degrees to hours ra /= 15; } else { dms raDMS = dms::fromString(objectra_str, false); ra = raDMS.Hours(); } status = 0; char objectde_str[32]; if (coord_ok && fits_read_key(fptr, TSTRING, "OBJCTDEC", objectde_str, comment, &status)) { if (fits_read_key(fptr, TDOUBLE, "DEC", &dec, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); coord_ok = false; appendLogText(i18n("FITS header: cannot find OBJCTDEC (%1).", QString(error_status))); } } else { dms deDMS = dms::fromString(objectde_str, true); dec = deDMS.Degrees(); } /*if (coord_ok == false) { ra = telescopeCoord.ra0().Hours(); dec = telescopeCoord.dec0().Degrees(); }*/ if (coord_ok && Options::astrometryUsePosition()) solver_args << "-3" << QString::number(ra * 15.0) << "-4" << QString::number(dec) << "-5" << "15"; status = 0; double pixelScale = 0; // If we have pixel scale in arcsecs per pixel then lets use that directly // instead of calculating it from FOCAL length and other information if (fits_read_key(fptr, TDOUBLE, "SCALE", &pixelScale, comment, &status) == 0) { fov_low = QString::number(0.9 * pixelScale); fov_high = QString::number(1.1 * pixelScale); if (Options::astrometryUseImageScale()) solver_args << "-L" << fov_low << "-H" << fov_high << "-u" << "app"; return solver_args; } if (fits_read_key(fptr, TDOUBLE, "FOCALLEN", &fits_focal_length, comment, &status)) { int integer_focal_length = -1; if (fits_read_key(fptr, TINT, "FOCALLEN", &integer_focal_length, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find FOCALLEN (%1).", QString(error_status))); return solver_args; } else fits_focal_length = integer_focal_length; } status = 0; if (fits_read_key(fptr, TDOUBLE, "PIXSIZE1", &fits_ccd_hor_pixel, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find PIXSIZE1 (%1).", QString(error_status))); return solver_args; } status = 0; if (fits_read_key(fptr, TDOUBLE, "PIXSIZE2", &fits_ccd_ver_pixel, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find PIXSIZE2 (%1).", QString(error_status))); return solver_args; } status = 0; fits_read_key(fptr, TINT, "XBINNING", &fits_binx, comment, &status); status = 0; fits_read_key(fptr, TINT, "YBINNING", &fits_biny, comment, &status); // Calculate FOV fits_fov_x = 206264.8062470963552 * fits_ccd_width * fits_ccd_hor_pixel / 1000.0 / fits_focal_length * fits_binx; fits_fov_y = 206264.8062470963552 * fits_ccd_height * fits_ccd_ver_pixel / 1000.0 / fits_focal_length * fits_biny; fits_fov_x /= 60.0; fits_fov_y /= 60.0; // let's stretch the boundaries by 10% fov_lower = qMin(fits_fov_x, fits_fov_y); fov_upper = qMax(fits_fov_x, fits_fov_y); fov_lower *= 0.90; fov_upper *= 1.10; fov_low = QString::number(fov_lower); fov_high = QString::number(fov_upper); if (Options::astrometryUseImageScale()) solver_args << "-L" << fov_low << "-H" << fov_high << "-u" << "aw"; return solver_args; } uint8_t Align::getSolverDownsample(uint16_t binnedW) { uint8_t downsample = Options::astrometryDownsample(); if (!Options::astrometryAutoDownsample()) return downsample; while (downsample < 8) { if (binnedW / downsample <= 1024) break; downsample += 2; } return downsample; } void Align::saveSettleTime() { Options::setSettlingTime(delaySpin->value()); } void Align::setCaptureStatus(CaptureState newState) { switch (newState) { case CAPTURE_ALIGNING: if (currentTelescope && currentTelescope->hasAlignmentModel() && Options::resetMountModelAfterMeridian()) { mountModelReset = currentTelescope->clearAlignmentModel(); qCDebug(KSTARS_EKOS_ALIGN) << "Post meridian flip mount model reset" << (mountModelReset ? "successful." : "failed."); } QTimer::singleShot(Options::settlingTime(), this, &Ekos::Align::captureAndSolve); break; default: break; } } void Align::showFITSViewer() { FITSData *data = alignView->getImageData(); if (data) { QUrl url = QUrl::fromLocalFile(data->filename()); if (fv.isNull()) { if (Options::singleWindowCapturedFITS()) fv = KStars::Instance()->genericFITSViewer(); else { fv = new FITSViewer(Options::independentWindowFITS() ? nullptr : KStars::Instance()); KStars::Instance()->addFITSViewer(fv); } fv->addFITS(url); FITSView *currentView = fv->getCurrentView(); if (currentView) currentView->getImageData()->setAutoRemoveTemporaryFITS(false); } else fv->updateFITS(url, 0); fv->show(); } } void Align::toggleAlignWidgetFullScreen() { if (alignWidget->parent() == nullptr) { alignWidget->setParent(this); rightLayout->insertWidget(0, alignWidget); //rightLayout->setStretch(0, 2); // rightLayout->setStretch(1, 1); alignWidget->showNormal(); } else { alignWidget->setParent(nullptr); alignWidget->setWindowTitle(i18n("Align Frame")); alignWidget->setWindowFlags(Qt::Window | Qt::WindowTitleHint | Qt::CustomizeWindowHint); alignWidget->showMaximized(); alignWidget->show(); } } void Align::startPAHProcess() { qCInfo(KSTARS_EKOS_ALIGN) << "Starting Polar Alignment Assistant process..."; pahStage = PAH_FIRST_CAPTURE; emit newPAHStage(pahStage); nothingR->setChecked(true); currentGotoMode = GOTO_NOTHING; loadSlewB->setEnabled(false); rememberSolverWCS = Options::astrometrySolverWCS(); rememberAutoWCS = Options::autoWCS(); Options::setAutoWCS(false); Options::setAstrometrySolverWCS(true); if (Options::limitedResourcesMode()) appendLogText(i18n("Warning: Equatorial Grid Lines will not be drawn due to limited resources mode.")); if (currentTelescope->hasAlignmentModel()) { appendLogText(i18n("Clearing mount Alignment Model...")); mountModelReset = currentTelescope->clearAlignmentModel(); } // Unpark currentTelescope->UnPark(); // Set tracking ON if not already if (currentTelescope->canControlTrack() && currentTelescope->isTracking() == false) currentTelescope->setTrackEnabled(true); PAHStartB->setEnabled(false); PAHStopB->setEnabled(true); PAHWidgets->setCurrentWidget(PAHFirstCapturePage); emit newPAHMessage(firstCaptureText->text()); captureAndSolve(); } void Align::stopPAHProcess() { if (pahStage == PAH_IDLE) return; qCInfo(KSTARS_EKOS_ALIGN) << "Stopping Polar Alignment Assistant process..."; // Only display dialog if user explicitly restarts if ((static_cast(sender()) == PAHStopB) && KMessageBox::questionYesNo(KStars::Instance(), i18n("Are you sure you want to stop the polar alignment process?"), i18n("Polar Alignment Assistant"), KStandardGuiItem::yes(), KStandardGuiItem::no(), "restart_PAA_process_dialog") == KMessageBox::No) return; stopB->click(); if (currentTelescope && currentTelescope->isInMotion()) currentTelescope->Abort(); pahStage = PAH_IDLE; emit newPAHStage(pahStage); PAHStartB->setEnabled(true); PAHStopB->setEnabled(false); PAHRefreshB->setEnabled(true); PAHWidgets->setCurrentWidget(PAHIntroPage); emit newPAHMessage(introText->text()); qDeleteAll(pahImageInfos); pahImageInfos.clear(); correctionVector = QLineF(); correctionOffset = QPointF(); alignView->setCorrectionParams(correctionVector); alignView->setCorrectionOffset(correctionOffset); alignView->setRACircle(QVector3D()); alignView->setRefreshEnabled(false); emit newFrame(alignView); disconnect(alignView, &AlignView::trackingStarSelected, this, &Ekos::Align::setPAHCorrectionOffset); disconnect(alignView, &AlignView::newCorrectionVector, this, &Ekos::Align::newCorrectionVector); if (Options::pAHAutoPark()) { currentTelescope->Park(); appendLogText(i18n("Parking the mount...")); } state = ALIGN_IDLE; emit newStatus(state); } void Align::rotatePAH() { double raDiff = PAHRotationSpin->value(); bool westMeridian = PAHDirectionCombo->currentIndex() == 0; // West if (westMeridian) raDiff *= -1; // East else raDiff *= 1; // JM 2018-05-03: Hemispheres shouldn't affect rotation direction in RA #if 0 // North if (hemisphere == NORTH_HEMISPHERE) { // West if (westMeridian) raDiff *= -1; // East else raDiff *= 1; } // South else { // West if (westMeridian) raDiff *= 1; // East else raDiff *= -1; } #endif // if Manual slewing is selected, don't move the mount if (PAHManual->isChecked()) { appendLogText(i18n("Please rotate your mount about %1deg in RA", raDiff )); return; } // raDiff is in degrees dms newTelescopeRA = (telescopeCoord.ra() + dms(raDiff)).reduce(); targetPAH.setRA(newTelescopeRA); targetPAH.setDec(telescopeCoord.dec()); //currentTelescope->Slew(&targetPAH); // Set Selected Speed currentTelescope->setSlewRate(PAHSlewRateCombo->currentIndex()); // Go to direction currentTelescope->MoveWE(westMeridian ? ISD::Telescope::MOTION_WEST : ISD::Telescope::MOTION_EAST, ISD::Telescope::MOTION_START); appendLogText(i18n("Please wait until mount completes rotating to RA (%1) DE (%2)", targetPAH.ra().toHMSString(), targetPAH.dec().toDMSString())); } void Align::calculatePAHError() { QVector3D RACircle; bool rc = findRACircle(RACircle); if (rc == false) { appendLogText(i18n("Failed to find a solution. Try again.")); stopPAHProcess(); return; } if (alignView->isEQGridShown() == false) alignView->toggleEQGrid(); alignView->setRACircle(RACircle); FITSData *imageData = alignView->getImageData(); QPointF RACenterPoint(RACircle.x(), RACircle.y()); SkyPoint RACenter; rc = imageData->pixelToWCS(RACenterPoint, RACenter); if (rc == false) { appendLogText(i18n("Failed to find RA Axis center: %1.", imageData->getLastError())); return; } SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); RACenter.setRA(RACenter.ra0()); RACenter.setDec(RACenter.dec0()); double PA = 0; dms polarError = RACenter.angularDistanceTo(&CP, &PA); if (Options::alignmentLogging()) { qCDebug(KSTARS_EKOS_ALIGN) << "RA Axis Circle X: " << RACircle.x() << " Y: " << RACircle.y() << " Radius: " << RACircle.z(); qCDebug(KSTARS_EKOS_ALIGN) << "RA Axis Location RA: " << RACenter.ra0().toHMSString() << "DE: " << RACenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "RA Axis Offset: " << polarError.toDMSString() << "PA:" << PA; qCDebug(KSTARS_EKOS_ALIGN) << "CP Axis Location X:" << celestialPolePoint.x() << "Y:" << celestialPolePoint.y(); } RACenter.EquatorialToHorizontal(KStarsData::Instance()->lst(), KStarsData::Instance()->geo()->lat()); QString azDirection = RACenter.az().Degrees() < 30 ? "Right" : "Left"; QString atDirection = RACenter.alt().Degrees() < KStarsData::Instance()->geo()->lat()->Degrees() ? "Bottom" : "Top"; // FIXME should this be reversed for southern hemisphere? appendLogText(i18n("Mount axis is to the %1 %2 of the celestial pole", atDirection, azDirection)); PAHErrorLabel->setText(polarError.toDMSString()); // JM 2019-08-17: Flip for southern hemisphere. // Possible fix for: https://indilib.org/forum/ekos/5558-ekos-polar-alignment-vector-backwards.html correctionVector.setP1((hemisphere == NORTH_HEMISPHERE) ? celestialPolePoint : RACenterPoint); correctionVector.setP2((hemisphere == NORTH_HEMISPHERE) ? RACenterPoint : celestialPolePoint); /* bool RAAxisInside = imageData->contains(RACenterPoint); bool CPPointInside= imageData->contains(celestialPolePoint); if (RAAxisInside == false && CPPointInside == false) appendLogText(i18n("Warning: Mount axis and celestial pole are outside the field of view. Correction vector may be inaccurate.")); */ connect(alignView, &AlignView::trackingStarSelected, this, &Ekos::Align::setPAHCorrectionOffset); emit polarResultUpdated(correctionVector, polarError.toDMSString()); connect(alignView, &AlignView::newCorrectionVector, this, &Ekos::Align::newCorrectionVector, Qt::UniqueConnection); emit newCorrectionVector(correctionVector); alignView->setCorrectionParams(correctionVector); emit newFrame(alignView); } void Align::setPAHCorrectionOffsetPercentage(double dx, double dy) { double x = dx * alignView->zoomedWidth() * (alignView->getCurrentZoom() / 100); double y = dy * alignView->zoomedHeight() * (alignView->getCurrentZoom() / 100); setPAHCorrectionOffset(static_cast(round(x)), static_cast(round(y))); } void Align::setPAHCorrectionOffset(int x, int y) { correctionOffset.setX(x); correctionOffset.setY(y); alignView->setCorrectionOffset(correctionOffset); emit newFrame(alignView); } void Align::setPAHCorrectionSelectionComplete() { pahStage = PAH_PRE_REFRESH; emit newPAHStage(pahStage); // If user stops here, we restore the settings, if not we // disable again in the refresh process // and restore when refresh is complete Options::setAstrometrySolverWCS(rememberSolverWCS); Options::setAutoWCS(rememberAutoWCS); PAHWidgets->setCurrentWidget(PAHRefreshPage); emit newPAHMessage(refreshText->text()); } void Align::setPAHSlewDone() { emit newPAHMessage("Manual slew done."); switch(pahStage) { case PAH_FIRST_ROTATE : pahStage = PAH_SECOND_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondCapturePage); appendLogText(i18n("First manual rotation done.")); break; case PAH_SECOND_ROTATE : pahStage = PAH_THIRD_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHThirdCapturePage); appendLogText(i18n("Second manual rotation done.")); break; default : return; // no other stage should be able to trigger this event } if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); QTimer::singleShot(delaySpin->value(), this, &Ekos::Align::captureAndSolve); } void Align::startPAHRefreshProcess() { qCInfo(KSTARS_EKOS_ALIGN) << "Starting Polar Alignment Assistant refreshing..."; pahStage = PAH_REFRESH; emit newPAHStage(pahStage); PAHRefreshB->setEnabled(false); // Hide EQ Grids if shown if (alignView->isEQGridShown()) alignView->toggleEQGrid(); alignView->setRefreshEnabled(true); Options::setAstrometrySolverWCS(false); Options::setAutoWCS(false); // We for refresh, just capture really captureAndSolve(); } void Align::setPAHRefreshComplete() { abort(); Options::setAstrometrySolverWCS(rememberSolverWCS); Options::setAutoWCS(rememberAutoWCS); stopPAHProcess(); } void Align::processPAHStage(double orientation, double ra, double dec, double pixscale) { // Create temporary file to hold all WCS data // QTemporaryFile tmpFile(QDir::tempPath() + "/fitswcsXXXXXX"); // tmpFile.setAutoRemove(false); // tmpFile.open(); // QString newWCSFile = tmpFile.fileName(); // tmpFile.close(); QString newWCSFile = QDir::tempPath() + QString("/fitswcs%1").arg(QUuid::createUuid().toString().remove(QRegularExpression("[-{}]"))); //alignView->setLoadWCSEnabled(true); if (pahStage == PAH_FIND_CP) { setSolverAction(GOTO_NOTHING); appendLogText( i18n("Mount is synced to celestial pole. You can now continue Polar Alignment Assistant procedure.")); pahStage = PAH_FIRST_CAPTURE; emit newPAHStage(pahStage); return; } if (pahStage == PAH_FIRST_CAPTURE) { // Set First PAH Center PAHImageInfo *solution = new PAHImageInfo(); solution->skyCenter.setRA0(alignCoord.ra0()); solution->skyCenter.setDec0(alignCoord.dec0()); solution->orientation = orientation; solution->pixelScale = pixscale; pahImageInfos.append(solution); // Only invoke this if limited resource mode is false since we want to use CPU heavy WCS if (Options::limitedResourcesMode() == false) { appendLogText(i18n("Please wait while WCS data is processed...")); connect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled, Qt::UniqueConnection); alignView->createWCSFile(newWCSFile, orientation, ra, dec, pixscale); return; } pahStage = PAH_FIRST_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHFirstRotatePage); emit newPAHMessage(firstRotateText->text()); rotatePAH(); } else if (pahStage == PAH_SECOND_CAPTURE) { // Set 2nd PAH Center PAHImageInfo *solution = new PAHImageInfo(); solution->skyCenter.setRA0(alignCoord.ra0()); solution->skyCenter.setDec0(alignCoord.dec0()); solution->orientation = orientation; solution->pixelScale = pixscale; pahImageInfos.append(solution); // Only invoke this if limited resource mode is false since we want to use CPU heavy WCS if (Options::limitedResourcesMode() == false) { appendLogText(i18n("Please wait while WCS data is processed...")); connect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled, Qt::UniqueConnection); alignView->createWCSFile(newWCSFile, orientation, ra, dec, pixscale); return; } pahStage = PAH_SECOND_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondRotatePage); emit newPAHMessage(secondRotateText->text()); rotatePAH(); } else if (pahStage == PAH_THIRD_CAPTURE) { // Set Third PAH Center PAHImageInfo *solution = new PAHImageInfo(); solution->skyCenter.setRA0(alignCoord.ra0()); solution->skyCenter.setDec0(alignCoord.dec0()); solution->orientation = orientation; solution->pixelScale = pixscale; pahImageInfos.append(solution); appendLogText(i18n("Please wait while WCS data is processed...")); connect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled, Qt::UniqueConnection); alignView->createWCSFile(newWCSFile, orientation, ra, dec, pixscale); return; } } void Align::setWCSToggled(bool result) { appendLogText(i18n("WCS data processing is complete.")); //alignView->disconnect(this); disconnect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled); if (pahStage == PAH_FIRST_CAPTURE) { // We need WCS to be synced first if (result == false && m_wcsSynced == true) { appendLogText(i18n("WCS info is now valid. Capturing next frame...")); pahImageInfos.clear(); captureAndSolve(); return; } // Not critical error /* if (result == false) { appendLogText( i18n("Warning: failed to load WCS data in file: %1", alignView->getImageData()->getLastError())); pahStage = PAH_FIRST_ROTATE; PAHWidgets->setCurrentWidget(PAHFirstRotatePage); return; }*/ // Find Celestial pole location SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); FITSData *imageData = alignView->getImageData(); QPointF pixelPoint, imagePoint; bool rc = imageData->wcsToPixel(CP, pixelPoint, imagePoint); pahImageInfos[0]->celestialPole = pixelPoint; // TODO check if pixelPoint is located TOO far from the current position as well // i.e. if X > Width * 2..etc if (rc == false) { appendLogText(i18n("Failed to process World Coordinate System: %1. Try again.", imageData->getLastError())); return; } // If celestial pole out of range, ask the user if they want to move to it if (pixelPoint.x() < (-1 * imageData->width()) || pixelPoint.x() > (imageData->width() * 2) || pixelPoint.y() < (-1 * imageData->height()) || pixelPoint.y() > (imageData->height() * 2)) { if (currentTelescope->canSync() && KMessageBox::questionYesNo( nullptr, i18n("Celestial pole is located outside of the field of view. Would you like to sync and slew " "the telescope to the celestial pole? WARNING: Slewing near poles may cause your mount to " "end up in unsafe position. Proceed with caution.")) == KMessageBox::Yes) { pahStage = PAH_FIND_CP; emit newPAHStage(pahStage); targetCoord.setRA(KStarsData::Instance()->lst()->Hours()); targetCoord.setDec(CP.dec().Degrees() > 0 ? 89.5 : -89.5); qDeleteAll(pahImageInfos); pahImageInfos.clear(); setSolverAction(GOTO_SLEW); Sync(); return; } else appendLogText(i18n("Warning: Celestial pole is located outside the field of view. Move the mount closer to the celestial pole.")); } pahStage = PAH_FIRST_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHFirstRotatePage); emit newPAHMessage(firstRotateText->text()); rotatePAH(); } else if (pahStage == PAH_SECOND_CAPTURE) { // Find Celestial pole location SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); FITSData *imageData = alignView->getImageData(); QPointF pixelPoint, imagePoint; imageData->wcsToPixel(CP, pixelPoint, imagePoint); pahImageInfos[1]->celestialPole = pixelPoint; pahStage = PAH_SECOND_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondRotatePage); emit newPAHMessage(secondRotateText->text()); rotatePAH(); } else if (pahStage == PAH_THIRD_CAPTURE) { FITSData *imageData = alignView->getImageData(); // Critical error if (result == false) { appendLogText(i18n("Failed to process World Coordinate System: %1. Try again.", imageData->getLastError())); return; } // Find Celestial pole location SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); QPointF imagePoint; imageData->wcsToPixel(CP, celestialPolePoint, imagePoint); pahImageInfos[2]->celestialPole = celestialPolePoint; // Now find pixel locations for all recorded center coordinates in the 3rd frame reference imageData->wcsToPixel(pahImageInfos[0]->skyCenter, pahImageInfos[0]->pixelCenter, imagePoint); imageData->wcsToPixel(pahImageInfos[1]->skyCenter, pahImageInfos[1]->pixelCenter, imagePoint); imageData->wcsToPixel(pahImageInfos[2]->skyCenter, pahImageInfos[2]->pixelCenter, imagePoint); qCDebug(KSTARS_EKOS_ALIGN) << "P1 RA: " << pahImageInfos[0]->skyCenter.ra0().toHMSString() << "DE: " << pahImageInfos[0]->skyCenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "P2 RA: " << pahImageInfos[1]->skyCenter.ra0().toHMSString() << "DE: " << pahImageInfos[1]->skyCenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "P3 RA: " << pahImageInfos[2]->skyCenter.ra0().toHMSString() << "DE: " << pahImageInfos[2]->skyCenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "P1 X: " << pahImageInfos[0]->pixelCenter.x() << "Y: " << pahImageInfos[0]->pixelCenter.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P2 X: " << pahImageInfos[1]->pixelCenter.x() << "Y: " << pahImageInfos[1]->pixelCenter.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P3 X: " << pahImageInfos[2]->pixelCenter.x() << "Y: " << pahImageInfos[2]->pixelCenter.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P1 CP X: " << pahImageInfos[0]->celestialPole.x() << "CP Y: " << pahImageInfos[0]->celestialPole.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P2 CP X: " << pahImageInfos[1]->celestialPole.x() << "CP Y: " << pahImageInfos[1]->celestialPole.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P3 CP X: " << pahImageInfos[2]->celestialPole.x() << "CP Y: " << pahImageInfos[2]->celestialPole.y(); // We have 3 points which uniquely defines a circle with its center representing the RA Axis // We have celestial pole location. So correction vector is just the vector between these two points calculatePAHError(); pahStage = PAH_STAR_SELECT; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHCorrectionPage); emit newPAHMessage(correctionText->text()); } } void Align::updateTelescopeType(int index) { if (currentCCD == nullptr) return; syncSettings(); /* bool rc = currentCCD->setTelescopeType(static_cast(index)); // If false, try to set it to existing known telescope if (rc == false) { focal_length = (index == ISD::CCD::TELESCOPE_PRIMARY) ? primaryFL : guideFL; aperture = (index == ISD::CCD::TELESCOPE_PRIMARY) ? primaryAperture : guideAperture; syncTelescopeInfo(); }*/ focal_length = (index == ISD::CCD::TELESCOPE_PRIMARY) ? primaryFL : guideFL; aperture = (index == ISD::CCD::TELESCOPE_PRIMARY) ? primaryAperture : guideAperture; Options::setSolverScopeType(index); syncTelescopeInfo(); } // Function adapted from https://rosettacode.org/wiki/Circles_of_given_radius_through_two_points Align::CircleSolution Align::findCircleSolutions(const QPointF &p1, const QPointF p2, double angle, QPair &circleSolutions) { QPointF solutionOne(1, 1), solutionTwo(1, 1); double radius = distance(p1, p2) / (dms::DegToRad * angle); if (p1 == p2) { if (angle == 0) { circleSolutions = qMakePair(p1, p2); appendLogText(i18n("Only one solution is found.")); return ONE_CIRCLE_SOLUTION; } else { circleSolutions = qMakePair(solutionOne, solutionTwo); appendLogText(i18n("Infinite number of solutions found.")); return INFINITE_CIRCLE_SOLUTION; } } QPointF center(p1.x() / 2 + p2.x() / 2, p1.y() / 2 + p2.y() / 2); double halfDistance = distance(center, p1); if (halfDistance > radius) { circleSolutions = qMakePair(solutionOne, solutionTwo); appendLogText(i18n("No solution is found. Points are too far away")); return NO_CIRCLE_SOLUTION; } if (halfDistance - radius == 0) { circleSolutions = qMakePair(center, solutionTwo); appendLogText(i18n("Only one solution is found.")); return ONE_CIRCLE_SOLUTION; } double root = std::hypotf(radius, halfDistance) / distance(p1, p2); solutionOne.setX(center.x() + root * (p1.y() - p2.y())); solutionOne.setY(center.y() + root * (p2.x() - p1.x())); solutionTwo.setX(center.x() - root * (p1.y() - p2.y())); solutionTwo.setY(center.y() - root * (p2.x() - p1.x())); circleSolutions = qMakePair(solutionOne, solutionTwo); return TWO_CIRCLE_SOLUTION; } double Align::distance(const QPointF &p1, const QPointF &p2) { return std::hypotf(p2.x() - p1.x(), p2.y() - p1.y()); } bool Align::findRACircle(QVector3D &RACircle) { bool rc = false; QPointF p1 = pahImageInfos[0]->pixelCenter; QPointF p2 = pahImageInfos[1]->pixelCenter; QPointF p3 = pahImageInfos[2]->pixelCenter; if (!isPerpendicular(p1, p2, p3)) rc = calcCircle(p1, p2, p3, RACircle); else if (!isPerpendicular(p1, p3, p2)) rc = calcCircle(p1, p3, p2, RACircle); else if (!isPerpendicular(p2, p1, p3)) rc = calcCircle(p2, p1, p3, RACircle); else if (!isPerpendicular(p2, p3, p1)) rc = calcCircle(p2, p3, p1, RACircle); else if (!isPerpendicular(p3, p2, p1)) rc = calcCircle(p3, p2, p1, RACircle); else if (!isPerpendicular(p3, p1, p2)) rc = calcCircle(p3, p1, p2, RACircle); else { //TRACE("\nThe three pts are perpendicular to axis\n"); return false; } return rc; } bool Align::isPerpendicular(const QPointF &p1, const QPointF &p2, const QPointF &p3) // Check the given point are perpendicular to x or y axis { double yDelta_a = p2.y() - p1.y(); double xDelta_a = p2.x() - p1.x(); double yDelta_b = p3.y() - p2.y(); double xDelta_b = p3.x() - p2.x(); // checking whether the line of the two pts are vertical if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001) { //TRACE("The points are perpendicular and parallel to x-y axis\n"); return false; } if (fabs(yDelta_a) <= 0.0000001) { //TRACE(" A line of two point are perpendicular to x-axis 1\n"); return true; } else if (fabs(yDelta_b) <= 0.0000001) { //TRACE(" A line of two point are perpendicular to x-axis 2\n"); return true; } else if (fabs(xDelta_a) <= 0.000000001) { //TRACE(" A line of two point are perpendicular to y-axis 1\n"); return true; } else if (fabs(xDelta_b) <= 0.000000001) { //TRACE(" A line of two point are perpendicular to y-axis 2\n"); return true; } else return false; } bool Align::calcCircle(const QPointF &p1, const QPointF &p2, const QPointF &p3, QVector3D &RACircle) { double yDelta_a = p2.y() - p1.y(); double xDelta_a = p2.x() - p1.x(); double yDelta_b = p3.y() - p2.y(); double xDelta_b = p3.x() - p2.x(); if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001) { RACircle.setX(0.5 * (p2.x() + p3.x())); RACircle.setY(0.5 * (p1.y() + p2.y())); QPointF center(RACircle.x(), RACircle.y()); RACircle.setZ(distance(center, p1)); return true; } // IsPerpendicular() assure that xDelta(s) are not zero double aSlope = yDelta_a / xDelta_a; // double bSlope = yDelta_b / xDelta_b; if (fabs(aSlope - bSlope) <= 0.000000001) { // checking whether the given points are colinear. //TRACE("The three ps are colinear\n"); return false; } // calc center RACircle.setX((aSlope * bSlope * (p1.y() - p3.y()) + bSlope * (p1.x() + p2.x()) - aSlope * (p2.x() + p3.x())) / (2 * (bSlope - aSlope))); RACircle.setY(-1 * (RACircle.x() - (p1.x() + p2.x()) / 2) / aSlope + (p1.y() + p2.y()) / 2); QPointF center(RACircle.x(), RACircle.y()); RACircle.setZ(distance(center, p1)); return true; } void Align::setMountStatus(ISD::Telescope::Status newState) { switch (newState) { case ISD::Telescope::MOUNT_PARKING: case ISD::Telescope::MOUNT_SLEWING: case ISD::Telescope::MOUNT_MOVING: solveB->setEnabled(false); loadSlewB->setEnabled(false); PAHStartB->setEnabled(false); break; default: if (state != ALIGN_PROGRESS) { solveB->setEnabled(true); if (pahStage == PAH_IDLE) { PAHStartB->setEnabled(true); loadSlewB->setEnabled(true); } } break; } } void Align::setAstrometryDevice(ISD::GDInterface *newAstrometry) { remoteParserDevice = newAstrometry; if (remoteParser.get() != nullptr) { remoteParser->setAstrometryDevice(remoteParserDevice); connect(remoteParser.get(), &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(remoteParser.get(), &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } } void Align::setRotator(ISD::GDInterface *newRotator) { currentRotator = newRotator; connect(currentRotator, &ISD::GDInterface::numberUpdated, this, &Ekos::Align::processNumber, Qt::UniqueConnection); } void Align::refreshAlignOptions() { if (getSolverFOV()) getSolverFOV()->setImageDisplay(Options::astrometrySolverWCS()); m_AlignTimer.setInterval(Options::astrometryTimeout() * 1000); } void Align::setFilterManager(const QSharedPointer &manager) { filterManager = manager; connect(filterManager.data(), &FilterManager::ready, [this]() { if (filterPositionPending) { focusState = FOCUS_IDLE; filterPositionPending = false; captureAndSolve(); } } ); connect(filterManager.data(), &FilterManager::failed, [this]() { appendLogText(i18n("Filter operation failed.")); abort(); } ); connect(filterManager.data(), &FilterManager::newStatus, [this](Ekos::FilterState filterState) { if (filterPositionPending) { switch (filterState) { case FILTER_OFFSET: appendLogText(i18n("Changing focus offset by %1 steps...", filterManager->getTargetFilterOffset())); break; case FILTER_CHANGE: appendLogText(i18n("Changing filter to %1...", FilterPosCombo->itemText(filterManager->getTargetFilterPosition() - 1))); break; case FILTER_AUTOFOCUS: appendLogText(i18n("Auto focus on filter change...")); break; default: break; } } }); connect(filterManager.data(), &FilterManager::labelsChanged, this, [this]() { checkFilter(); }); connect(filterManager.data(), &FilterManager::positionChanged, this, [this]() { checkFilter(); }); } QVariantMap Align::getEffectiveFOV() { KStarsData::Instance()->userdb()->GetAllEffectiveFOVs(effectiveFOVs); fov_x = fov_y = 0; for (auto &map : effectiveFOVs) { if (map["Profile"].toString() == m_ActiveProfile->name) { if (map["Width"].toInt() == ccd_width && map["Height"].toInt() == ccd_height && map["PixelW"].toDouble() == ccd_hor_pixel && map["PixelH"].toDouble() == ccd_ver_pixel && map["FocalLength"].toDouble() == focal_length) { fov_x = map["FovW"].toDouble(); fov_y = map["FovH"].toDouble(); return map; } } } return QVariantMap(); } void Align::saveNewEffectiveFOV(double newFOVW, double newFOVH) { if (newFOVW < 0 || newFOVH < 0 || (newFOVW == fov_x && newFOVH == fov_y)) return; QVariantMap effectiveMap = getEffectiveFOV(); // If ID exists, delete it first. if (effectiveMap.isEmpty() == false) KStarsData::Instance()->userdb()->DeleteEffectiveFOV(effectiveMap["id"].toString()); // If FOV is 0x0, then we just remove existing effective FOV if (newFOVW == 0.0 && newFOVH == 0.0) { calculateFOV(); return; } effectiveMap["Profile"] = m_ActiveProfile->name; effectiveMap["Width"] = ccd_width; effectiveMap["Height"] = ccd_height; effectiveMap["PixelW"] = ccd_hor_pixel; effectiveMap["PixelH"] = ccd_ver_pixel; effectiveMap["FocalLength"] = focal_length; effectiveMap["FovW"] = newFOVW; effectiveMap["FovH"] = newFOVH; KStarsData::Instance()->userdb()->AddEffectiveFOV(effectiveMap); calculateFOV(); } QStringList Align::getActiveSolvers() const { QStringList solvers; solvers << "Online"; #ifndef Q_OS_WIN solvers << "Offline"; #endif if (remoteParserDevice != nullptr) solvers << "Remote"; return solvers; } int Align::getActiveSolverIndex() const { return solverTypeGroup->checkedId(); } QString Align::getPAHMessage() const { switch (pahStage) { case PAH_IDLE: case PAH_FIND_CP: return introText->text(); case PAH_FIRST_CAPTURE: return firstCaptureText->text(); case PAH_FIRST_ROTATE: return firstRotateText->text(); case PAH_SECOND_CAPTURE: return secondCaptureText->text(); case PAH_SECOND_ROTATE: return secondRotateText->text(); case PAH_THIRD_CAPTURE: return thirdCaptureText->text(); case PAH_STAR_SELECT: return correctionText->text(); case PAH_PRE_REFRESH: case PAH_REFRESH: return refreshText->text(); case PAH_ERROR: return PAHErrorDescriptionLabel->text(); } + + return QString(); } void Align::zoomAlignView() { alignView->ZoomDefault(); emit newFrame(alignView); } QJsonObject Align::getSettings() const { QJsonObject settings; settings.insert("camera", CCDCaptureCombo->currentText()); settings.insert("fw", FilterDevicesCombo->currentText()); settings.insert("filter", FilterPosCombo->currentText()); settings.insert("exp", exposureIN->value()); settings.insert("bin", binningCombo->currentIndex() + 1); settings.insert("solverAction", gotoModeButtonGroup->checkedId()); settings.insert("solverType", solverTypeGroup->checkedId()); settings.insert("scopeType", FOVScopeCombo->currentIndex()); return settings; } void Align::setSettings(const QJsonObject &settings) { CCDCaptureCombo->setCurrentText(settings["camera"].toString()); FilterDevicesCombo->setCurrentText(settings["fw"].toString()); FilterPosCombo->setCurrentText(settings["filter"].toString()); Options::setLockAlignFilterIndex(FilterPosCombo->currentIndex()); exposureIN->setValue(settings["exp"].toDouble(1)); binningCombo->setCurrentIndex(settings["bin"].toInt() - 1); gotoModeButtonGroup->button(settings["solverAction"].toInt(1))->click(); solverTypeGroup->button(settings["solverType"].toInt(1))->click(); FOVScopeCombo->setCurrentIndex(settings["scopeType"].toInt(0)); } void Align::syncSettings() { emit settingsUpdated(getSettings()); } QJsonObject Align::getPAHSettings() const { QJsonObject settings = getSettings(); settings.insert("mountDirection", PAHDirectionCombo->currentIndex()); settings.insert("mountSpeed", PAHSlewRateCombo->currentIndex()); settings.insert("mountRotation", PAHRotationSpin->value()); settings.insert("refresh", PAHExposure->value()); settings.insert("manualslew", PAHManual->isChecked()); return settings; } void Align::setPAHSettings(const QJsonObject &settings) { setSettings(settings); PAHDirectionCombo->setCurrentIndex(settings["mountDirection"].toInt(0)); PAHRotationSpin->setValue(settings["mountRotation"].toInt(30)); PAHExposure->setValue(settings["refresh"].toDouble(1)); if (settings.contains("mountSpeed")) PAHSlewRateCombo->setCurrentIndex(settings["mountSpeed"].toInt(0)); PAHManual->setChecked(settings["manualslew"].toBool(false)); } void Align::syncFOV() { QString newFOV = FOVOut->text(); QRegularExpression re("(\\d+\\.*\\d*)\\D*x\\D*(\\d+\\.*\\d*)"); QRegularExpressionMatch match = re.match(newFOV); if (match.hasMatch()) { double newFOVW = match.captured(1).toDouble(); double newFOVH = match.captured(2).toDouble(); //if (newFOVW > 0 && newFOVH > 0) saveNewEffectiveFOV(newFOVW, newFOVH); FOVOut->setStyleSheet(QString()); } else { KSNotification::error(i18n("Invalid FOV.")); FOVOut->setStyleSheet("background-color:red"); } } } diff --git a/kstars/ekos/align/align.h b/kstars/ekos/align/align.h index 6a670a49e..6e4db77c5 100644 --- a/kstars/ekos/align/align.h +++ b/kstars/ekos/align/align.h @@ -1,935 +1,937 @@ /* Ekos Polar Alignment Tool Copyright (C) 2013 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include "ui_align.h" #include "ui_mountmodel.h" #include "ekos/ekos.h" #include "indi/indiccd.h" #include "indi/indistd.h" #include "indi/inditelescope.h" #include "indi/indidome.h" #include "ekos/auxiliary/filtermanager.h" #include #include #if QT_VERSION >= QT_VERSION_CHECK(5, 8, 0) #include #else #include #endif #include class QProgressIndicator; class AlignView; class FOV; class StarObject; class ProfileInfo; namespace Ekos { class AstrometryParser; class OnlineAstrometryParser; class OfflineAstrometryParser; class RemoteAstrometryParser; class ASTAPAstrometryParser; class OpsAstrometry; class OpsAlign; class OpsASTAP; class OpsAstrometryCfg; class OpsAstrometryIndexFiles; /** *@class Align *@short Align class handles plate-solving and polar alignment measurement and correction using astrometry.net * The align class can capture images from the CCD and use either online or offline astrometry.net engine to solve the plate constants and find the center RA/DEC coordinates. The user selects the action * to perform when the solver completes successfully. * Align module provide Polar Align Helper tool which enables easy-to-follow polar alignment procedure given wide FOVs (> 1.5 degrees) * For small FOVs, the Legacy polar alignment measurement should be used. * LEGACY: Measurement of polar alignment errors is performed by capturing two images on selected points in the sky and measuring the declination drift to calculate * the error in the mount's azimuth and altitude displacement from optimal. Correction is carried by asking the user to re-center a star by adjusting the telescope's azimuth and/or altitude knobs. *@author Jasem Mutlaq *@version 1.4 */ class Align : public QWidget, public Ui::Align { Q_OBJECT Q_CLASSINFO("D-Bus Interface", "org.kde.kstars.Ekos.Align") Q_PROPERTY(Ekos::AlignState status READ status NOTIFY newStatus) Q_PROPERTY(QStringList logText READ logText NOTIFY newLog) Q_PROPERTY(QString camera READ camera WRITE setCamera) Q_PROPERTY(QString filterWheel READ filterWheel WRITE setFilterWheel) Q_PROPERTY(QString filter READ filter WRITE setFilter) Q_PROPERTY(double exposure READ exposure WRITE setExposure) Q_PROPERTY(QList fov READ fov) Q_PROPERTY(QList cameraInfo READ cameraInfo) Q_PROPERTY(QList telescopeInfo READ telescopeInfo) Q_PROPERTY(QString solverArguments READ solverArguments WRITE setSolverArguments) public: explicit Align(ProfileInfo *activeProfile); virtual ~Align() override; typedef enum { AZ_INIT, AZ_FIRST_TARGET, AZ_SYNCING, AZ_SLEWING, AZ_SECOND_TARGET, AZ_CORRECTING, AZ_FINISHED } AZStage; typedef enum { ALT_INIT, ALT_FIRST_TARGET, ALT_SYNCING, ALT_SLEWING, ALT_SECOND_TARGET, ALT_CORRECTING, ALT_FINISHED } ALTStage; typedef enum { GOTO_SYNC, GOTO_SLEW, GOTO_NOTHING } GotoMode; typedef enum { SOLVER_ONLINE, SOLVER_OFFLINE, SOLVER_REMOTE } AstrometrySolverType; typedef enum { SOLVER_ASTAP, SOLVER_ASTROMETRYNET } SolverType; typedef enum { PAH_IDLE, PAH_FIRST_CAPTURE, PAH_FIND_CP, PAH_FIRST_ROTATE, PAH_SECOND_CAPTURE, PAH_SECOND_ROTATE, PAH_THIRD_CAPTURE, PAH_STAR_SELECT, PAH_PRE_REFRESH, PAH_REFRESH, PAH_ERROR } PAHStage; typedef enum { NORTH_HEMISPHERE, SOUTH_HEMISPHERE } HemisphereType; // Image Scales const QStringList ImageScales = { "dw", "aw", "app" }; enum CircleSolution { NO_CIRCLE_SOLUTION, ONE_CIRCLE_SOLUTION, TWO_CIRCLE_SOLUTION, INFINITE_CIRCLE_SOLUTION }; enum ModelObjectType { OBJECT_ANY_STAR, OBJECT_NAMED_STAR, OBJECT_ANY_OBJECT, OBJECT_FIXED_DEC, OBJECT_FIXED_GRID }; /** @defgroup AlignDBusInterface Ekos DBus Interface - Align Module * Ekos::Align interface provides advanced scripting capabilities to solve images using online or offline astrometry.net */ /*@{*/ /** DBUS interface function. * Select CCD * @param device CCD device name * @return Returns true if device if found and selected, false otherwise. */ Q_SCRIPTABLE bool setCamera(const QString &device); Q_SCRIPTABLE QString camera(); /** DBUS interface function. * select the filter device from the available filter drivers. The filter device can be the same as the CCD driver if the filter functionality was embedded within the driver. * @param device The filter device name * @return Returns true if filter device is found and set, false otherwise. */ Q_SCRIPTABLE bool setFilterWheel(const QString &device); Q_SCRIPTABLE QString filterWheel(); /** DBUS interface function. * select the filter from the available filters. * @param filter The filter name * @return Returns true if filter is found and set, false otherwise. */ Q_SCRIPTABLE bool setFilter(const QString &filter); Q_SCRIPTABLE QString filter(); /** DBUS interface function. * Start the plate-solving process given the passed image file. * @param filename Name of image file to solve. FITS and JPG/JPG/TIFF formats are accepted. * @param isGenerated Set to true if filename is generated from a CCD capture operation. If the file is loaded from any storage or network media, pass false. * @return Returns true if device if found and selected, false otherwise. */ Q_SCRIPTABLE Q_NOREPLY void startSolving(const QString &filename, bool isGenerated = true); /** DBUS interface function. * Select Solver Action after successfully solving an image. * @param mode 0 for Sync, 1 for Slew To Target, 2 for Nothing (just display solution results) */ Q_SCRIPTABLE Q_NOREPLY void setSolverAction(int mode); /** DBUS interface function. * Returns the solver's solution results * @return Returns array of doubles. First item is RA in degrees. Second item is DEC in degrees. */ Q_SCRIPTABLE QList getSolutionResult(); /** DBUS interface function. * Returns the solver's current status * @return Returns solver status (Ekos::AlignState) */ Q_SCRIPTABLE Ekos::AlignState status() { return state; } /** DBUS interface function. * @return Returns State of load slew procedure. Idle if not started. Busy if in progress. Ok if complete. Alert if procedure failed. */ Q_SCRIPTABLE int getLoadAndSlewStatus() { return loadSlewState; } /** DBUS interface function. * Sets the exposure of the selected CCD device. * @param value Exposure value in seconds */ Q_SCRIPTABLE Q_NOREPLY void setExposure(double value); Q_SCRIPTABLE double exposure() { return exposureIN->value(); } /** DBUS interface function. * Sets the arguments that gets passed to the astrometry.net offline solver. * @param value space-separated arguments. */ Q_SCRIPTABLE Q_NOREPLY void setSolverArguments(const QString &value); /** DBUS interface function. * Get existing solver options. * @return String containing all arguments. */ Q_SCRIPTABLE QString solverArguments(); /** DBUS interface function. * Sets the telescope type (PRIMARY or GUIDE) that should be used for FOV calculations. This value is loaded form driver settings by default. * @param index 0 for PRIMARY telescope, 1 for GUIDE telescope */ Q_SCRIPTABLE Q_NOREPLY void setFOVTelescopeType(int index); int FOVTelescopeType() { return FOVScopeCombo->currentIndex(); } /** DBUS interface function. * Get currently active camera info in this order: * width, height, pixel_size_x, pixel_size_y */ Q_SCRIPTABLE QList cameraInfo(); /** DBUS interface function. * Get current active telescope info in this order: * focal length, aperture */ Q_SCRIPTABLE QList telescopeInfo(); /** @}*/ /** * @brief Add CCD to the list of available CCD. * @param newCCD pointer to CCD device. */ void addCCD(ISD::GDInterface *newCCD); /** * @brief addFilter Add filter to the list of available filters. * @param newFilter pointer to filter device. */ void addFilter(ISD::GDInterface *newFilter); /** * @brief Set the current telescope * @param newTelescope pointer to telescope device. */ void setTelescope(ISD::GDInterface *newTelescope); /** * @brief Set the current dome * @param newDome pointer to telescope device. */ void setDome(ISD::GDInterface *newDome); void setRotator(ISD::GDInterface *newRotator); void removeDevice(ISD::GDInterface *device); /* @brief Set telescope and guide scope info. All measurements is in millimeters. * @param primaryFocalLength Primary Telescope Focal Length. Set to 0 to skip setting this value. * @param primaryAperture Primary Telescope Aperture. Set to 0 to skip setting this value. * @param guideFocalLength Guide Telescope Focal Length. Set to 0 to skip setting this value. * @param guideAperture Guide Telescope Aperture. Set to 0 to skip setting this value. */ void setTelescopeInfo(double primaryFocalLength, double primaryAperture, double guideFocalLength, double guideAperture); /** * @brief setAstrometryDevice * @param newAstrometry */ void setAstrometryDevice(ISD::GDInterface *newAstrometry); /** * @brief CCD information is updated, sync them. */ void syncCCDInfo(); /** * @brief Generate arguments we pass to the online and offline solvers. Keep user own arguments in place. */ void generateArgs(); /** * @brief Does our parser exist in the system? */ bool isParserOK(); // Log QStringList logText() { return m_LogText; } QString getLogText() { return m_LogText.join("\n"); } void clearLog(); /** * @brief Return FOV object used to represent the solved image orientation on the sky map. */ FOV *getSolverFOV(); /** * @brief Return FOV object used to represent the current CCD/Telescope combination. */ FOV *getSensorFOV() { return sensorFOV.get(); } /** * @brief getFOVScale Returns calculated FOV values * @param fov_w FOV width in arcmins * @param fov_h FOV height in arcmins * @param fov_scale FOV scale in arcsec per pixel */ void getFOVScale(double &fov_w, double &fov_h, double &fov_scale); QList fov(); /** * @brief getCalculatedFOVScale Get calculated FOV scales from the current CCD+Telescope combination. * @param fov_w return calculated fov width in arcminutes * @param fov_h return calculated fov height in arcminutes * @param fov_scale return calculated fov pixcale in arcsecs per pixel. * @note This is NOT the same as effective FOV which is the measured FOV from astrometry. It is the * theoretical FOV from calculated values. */ void getCalculatedFOVScale(double &fov_w, double &fov_h, double &fov_scale); void setFilterManager(const QSharedPointer &manager); // Ekos Live Client helper functions QStringList getActiveSolvers() const; int getActiveSolverIndex() const; void setCaptureSettings(const QJsonObject &settings); /** * @brief generateOptions Generate astrometry.net option given the supplied map * @param optionsMap List of key=value pairs for all astrometry.net options * @return String List of valid astrometry.net options */ static QStringList generateOptions(const QVariantMap &optionsMap); - static void generateFOVBounds(double fov_h, double fov_v, QString &fov_low, QString &fov_high); + static void generateFOVBounds(double fov_h, QString &fov_low, QString &fov_high, double tolerance = 0.05); public slots: /** * @brief Process updated device properties * @param nvp pointer to updated property. */ void processNumber(INumberVectorProperty *nvp); /** * @brief Process updated device properties * @param svp pointer to updated property. */ void processSwitch(ISwitchVectorProperty *svp); /** * @brief Check CCD and make sure information is updated and FOV is re-calculated. * @param CCDNum By default, we check the already selected CCD in the dropdown menu. If CCDNum is specified, the check is made against this specific CCD in the dropdown menu. CCDNum is the index of the CCD in the dropdown menu. */ void checkCCD(int CCDNum = -1); /** * @brief Check Filter and make sure information is updated accordingly. * @param filterNum By default, we check the already selected filter in the dropdown menu. If filterNum is specified, the check is made against this specific filter in the dropdown menu. * filterNum is the index of the filter in the dropdown menu. */ void checkFilter(int filterNum = -1); /** * @brief checkCCDExposureProgress Track the progress of CCD exposure * @param targetChip Target chip under exposure * @param remaining how many seconds remaining * @param state status of exposure */ void checkCCDExposureProgress(ISD::CCDChip *targetChip, double remaining, IPState state); /** * @brief Process new FITS received from CCD. * @param bp pointer to blob property */ void newFITS(IBLOB *bp); /** \addtogroup AlignDBusInterface * @{ */ /** DBUS interface function. * Aborts the solving operation. */ Q_SCRIPTABLE Q_NOREPLY void abort(); /** DBUS interface function. * Select the solver type * @param type Set solver type. 0 ASTAP, 1 astrometry.net */ Q_SCRIPTABLE Q_NOREPLY void setSolverType(int type); /** DBUS interface function. * Select the astrometry solver type * @param type Set solver type. 0 online, 1 offline, 2 remote */ Q_SCRIPTABLE Q_NOREPLY void setAstrometrySolverType(int type); /** DBUS interface function. * Capture and solve an image using the astrometry.net engine * @return Returns true if the procedure started successful, false otherwise. */ Q_SCRIPTABLE bool captureAndSolve(); /** DBUS interface function. * Loads an image (FITS or JPG/TIFF) and solve its coordinates, then it slews to the solved coordinates and an image is captured and solved to ensure * the telescope is pointing to the same coordinates of the image. * @param fileURL URL to the image to solve */ Q_SCRIPTABLE bool loadAndSlew(QString fileURL = QString()); /** DBUS interface function. * Sets the binning of the selected CCD device. * @param binIndex Index of binning value. Default values range from 0 (binning 1x1) to 3 (binning 4x4) */ Q_SCRIPTABLE Q_NOREPLY void setBinningIndex(int binIndex); /** @}*/ /** * @brief Solver finished successfully, process the data and execute the required actions depending on the mode. * @param orientation Orientation of image in degrees (East of North) * @param ra Center RA in solved image, degrees. * @param dec Center DEC in solved image, degrees. * @param pixscale Image scale is arcsec/pixel */ void solverFinished(double orientation, double ra, double dec, double pixscale); /** * @brief Process solver failure. */ void solverFailed(); /** * @brief We received new telescope info, process them and update FOV. */ bool syncTelescopeInfo(); void setFocusStatus(Ekos::FocusState state); // Log void appendLogText(const QString &); // Capture void setCaptureComplete(); // Update Capture Module status void setCaptureStatus(Ekos::CaptureState newState); // Update Mount module status void setMountStatus(ISD::Telescope::Status newState); // PAH Ekos Live QString getPAHStage() const { return PAHStages[pahStage]; } bool isPAHEnabled() const { return isPAHReady; } QString getPAHMessage() const; void startPAHProcess(); void stopPAHProcess(); void setPAHCorrectionOffsetPercentage(double dx, double dy); void setPAHMountDirection(int index) { PAHDirectionCombo->setCurrentIndex(index); } void setPAHMountRotation(int value) { PAHRotationSpin->setValue(value); } void setPAHRefreshDuration(double value) { PAHExposure->setValue(value); } void startPAHRefreshProcess(); void setPAHRefreshComplete(); void setPAHSlewDone(); void setPAHCorrectionSelectionComplete(); void zoomAlignView(); // Align Settings QJsonObject getSettings() const; void setSettings(const QJsonObject &settings); // PAH Settings. PAH should be in separate class QJsonObject getPAHSettings() const; void setPAHSettings(const QJsonObject &settings); private slots: /* Polar Alignment */ void measureAltError(); void measureAzError(); void correctAzError(); void correctAltError(); void setDefaultCCD(QString ccd); void saveSettleTime(); // Solver timeout void checkAlignmentTimeout(); void updateTelescopeType(int index); // External View void showFITSViewer(); void toggleAlignWidgetFullScreen(); // Polar Alignment Helper slots void rotatePAH(); void setPAHCorrectionOffset(int x, int y); void setWCSToggled(bool result); //Solutions Display slots void buildTarget(); void handlePointTooltip(QMouseEvent *event); void handleVerticalPlotSizeChange(); void handleHorizontalPlotSizeChange(); void selectSolutionTableRow(int row, int column); void slotClearAllSolutionPoints(); void slotRemoveSolutionPoint(); void slotMountModel(); //Mount Model Slots void slotWizardAlignmentPoints(); void slotStarSelected(const QString selectedStar); void slotLoadAlignmentPoints(); void slotSaveAsAlignmentPoints(); void slotSaveAlignmentPoints(); void slotClearAllAlignPoints(); void slotRemoveAlignPoint(); void slotAddAlignPoint(); void slotFindAlignObject(); void resetAlignmentProcedure(); void startStopAlignmentProcedure(); void startAlignmentPoint(); void finishAlignmentPoint(bool solverSucceeded); void moveAlignPoint(int logicalIndex, int oldVisualIndex, int newVisualIndex); void exportSolutionPoints(); void alignTypeChanged(int alignType); void togglePreviewAlignPoints(); void slotSortAlignmentPoints(); void slotAutoScaleGraph(); // Settings void syncSettings(); protected slots: /** * @brief After a solver process is completed successfully, sync, slew to target, or do nothing as set by the user. */ void executeGOTO(); /** * @brief refreshAlignOptions is called when settings are updated in OpsAlign. */ void refreshAlignOptions(); signals: void newLog(const QString &text); void newStatus(Ekos::AlignState state); void newSolution(const QVariantMap &solution); // This is sent when we load an image in the view void newImage(FITSView *view); // This is sent when the pixmap is updated within the view void newFrame(FITSView *view); void polarResultUpdated(QLineF correctionVector, QString polarError); void newCorrectionVector(QLineF correctionVector); void newSolverResults(double orientation, double ra, double dec, double pixscale); // Polar Assistant Tool void newPAHStage(PAHStage stage); void newPAHMessage(const QString &message); void newFOVTelescopeType(int index); void PAHEnabled(bool); // Settings void settingsUpdated(const QJsonObject &settings); private: /** * @brief Calculate Field of View of CCD+Telescope combination that we need to pass to astrometry.net solver. */ void calculateFOV(); /** * @brief After a solver process is completed successfully, measure Azimuth or Altitude error as requested by the user. */ void executePolarAlign(); /** * @brief Sync the telescope to the solved alignment coordinate. */ void Sync(); /** * @brief Slew the telescope to the solved alignment coordinate. */ void Slew(); /** * @brief Sync the telescope to the solved alignment coordinate, and then slew to the target coordinate. */ void SlewToTarget(); /** * @brief Calculate polar alignment error magnitude and direction. * The calculation is performed by first capturing and solving a frame, then slewing 30 arcminutes and solving another frame to find the exact coordinates, then computing the error. * @param initRA RA of first frame. * @param initDEC DEC of first frame * @param finalRA RA of second frame * @param finalDEC DEC of second frame * @param initAz Azimuth of first frame */ void calculatePolarError(double initRA, double initDEC, double finalRA, double finalDEC, double initAz); /** * @brief Get formatted RA & DEC coordinates compatible with astrometry.net format. * @param ra Right ascension * @param dec Declination * @param ra_str will contain the formatted RA string * @param dec_str will contain the formatted DEC string */ void getFormattedCoords(double ra, double dec, QString &ra_str, QString &dec_str); /** * @brief getSolverOptionsFromFITS Generates a set of solver options given the supplied FITS image. The function reads FITS keyword headers and build the argument list accordingly. In case of a missing header keyword, it falls back to * the Alignment module existing values. * @param filename FITS path * @return List of Solver options */ QStringList getSolverOptionsFromFITS(const QString &filename); uint8_t getSolverDownsample(uint16_t binnedW); /** * @brief setWCSEnabled enables/disables World Coordinate System settings in the CCD driver. * @param enable true to enable WCS, false to disable. */ void setWCSEnabled(bool enable); /** * @brief calculatePAHError Calculate polar alignment error in the Polar Alignment Helper (PAH) method */ void calculatePAHError(); /** * @brief processPAHStage After solver is complete, handle PAH Stage processing */ void processPAHStage(double orientation, double ra, double dec, double pixscale); CircleSolution findCircleSolutions(const QPointF &p1, const QPointF p2, double angle, QPair &circleSolutions); double distance(const QPointF &p1, const QPointF &p2); bool findRACircle(QVector3D &RACircle); bool isPerpendicular(const QPointF &p1, const QPointF &p2, const QPointF &p3); bool calcCircle(const QPointF &p1, const QPointF &p2, const QPointF &p3, QVector3D &RACircle); void resizeEvent(QResizeEvent *event) override; bool alignmentPointsAreBad(); bool loadAlignmentPoints(const QString &fileURL); bool saveAlignmentPoints(const QString &path); void generateAlignStarList(); bool isVisible(const SkyObject *so); double getAltitude(const SkyObject *so); const SkyObject *getWizardAlignObject(double ra, double de); void calculateAngleForRALine(double &raIncrement, double &initRA, double initDEC, double lat, double raPoints, double minAlt); void calculateAZPointsForDEC(dms dec, dms alt, dms &AZEast, dms &AZWest); void updatePreviewAlignPoints(); int findNextAlignmentPointAfter(int currentSpot); int findClosestAlignmentPointToTelescope(); void swapAlignPoints(int firstPt, int secondPt); // Effective FOV /** * @brief getEffectiveFOV Search database for effective FOV that matches the current profile and settings * @return Variant Map containing effect FOV data or empty variant map if none found */ QVariantMap getEffectiveFOV(); void saveNewEffectiveFOV(double newFOVW, double newFOVH); QList effectiveFOVs; void syncFOV(); + // We are using calculated FOV now until a more accurate effective FOV is found. + bool m_EffectiveFOVPending { false }; /// Which chip should we invoke in the current CCD? bool useGuideHead { false }; /// Can the mount sync its coordinates to those set by Ekos? bool canSync { false }; // LoadSlew mode is when we load an image and solve it, no capture is done. //bool loadSlewMode; /// If load and slew is solved successfully, coordinates obtained, slewed to target, and then captured, solved, and re-slewed to target again. IPState loadSlewState { IPS_IDLE }; // Target Position Angle of solver Load&Slew image to be used for rotator if necessary double loadSlewTargetPA { std::numeric_limits::quiet_NaN() }; double currentRotatorPA { -1 }; /// Solver iterations count uint8_t solverIterations { 0 }; // FOV double ccd_hor_pixel { -1 }; double ccd_ver_pixel { -1 }; double focal_length { -1 }; double aperture { -1 }; double fov_x { 0 }; double fov_y { 0 }; double fov_pixscale { 0 }; int ccd_width { 0 }; int ccd_height { 0 }; // Keep track of solver results double sOrientation { INVALID_VALUE }; double sRA { INVALID_VALUE }; double sDEC { INVALID_VALUE }; /// Solver alignment coordinates SkyPoint alignCoord; /// Target coordinates we need to slew to SkyPoint targetCoord; /// Actual current telescope coordinates SkyPoint telescopeCoord; /// Coord from Load & Slew SkyPoint loadSlewCoord; /// Difference between solution and target coordinate double targetDiff { 1e6 }; /// Progress icon if the solver is running std::unique_ptr pi; /// Keep track of how long the solver is running QTime solverTimer; // Polar Alignment AZStage azStage; ALTStage altStage; double azDeviation { 0 }; double altDeviation { 0 }; double decDeviation { 0 }; static const double RAMotion; static const double SIDRATE; /// Have we slewed? bool m_wasSlewStarted { false }; // Online and Offline parsers AstrometryParser* parser { nullptr }; std::unique_ptr onlineParser; std::unique_ptr offlineParser; std::unique_ptr remoteParser; ISD::GDInterface *remoteParserDevice { nullptr }; std::unique_ptr astapParser; // Pointers to our devices ISD::Telescope *currentTelescope { nullptr }; ISD::Dome *currentDome { nullptr }; ISD::CCD *currentCCD { nullptr }; ISD::GDInterface *currentRotator { nullptr }; QList CCDs; /// Optional device filter ISD::GDInterface *currentFilter { nullptr }; /// They're generic GDInterface because they could be either ISD::CCD or ISD::Filter QList Filters; int currentFilterPosition { -1 }; /// True if we need to change filter position and wait for result before continuing capture bool filterPositionPending { false }; /// Keep track of solver FOV to be plotted in the skymap after each successful solve operation std::unique_ptr solverFOV; std::unique_ptr sensorFOV; /// WCS bool m_wcsSynced { false }; /// Log QStringList m_LogText; /// Issue counters uint8_t m_CaptureTimeoutCounter { 0 }; uint8_t m_CaptureErrorCounter { 0 }; uint8_t m_SlewErrorCounter { 0 }; QTimer m_CaptureTimer; // State AlignState state { ALIGN_IDLE }; FocusState focusState { FOCUS_IDLE }; // Track which upload mode the CCD is set to. If set to UPLOAD_LOCAL, then we need to switch it to UPLOAD_CLIENT in order to do focusing, and then switch it back to UPLOAD_LOCAL ISD::CCD::UploadMode rememberUploadMode { ISD::CCD::UPLOAD_CLIENT }; GotoMode currentGotoMode; QString dirPath; // Timer QTimer m_AlignTimer; // BLOB Type ISD::CCD::BlobType blobType; QString blobFileName; // Align Frame AlignView *alignView { nullptr }; // FITS Viewer in case user want to display in it instead of internal view QPointer fv; // Polar Alignment Helper PAHStage pahStage { PAH_IDLE }; SkyPoint targetPAH; bool isPAHReady { false }; // keep track of autoWSC bool rememberAutoWCS { false }; bool rememberSolverWCS { false }; // Sky centers typedef struct { SkyPoint skyCenter; QPointF celestialPole; QPointF pixelCenter; double pixelScale { 0 }; double orientation { 0 }; } PAHImageInfo; QVector pahImageInfos; // User desired offset when selecting a bright star in the image QPointF celestialPolePoint, correctionOffset; // Correction vector line between mount RA Axis and celestial pole QLineF correctionVector; // CCDs using Guide Scope for parameters //QStringList guideScopeCCDs; // Which hemisphere are we located on? HemisphereType hemisphere; // Differential Slewing bool differentialSlewingActivated { false }; // Astrometry Options OpsAstrometry *opsAstrometry { nullptr }; OpsAlign *opsAlign { nullptr }; OpsAstrometryCfg *opsAstrometryCfg { nullptr }; OpsAstrometryIndexFiles *opsAstrometryIndexFiles { nullptr }; OpsASTAP *opsASTAP { nullptr }; QCPCurve *centralTarget { nullptr }; QCPCurve *yellowTarget { nullptr }; QCPCurve *redTarget { nullptr }; QCPCurve *concentricRings { nullptr }; QDialog mountModelDialog; Ui_mountModel mountModel; int currentAlignmentPoint { 0 }; bool mountModelRunning { false }; bool mountModelReset { false }; bool targetAccuracyNotMet { false }; bool previewShowing { false }; QUrl alignURL; QUrl alignURLPath; QVector alignStars; ISD::CCD::TelescopeType rememberTelescopeType = { ISD::CCD::TELESCOPE_UNKNOWN }; double primaryFL = -1, primaryAperture = -1, guideFL = -1, guideAperture = -1; bool m_isRateSynced = false; bool domeReady = true; // CCD Exposure Looping bool rememberCCDExposureLooping = { false }; // Filter Manager QSharedPointer filterManager; // Active Profile ProfileInfo *m_ActiveProfile { nullptr }; // PAH Stage Map static const QMap PAHStages; // Threshold to notify settle time is 3 seconds static constexpr uint16_t DELAY_THRESHOLD_NOTIFY { 3000 }; // Threshold to stop PAH rotation in degrees static constexpr uint8_t PAH_ROTATION_THRESHOLD { 5 }; }; } diff --git a/kstars/ekos/auxiliary/weather.cpp b/kstars/ekos/auxiliary/weather.cpp index 9a45e8152..71d4e7d6e 100644 --- a/kstars/ekos/auxiliary/weather.cpp +++ b/kstars/ekos/auxiliary/weather.cpp @@ -1,67 +1,74 @@ /* Ekos Weather Interface Copyright (C) 2015 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "weather.h" #include "ekos/manager.h" #include "kstars.h" #include "weatheradaptor.h" #include namespace Ekos { Weather::Weather() { new WeatherAdaptor(this); QDBusConnection::sessionBus().registerObject("/KStars/Ekos/Weather", this); qRegisterMetaType("ISD::Weather::Status"); qDBusRegisterMetaType(); } void Weather::setWeather(ISD::GDInterface *newWeather) { if (newWeather == currentWeather) return; currentWeather = static_cast(newWeather); currentWeather->disconnect(this); connect(currentWeather, &ISD::Weather::newStatus, this, &Weather::newStatus); connect(currentWeather, &ISD::Weather::newWeatherData, this, &Weather::newWeatherData); connect(currentWeather, &ISD::Weather::ready, this, &Weather::ready); connect(currentWeather, &ISD::Weather::Connected, this, &Weather::ready); connect(currentWeather, &ISD::Weather::Disconnected, this, &Weather::disconnected); } void Weather::removeDevice(ISD::GDInterface *device) { device->disconnect(this); if (currentWeather && !strcmp(currentWeather->getDeviceName(), device->getDeviceName())) { currentWeather = nullptr; } } ISD::Weather::Status Weather::status() { if (currentWeather == nullptr) return ISD::Weather::WEATHER_IDLE; return currentWeather->getWeatherStatus(); } quint16 Weather::getUpdatePeriod() { if (currentWeather == nullptr) return 0; return currentWeather->getUpdatePeriod(); } + +bool Weather::refresh() +{ + return currentWeather->refresh(); + +} + } diff --git a/kstars/ekos/auxiliary/weather.h b/kstars/ekos/auxiliary/weather.h index c49dc5605..1fb2b58bb 100644 --- a/kstars/ekos/auxiliary/weather.h +++ b/kstars/ekos/auxiliary/weather.h @@ -1,83 +1,89 @@ /* Ekos Weather interface Copyright (C) 2015 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include "indi/indistd.h" #include "indi/indiweather.h" #include namespace Ekos { /** * @class Weather * @short Supports basic weather station functions * * @author Jasem Mutlaq * @version 1.0 */ class Weather : public QObject { Q_OBJECT Q_CLASSINFO("D-Bus Interface", "org.kde.kstars.Ekos.Weather") Q_PROPERTY(ISD::Weather::Status status READ status NOTIFY newStatus) Q_PROPERTY(quint16 updatePeriod READ getUpdatePeriod) public: Weather(); virtual ~Weather() override = default; /** * @defgroup WeatherDBusInterface Ekos DBus Interface - Weather Interface * Ekos::Weather interface provides basic weather operations. */ /*@{*/ /** * DBUS interface function. * Get Weather status. * @return Either IPS_OK for OK acceptable weather, IPS_BUSY for weather in warning zone, and IPS_ALERT for weather in danger zone. The zones ranges are defined by the INDI weather driver. */ Q_SCRIPTABLE ISD::Weather::Status status(); /** * DBUS interface function. * Get Weather Update Period * @return Return weather update period in minute. The weather is updated every X minutes from the weather source. */ Q_SCRIPTABLE quint16 getUpdatePeriod(); + /** + * DBUS interface function. + * @brief Refresh the weather status + */ + Q_SCRIPTABLE bool refresh(); + /** @}*/ /** * @brief setWeather set the Weather device * @param newWeather pointer to Weather device. */ void setWeather(ISD::GDInterface *newWeather); void removeDevice(ISD::GDInterface *device); signals: /** * @brief newStatus Weather Status * @param status IPS_OK --> Good, IPS_BUSY --> Warning, IPS_ALERT --> Alert */ void newStatus(ISD::Weather::Status status); void newWeatherData(std::vector); void ready(); // Signal when the underlying ISD::Weather signals a Disconnected() void disconnected(); private: // Devices needed for Weather operation ISD::Weather *currentWeather { nullptr }; }; } diff --git a/kstars/ekos/focus/focus.cpp b/kstars/ekos/focus/focus.cpp index 2ce16f87a..f6b048d50 100644 --- a/kstars/ekos/focus/focus.cpp +++ b/kstars/ekos/focus/focus.cpp @@ -1,3397 +1,3424 @@ /* Ekos Copyright (C) 2012 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "focus.h" #include "focusadaptor.h" #include "kstars.h" #include "kstarsdata.h" #include "Options.h" #include "auxiliary/kspaths.h" #include "auxiliary/ksmessagebox.h" #include "ekos/manager.h" #include "ekos/auxiliary/darklibrary.h" #include "fitsviewer/fitsdata.h" #include "fitsviewer/fitstab.h" #include "fitsviewer/fitsview.h" #include "indi/indifilter.h" #include "ksnotification.h" #include #include #include #include #include #define FOCUS_TIMEOUT_THRESHOLD 120000 #define MAXIMUM_ABS_ITERATIONS 30 #define MAXIMUM_RESET_ITERATIONS 2 #define AUTO_STAR_TIMEOUT 45000 #define MINIMUM_PULSE_TIMER 32 #define MAX_RECAPTURE_RETRIES 3 #define MINIMUM_POLY_SOLUTIONS 2 namespace Ekos { Focus::Focus() { // #1 Set the UI setupUi(this); // #2 Register DBus qRegisterMetaType("Ekos::FocusState"); qDBusRegisterMetaType(); new FocusAdaptor(this); QDBusConnection::sessionBus().registerObject("/KStars/Ekos/Focus", this); // #3 Init connections initConnections(); // #4 Init Plots initPlots(); // #5 Init View initView(); // #6 Reset all buttons to default states resetButtons(); // #7 Image Effects for (auto &filter : FITSViewer::filterTypes) filterCombo->addItem(filter); filterCombo->setCurrentIndex(Options::focusEffect()); defaultScale = static_cast(Options::focusEffect()); connect(filterCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::filterChangeWarning); // #8 Load All settings loadSettings(); // #9 Init Setting Connection now initSettingsConnections(); //Note: This is to prevent a button from being called the default button //and then executing when the user hits the enter key such as when on a Text Box QList qButtons = findChildren(); for (auto &button : qButtons) button->setAutoDefault(false); appendLogText(i18n("Idle.")); } Focus::~Focus() { if (focusingWidget->parent() == nullptr) toggleFocusingWidgetFullScreen(); } void Focus::resetFrame() { if (currentCCD) { ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip) { //fx=fy=fw=fh=0; targetChip->resetFrame(); int x, y, w, h; targetChip->getFrame(&x, &y, &w, &h); qCDebug(KSTARS_EKOS_FOCUS) << "Frame is reset. X:" << x << "Y:" << y << "W:" << w << "H:" << h << "binX:" << 1 << "binY:" << 1; QVariantMap settings; settings["x"] = x; settings["y"] = y; settings["w"] = w; settings["h"] = h; settings["binx"] = 1; settings["biny"] = 1; frameSettings[targetChip] = settings; starSelected = false; starCenter = QVector3D(); subFramed = false; focusView->setTrackingBox(QRect()); } } } bool Focus::setCamera(const QString &device) { for (int i = 0; i < CCDCaptureCombo->count(); i++) if (device == CCDCaptureCombo->itemText(i)) { CCDCaptureCombo->setCurrentIndex(i); checkCCD(i); return true; } return false; } QString Focus::camera() { if (currentCCD) return currentCCD->getDeviceName(); return QString(); } void Focus::checkCCD(int ccdNum) { if (ccdNum == -1) { ccdNum = CCDCaptureCombo->currentIndex(); if (ccdNum == -1) return; } if (ccdNum >= 0 && ccdNum <= CCDs.count()) { currentCCD = CCDs.at(ccdNum); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip && targetChip->isCapturing()) return; for (ISD::CCD *oneCCD : CCDs) { if (oneCCD == currentCCD) continue; if (captureInProgress == false) oneCCD->disconnect(this); } if (targetChip) { targetChip->setImageView(focusView, FITS_FOCUS); binningCombo->setEnabled(targetChip->canBin()); useSubFrame->setEnabled(targetChip->canSubframe()); if (targetChip->canBin()) { int subBinX = 1, subBinY = 1; binningCombo->clear(); targetChip->getMaxBin(&subBinX, &subBinY); for (int i = 1; i <= subBinX; i++) binningCombo->addItem(QString("%1x%2").arg(i).arg(i)); activeBin = Options::focusXBin(); binningCombo->setCurrentIndex(activeBin - 1); } else activeBin = 1; QStringList isoList = targetChip->getISOList(); ISOCombo->clear(); if (isoList.isEmpty()) { ISOCombo->setEnabled(false); ISOLabel->setEnabled(false); } else { ISOCombo->setEnabled(true); ISOLabel->setEnabled(true); ISOCombo->addItems(isoList); ISOCombo->setCurrentIndex(targetChip->getISOIndex()); } connect(currentCCD, &ISD::CCD::videoStreamToggled, this, &Ekos::Focus::setVideoStreamEnabled, Qt::UniqueConnection); liveVideoB->setEnabled(currentCCD->hasVideoStream()); if (currentCCD->hasVideoStream()) setVideoStreamEnabled(currentCCD->isStreamingEnabled()); else liveVideoB->setIcon(QIcon::fromTheme("camera-off")); bool hasGain = currentCCD->hasGain(); gainLabel->setEnabled(hasGain); gainIN->setEnabled(hasGain && currentCCD->getGainPermission() != IP_RO); if (hasGain) { double gain = 0, min = 0, max = 0, step = 1; currentCCD->getGainMinMaxStep(&min, &max, &step); if (currentCCD->getGain(&gain)) { gainIN->setMinimum(min); gainIN->setMaximum(max); if (step > 0) gainIN->setSingleStep(step); double defaultGain = Options::focusGain(); if (defaultGain > 0) gainIN->setValue(defaultGain); else gainIN->setValue(gain); } } else gainIN->clear(); } } syncCCDInfo(); } void Focus::syncCCDInfo() { if (currentCCD == nullptr) return; ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); useSubFrame->setEnabled(targetChip->canSubframe()); if (frameSettings.contains(targetChip) == false) { int x, y, w, h; if (targetChip->getFrame(&x, &y, &w, &h)) { int binx = 1, biny = 1; targetChip->getBinning(&binx, &biny); if (w > 0 && h > 0) { int minX, maxX, minY, maxY, minW, maxW, minH, maxH; targetChip->getFrameMinMax(&minX, &maxX, &minY, &maxY, &minW, &maxW, &minH, &maxH); QVariantMap settings; settings["x"] = useSubFrame->isChecked() ? x : minX; settings["y"] = useSubFrame->isChecked() ? y : minY; settings["w"] = useSubFrame->isChecked() ? w : maxW; settings["h"] = useSubFrame->isChecked() ? h : maxH; settings["binx"] = binx; settings["biny"] = biny; frameSettings[targetChip] = settings; } } } } void Focus::addFilter(ISD::GDInterface *newFilter) { foreach (ISD::GDInterface *filter, Filters) { if (!strcmp(filter->getDeviceName(), newFilter->getDeviceName())) return; } FilterCaptureLabel->setEnabled(true); FilterDevicesCombo->setEnabled(true); FilterPosLabel->setEnabled(true); FilterPosCombo->setEnabled(true); filterManagerB->setEnabled(true); FilterDevicesCombo->addItem(newFilter->getDeviceName()); Filters.append(static_cast(newFilter)); checkFilter(1); FilterDevicesCombo->setCurrentIndex(1); if (Options::defaultFocusFilterWheel().isEmpty() == false) FilterDevicesCombo->setCurrentText(Options::defaultFocusFilterWheel()); } bool Focus::setFilterWheel(const QString &device) { bool deviceFound = false; for (int i = 1; i < FilterDevicesCombo->count(); i++) if (device == FilterDevicesCombo->itemText(i)) { checkFilter(i); deviceFound = true; break; } if (deviceFound == false) return false; return true; } QString Focus::filterWheel() { if (FilterDevicesCombo->currentIndex() >= 1) return FilterDevicesCombo->currentText(); return QString(); } bool Focus::setFilter(const QString &filter) { if (FilterDevicesCombo->currentIndex() >= 1) { FilterPosCombo->setCurrentText(filter); return true; } return false; } QString Focus::filter() { return FilterPosCombo->currentText(); } void Focus::checkFilter(int filterNum) { if (filterNum == -1) { filterNum = FilterDevicesCombo->currentIndex(); if (filterNum == -1) return; } // "--" is no filter if (filterNum == 0) { currentFilter = nullptr; currentFilterPosition = -1; FilterPosCombo->clear(); return; } if (filterNum <= Filters.count()) currentFilter = Filters.at(filterNum - 1); //Options::setDefaultFocusFilterWheel(currentFilter->getDeviceName()); filterManager->setCurrentFilterWheel(currentFilter); FilterPosCombo->clear(); FilterPosCombo->addItems(filterManager->getFilterLabels()); currentFilterPosition = filterManager->getFilterPosition(); FilterPosCombo->setCurrentIndex(currentFilterPosition - 1); //Options::setDefaultFocusFilterWheelFilter(FilterPosCombo->currentText()); exposureIN->setValue(filterManager->getFilterExposure()); } void Focus::addFocuser(ISD::GDInterface *newFocuser) { ISD::Focuser *oneFocuser = static_cast(newFocuser); if (Focusers.contains(oneFocuser)) return; focuserCombo->addItem(oneFocuser->getDeviceName()); Focusers.append(oneFocuser); currentFocuser = oneFocuser; checkFocuser(); } bool Focus::setFocuser(const QString &device) { for (int i = 0; i < focuserCombo->count(); i++) if (device == focuserCombo->itemText(i)) { focuserCombo->setCurrentIndex(i); checkFocuser(i); return true; } return false; } QString Focus::focuser() { if (currentFocuser) return currentFocuser->getDeviceName(); return QString(); } void Focus::checkFocuser(int FocuserNum) { if (FocuserNum == -1) FocuserNum = focuserCombo->currentIndex(); if (FocuserNum == -1) { currentFocuser = nullptr; return; } if (FocuserNum < Focusers.count()) currentFocuser = Focusers.at(FocuserNum); filterManager->setFocusReady(currentFocuser->isConnected()); // Disconnect all focusers for (auto &oneFocuser : Focusers) { disconnect(oneFocuser, &ISD::GDInterface::numberUpdated, this, &Ekos::Focus::processFocusNumber); } canAbsMove = currentFocuser->canAbsMove(); if (canAbsMove) { getAbsFocusPosition(); absTicksSpin->setEnabled(true); absTicksLabel->setEnabled(true); startGotoB->setEnabled(true); absTicksSpin->setValue(currentPosition); } else { absTicksSpin->setEnabled(false); absTicksLabel->setEnabled(false); startGotoB->setEnabled(false); } canRelMove = currentFocuser->canRelMove(); // In case we have a purely relative focuser, we pretend // it is an absolute focuser with initial point set at 50,000 // This is done we can use the same algorithm used for absolute focuser if (canAbsMove == false && canRelMove == true) { currentPosition = 50000; absMotionMax = 100000; absMotionMin = 0; } canTimerMove = currentFocuser->canTimerMove(); focusType = (canRelMove || canAbsMove || canTimerMove) ? FOCUS_AUTO : FOCUS_MANUAL; bool hasBacklash = currentFocuser->hasBacklash(); focusBacklashSpin->setEnabled(hasBacklash); focusBacklashSpin->disconnect(this); if (hasBacklash) { double min = 0, max = 0, step = 0; currentFocuser->getMinMaxStep("FOCUS_BACKLASH_STEPS", "FOCUS_BACKLASH_VALUE", &min, &max, &step); focusBacklashSpin->setMinimum(min); focusBacklashSpin->setMaximum(max); focusBacklashSpin->setSingleStep(step); focusBacklashSpin->setValue(currentFocuser->getBacklash()); connect(focusBacklashSpin, static_cast(&QSpinBox::valueChanged), this, [this](int value) { if (currentFocuser) currentFocuser->setBacklash(value); }); } else { focusBacklashSpin->setValue(0); } connect(currentFocuser, &ISD::GDInterface::numberUpdated, this, &Ekos::Focus::processFocusNumber, Qt::UniqueConnection); //connect(currentFocuser, SIGNAL(propertyDefined(INDI::Property*)), this, &Ekos::Focus::(registerFocusProperty(INDI::Property*)), Qt::UniqueConnection); resetButtons(); //if (!inAutoFocus && !inFocusLoop && !captureInProgress && !inSequenceFocus) // emit autoFocusFinished(true, -1); } void Focus::addCCD(ISD::GDInterface *newCCD) { if (CCDs.contains(static_cast(newCCD))) return; CCDs.append(static_cast(newCCD)); CCDCaptureCombo->addItem(newCCD->getDeviceName()); checkCCD(); } void Focus::getAbsFocusPosition() { if (!canAbsMove) return; INumberVectorProperty *absMove = currentFocuser->getBaseDevice()->getNumber("ABS_FOCUS_POSITION"); if (absMove) { currentPosition = absMove->np[0].value; absMotionMax = absMove->np[0].max; absMotionMin = absMove->np[0].min; absTicksSpin->setMinimum(absMove->np[0].min); absTicksSpin->setMaximum(absMove->np[0].max); absTicksSpin->setSingleStep(absMove->np[0].step); maxTravelIN->setMinimum(absMove->np[0].min); maxTravelIN->setMaximum(absMove->np[0].max); absTicksLabel->setText(QString::number(static_cast(currentPosition))); stepIN->setMaximum(absMove->np[0].max / 2); //absTicksSpin->setValue(currentPosition); } } void Focus::start() { if (currentCCD == nullptr) { appendLogText(i18n("No CCD connected.")); return; } lastFocusDirection = FOCUS_NONE; polySolutionFound = 0; waitStarSelectTimer.stop(); starsHFR.clear(); lastHFR = 0; if (canAbsMove) { absIterations = 0; getAbsFocusPosition(); pulseDuration = stepIN->value(); } else if (canRelMove) { //appendLogText(i18n("Setting dummy central position to 50000")); absIterations = 0; pulseDuration = stepIN->value(); //currentPosition = 50000; absMotionMax = 100000; absMotionMin = 0; } else { pulseDuration = stepIN->value(); if (pulseDuration <= MINIMUM_PULSE_TIMER) { appendLogText(i18n("Starting pulse step is too low. Increase the step size to %1 or higher...", MINIMUM_PULSE_TIMER * 5)); return; } } inAutoFocus = true; HFRFrames.clear(); resetButtons(); reverseDir = false; /*if (fw > 0 && fh > 0) starSelected= true; else starSelected= false;*/ clearDataPoints(); if (firstGaus) { profilePlot->removeGraph(firstGaus); firstGaus = nullptr; } // Options::setFocusTicks(stepIN->value()); // Options::setFocusTolerance(toleranceIN->value()); // //Options::setFocusExposure(exposureIN->value()); // Options::setFocusMaxTravel(maxTravelIN->value()); // Options::setFocusBoxSize(focusBoxSize->value()); // Options::setFocusSubFrame(useSubFrame->isChecked()); // Options::setFocusAutoStarEnabled(useAutoStar->isChecked()); // Options::setSuspendGuiding(suspendGuideCheck->isChecked()); // Options::setUseFocusDarkFrame(darkFrameCheck->isChecked()); // Options::setFocusFramesCount(focusFramesSpin->value()); // Options::setFocusUseFullField(useFullField->isChecked()); qCDebug(KSTARS_EKOS_FOCUS) << "Starting focus with box size: " << focusBoxSize->value() << " Subframe: " << ( useSubFrame->isChecked() ? "yes" : "no" ) << " Autostar: " << ( useAutoStar->isChecked() ? "yes" : "no" ) << " Full frame: " << ( useFullField->isChecked() ? "yes" : "no " ) << " [" << fullFieldInnerRing->value() << "%," << fullFieldOuterRing->value() << "%]" << " Step Size: " << stepIN->value() << " Threshold: " << thresholdSpin->value() << " Tolerance: " << toleranceIN->value() << " Frames: " << 1 /*focusFramesSpin->value()*/ << " Maximum Travel: " << maxTravelIN->value(); if (useAutoStar->isChecked()) appendLogText(i18n("Autofocus in progress...")); else appendLogText(i18n("Please wait until image capture is complete...")); if (suspendGuideCheck->isChecked()) { m_GuidingSuspended = true; emit suspendGuiding(); } //emit statusUpdated(true); state = Ekos::FOCUS_PROGRESS; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); // Denoise with median filter //defaultScale = FITS_MEDIAN; KSNotification::event(QLatin1String("FocusStarted"), i18n("Autofocus operation started")); capture(); } void Focus::checkStopFocus() { if (inSequenceFocus == true) { inSequenceFocus = false; setAutoFocusResult(false); } if (captureInProgress && inAutoFocus == false && inFocusLoop == false) { captureB->setEnabled(true); stopFocusB->setEnabled(false); appendLogText(i18n("Capture aborted.")); } abort(); } void Focus::abort() { stop(true); } void Focus::stop(bool aborted) { qCDebug(KSTARS_EKOS_FOCUS) << "Stopppig Focus"; captureTimeout.stop(); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); inAutoFocus = false; inFocusLoop = false; // Why starSelected is set to false below? We should retain star selection status under: // 1. Autostar is off, or // 2. Toggle subframe, or // 3. Reset frame // 4. Manual motion? //starSelected = false; polySolutionFound = 0; captureInProgress = false; + captureFailureCounter = 0; minimumRequiredHFR = -1; noStarCount = 0; HFRFrames.clear(); //maxHFR=1; disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Focus::newFITS); + disconnect(currentCCD, &ISD::CCD::captureFailed, this, &Ekos::Focus::processCaptureFailure); if (rememberUploadMode != currentCCD->getUploadMode()) currentCCD->setUploadMode(rememberUploadMode); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); targetChip->abortExposure(); resetButtons(); absIterations = 0; HFRInc = 0; reverseDir = false; //emit statusUpdated(false); if (aborted) { state = Ekos::FOCUS_ABORTED; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } } void Focus::capture() { captureTimeout.stop(); if (captureInProgress) { qCWarning(KSTARS_EKOS_FOCUS) << "Capture called while already in progress. Capture is ignored."; return; } if (currentCCD == nullptr) { appendLogText(i18n("No CCD connected.")); return; } waitStarSelectTimer.stop(); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); double seqExpose = exposureIN->value(); if (currentCCD->isConnected() == false) { appendLogText(i18n("Error: Lost connection to CCD.")); return; } if (currentCCD->isBLOBEnabled() == false) { currentCCD->setBLOBEnabled(true); } if (currentFilter != nullptr && FilterPosCombo->currentIndex() != -1) { if (currentFilter->isConnected() == false) { appendLogText(i18n("Error: Lost connection to filter wheel.")); return; } int targetPosition = FilterPosCombo->currentIndex() + 1; QString lockedFilter = filterManager->getFilterLock(FilterPosCombo->currentText()); // We change filter if: // 1. Target position is not equal to current position. // 2. Locked filter of CURRENT filter is a different filter. if (lockedFilter != "--" && lockedFilter != FilterPosCombo->currentText()) { int lockedFilterIndex = FilterPosCombo->findText(lockedFilter); if (lockedFilterIndex >= 0) { // Go back to this filter one we are done fallbackFilterPending = true; fallbackFilterPosition = targetPosition; targetPosition = lockedFilterIndex + 1; } } filterPositionPending = (targetPosition != currentFilterPosition); // If either the target position is not equal to the current position, OR if (filterPositionPending) { // Apply all policies except autofocus since we are already in autofocus module doh. filterManager->setFilterPosition(targetPosition, static_cast(FilterManager::CHANGE_POLICY | FilterManager::OFFSET_POLICY)); return; } } if (currentCCD->getUploadMode() == ISD::CCD::UPLOAD_LOCAL) { rememberUploadMode = ISD::CCD::UPLOAD_LOCAL; currentCCD->setUploadMode(ISD::CCD::UPLOAD_CLIENT); } rememberCCDExposureLooping = currentCCD->isLooping(); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(false); currentCCD->setTransformFormat(ISD::CCD::FORMAT_FITS); targetChip->setBinning(activeBin, activeBin); targetChip->setCaptureMode(FITS_FOCUS); // Always disable filtering if using a dark frame and then re-apply after subtraction. TODO: Implement this in capture and guide and align if (darkFrameCheck->isChecked()) targetChip->setCaptureFilter(FITS_NONE); else targetChip->setCaptureFilter(defaultScale); if (ISOCombo->isEnabled() && ISOCombo->currentIndex() != -1 && targetChip->getISOIndex() != ISOCombo->currentIndex()) targetChip->setISOIndex(ISOCombo->currentIndex()); if (gainIN->isEnabled()) currentCCD->setGain(gainIN->value()); connect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Focus::newFITS); + connect(currentCCD, &ISD::CCD::captureFailed, this, &Ekos::Focus::processCaptureFailure); targetChip->setFrameType(FRAME_LIGHT); if (frameSettings.contains(targetChip)) { QVariantMap settings = frameSettings[targetChip]; targetChip->setFrame(settings["x"].toInt(), settings["y"].toInt(), settings["w"].toInt(), settings["h"].toInt()); settings["binx"] = activeBin; settings["biny"] = activeBin; frameSettings[targetChip] = settings; } captureInProgress = true; focusView->setBaseSize(focusingWidget->size()); // Timeout is exposure duration + timeout threshold in seconds captureTimeout.start(seqExpose * 1000 + FOCUS_TIMEOUT_THRESHOLD); targetChip->capture(seqExpose); if (inFocusLoop == false) { appendLogText(i18n("Capturing image...")); if (inAutoFocus == false) { captureB->setEnabled(false); stopFocusB->setEnabled(true); } } } bool Focus::focusIn(int ms) { if (currentFocuser == nullptr) return false; if (currentFocuser->isConnected() == false) { appendLogText(i18n("Error: Lost connection to Focuser.")); return false; } if (ms == -1) ms = stepIN->value(); qCDebug(KSTARS_EKOS_FOCUS) << "Focus in (" << ms << ")"; lastFocusDirection = FOCUS_IN; currentFocuser->focusIn(); if (canAbsMove) { currentFocuser->moveAbs(currentPosition - ms); appendLogText(i18n("Focusing inward by %1 steps...", ms)); } else if (canRelMove) { currentFocuser->moveRel(ms); appendLogText(i18n("Focusing inward by %1 steps...", ms)); } else { currentFocuser->moveByTimer(ms); appendLogText(i18n("Focusing inward by %1 ms...", ms)); } return true; } bool Focus::focusOut(int ms) { if (currentFocuser == nullptr) return false; if (currentFocuser->isConnected() == false) { appendLogText(i18n("Error: Lost connection to Focuser.")); return false; } lastFocusDirection = FOCUS_OUT; if (ms == -1) ms = stepIN->value(); qCDebug(KSTARS_EKOS_FOCUS) << "Focus out (" << ms << ")"; currentFocuser->focusOut(); if (canAbsMove) { currentFocuser->moveAbs(currentPosition + ms); appendLogText(i18n("Focusing outward by %1 steps...", ms)); } else if (canRelMove) { currentFocuser->moveRel(ms); appendLogText(i18n("Focusing outward by %1 steps...", ms)); } else { currentFocuser->moveByTimer(ms); appendLogText(i18n("Focusing outward by %1 ms...", ms)); } return true; } void Focus::newFITS(IBLOB *bp) { if (bp == nullptr) { capture(); return; } // Ignore guide head if there is any. if (!strcmp(bp->name, "CCD2")) return; captureTimeout.stop(); captureTimeoutCounter = 0; ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Focus::newFITS); + disconnect(currentCCD, &ISD::CCD::captureFailed, this, &Ekos::Focus::processCaptureFailure); if (darkFrameCheck->isChecked()) { FITSData *darkData = DarkLibrary::Instance()->getDarkFrame(targetChip, exposureIN->value()); QVariantMap settings = frameSettings[targetChip]; uint16_t offsetX = settings["x"].toInt() / settings["binx"].toInt(); uint16_t offsetY = settings["y"].toInt() / settings["biny"].toInt(); connect(DarkLibrary::Instance(), &DarkLibrary::darkFrameCompleted, this, [&](bool completed) { DarkLibrary::Instance()->disconnect(this); darkFrameCheck->setChecked(completed); if (completed) setCaptureComplete(); else abort(); }); connect(DarkLibrary::Instance(), &DarkLibrary::newLog, this, &Ekos::Focus::appendLogText); targetChip->setCaptureFilter(defaultScale); if (darkData) DarkLibrary::Instance()->subtract(darkData, focusView, defaultScale, offsetX, offsetY); else { DarkLibrary::Instance()->captureAndSubtract(targetChip, focusView, exposureIN->value(), offsetX, offsetY); } return; } setCaptureComplete(); } void Focus::setCaptureComplete() { DarkLibrary::Instance()->disconnect(this); // Get Binning ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); int subBinX = 1, subBinY = 1; targetChip->getBinning(&subBinX, &subBinY); // If we have a box, sync the bounding box to its position. syncTrackingBoxPosition(); // Notify user if we're not looping if (inFocusLoop == false) appendLogText(i18n("Image received.")); // If we're not looping and not in autofocus, enable user to capture again. if (captureInProgress && inFocusLoop == false && inAutoFocus == false) { captureB->setEnabled(true); stopFocusB->setEnabled(false); currentCCD->setUploadMode(rememberUploadMode); } if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); captureInProgress = false; // Get handle to the image data FITSData *image_data = focusView->getImageData(); // Emit the tracking (bounding) box view emit newStarPixmap(focusView->getTrackingBoxPixmap(10)); // If we are not looping; OR // If we are looping but we already have tracking box enabled; OR // If we are asked to analyze _all_ the stars within the field // THEN let's find stars in the image and get current HFR if (inFocusLoop == false || (inFocusLoop && (focusView->isTrackingBoxEnabled() || Options::focusUseFullField()))) { // First check that we haven't already search for stars // Since star-searching algorithm are time-consuming, we should only search when necessary if (image_data->areStarsSearched() == false) { // Reset current HFR currentHFR = -1; // When we're using FULL field view, we always use either CENTROID algorithm which is the default // standard algorithm in KStars, or SEP. The other algorithms are too inefficient to run on full frames and require // a bounding box for them to be effective in near real-time application. if (Options::focusUseFullField()) { if (focusDetection != ALGORITHM_CENTROID && focusDetection != ALGORITHM_SEP) focusView->findStars(ALGORITHM_CENTROID); else focusView->findStars(focusDetection); focusView->setStarFilterRange(static_cast (fullFieldInnerRing->value() / 100.0), static_cast (fullFieldOuterRing->value() / 100.0)); focusView->filterStars(); focusView->updateFrame(); // Get the average HFR of the whole frame currentHFR = image_data->getHFR(HFR_AVERAGE); } else { // If star is already selected then use whatever algorithm currently selected. if (starSelected) { focusView->findStars(focusDetection); focusView->updateFrame(); currentHFR = image_data->getHFR(HFR_MAX); } else { // Disable tracking box focusView->setTrackingBoxEnabled(false); // If algorithm is set something other than Centeroid or SEP, then force Centroid // Since it is the most reliable detector when nothing was selected before. if (focusDetection != ALGORITHM_CENTROID && focusDetection != ALGORITHM_SEP) focusView->findStars(ALGORITHM_CENTROID); else // Otherwise, continue to find use using the selected algorithm focusView->findStars(focusDetection); // Reenable tracking box focusView->setTrackingBoxEnabled(true); focusView->updateFrame(); // Get maximum HFR in the frame currentHFR = image_data->getHFR(HFR_MAX); } } } // Let's now report the current HFR qCDebug(KSTARS_EKOS_FOCUS) << "Focus newFITS #" << HFRFrames.count() + 1 << ": Current HFR " << currentHFR << " Num stars " << (starSelected ? 1 : image_data->getDetectedStars()); // Add it to existing frames in case we need to take an average HFRFrames.append(currentHFR); // Check if we need to average more than a single frame if (HFRFrames.count() >= focusFramesSpin->value()) { currentHFR = 0; // Remove all -1 QMutableVectorIterator i(HFRFrames); while (i.hasNext()) { if (i.next() == -1) i.remove(); } if (HFRFrames.isEmpty()) currentHFR = -1; else { // Perform simple sigma clipping if frames count > 3 if (HFRFrames.count() > 3) { // Sort all HFRs std::sort(HFRFrames.begin(), HFRFrames.end()); const auto median = ((HFRFrames.size() % 2) ? HFRFrames[HFRFrames.size() / 2] : (static_cast(HFRFrames[HFRFrames.size() / 2 - 1]) + HFRFrames[HFRFrames.size() / 2]) * .5); const auto mean = std::accumulate(HFRFrames.begin(), HFRFrames.end(), .0) / HFRFrames.size(); double variance = 0; foreach (auto val, HFRFrames) variance += (val - mean) * (val - mean); const double stddev = sqrt(variance / HFRFrames.size()); // Reject those 2 sigma away from median const double sigmaHigh = median + stddev * 2; const double sigmaLow = median - stddev * 2; QMutableVectorIterator i(HFRFrames); while (i.hasNext()) { auto val = i.next(); if (val > sigmaHigh || val < sigmaLow) i.remove(); } } // Find average HFR currentHFR = std::accumulate(HFRFrames.begin(), HFRFrames.end(), .0) / HFRFrames.size(); HFRFrames.clear(); } } else { // If we need to capture more frames to average the HFR, let's do that now. capture(); return; } // Let signal the current HFR now depending on whether the focuser is absolute or relative if (canAbsMove) emit newHFR(currentHFR, static_cast(currentPosition)); else emit newHFR(currentHFR, -1); // Format the HFR value into a string QString HFRText = QString("%1").arg(currentHFR, 0, 'f', 2); HFROut->setText(HFRText); starsOut->setText(QString("%1").arg(image_data->getDetectedStars())); // Display message in case _last_ HFR was negative if (lastHFR == -1) appendLogText(i18n("FITS received. No stars detected.")); // If we have a valid HFR value if (currentHFR > 0) { // Check if we're done from polynomial fitting algorithm if (focusAlgorithm == FOCUS_POLYNOMIAL && polySolutionFound == MINIMUM_POLY_SOLUTIONS) { polySolutionFound = 0; appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); return; } Edge *maxStarHFR = nullptr; // Center tracking box around selected star (if it valid) either in: // 1. Autofocus // 2. CheckFocus (minimumHFRCheck) // The starCenter _must_ already be defined, otherwise, we proceed until // the latter half of the function searches for a star and define it. if (starCenter.isNull() == false && (inAutoFocus || minimumRequiredHFR >= 0) && (maxStarHFR = image_data->getMaxHFRStar()) != nullptr) { // Now we have star selected in the frame starSelected = true; starCenter.setX(qMax(0, static_cast(maxStarHFR->x))); starCenter.setY(qMax(0, static_cast(maxStarHFR->y))); syncTrackingBoxPosition(); // Record the star information (X, Y, currentHFR) QVector3D oneStar = starCenter; oneStar.setZ(currentHFR); starsHFR.append(oneStar); } else { // Record the star information (X, Y, currentHFR) QVector3D oneStar(starCenter.x(), starCenter.y(), currentHFR); starsHFR.append(oneStar); } if (currentHFR > maxHFR) maxHFR = currentHFR; // Append point to the #Iterations vs #HFR chart in case of looping or in case in autofocus with a focus // that does not support position feedback. if (inFocusLoop || (inAutoFocus && canAbsMove == false && canRelMove == false)) { if (hfr_position.empty()) hfr_position.append(1); else hfr_position.append(hfr_position.last() + 1); hfr_value.append(currentHFR); drawHFRPlot(); } } else { // Let's record an invalid star result QVector3D oneStar(starCenter.x(), starCenter.y(), -1); starsHFR.append(oneStar); } // Try to average values and find if we have bogus results if (inAutoFocus && starsHFR.count() > 3) { float mean = 0, sum = 0, stddev = 0, noHFR = 0; for (int i = 0; i < starsHFR.count(); i++) { sum += starsHFR[i].x(); if (starsHFR[i].z() == -1) noHFR++; } mean = sum / starsHFR.count(); // Calculate standard deviation for (int i = 0; i < starsHFR.count(); i++) stddev += pow(starsHFR[i].x() - mean, 2); stddev = sqrt(stddev / starsHFR.count()); if (currentHFR == -1 && (stddev > focusBoxSize->value() / 10.0 || noHFR / starsHFR.count() > 0.75)) { appendLogText(i18n("No reliable star is detected. Aborting...")); abort(); setAutoFocusResult(false); return; } } } // If we are just framing, let's capture again if (inFocusLoop) { capture(); return; } // If star is NOT yet selected in a non-full-frame situation // then let's now try to find the star. This step is skipped for full frames // since there isn't a single star to select as we are only interested in the overall average HFR. // We need to check if we can find the star right away, or if we need to _subframe_ around the // selected star. if (Options::focusUseFullField() == false && starCenter.isNull()) { int x = 0, y = 0, w = 0, h = 0; // Let's get the stored frame settings for this particular chip if (frameSettings.contains(targetChip)) { QVariantMap settings = frameSettings[targetChip]; x = settings["x"].toInt(); y = settings["y"].toInt(); w = settings["w"].toInt(); h = settings["h"].toInt(); } else // Otherwise let's get the target chip frame coordinates. targetChip->getFrame(&x, &y, &w, &h); // In case auto star is selected. if (useAutoStar->isChecked()) { // Do we have a valid star detected? Edge *maxStar = image_data->getMaxHFRStar(); if (maxStar == nullptr) { appendLogText(i18n("Failed to automatically select a star. Please select a star manually.")); // Center the tracking box in the frame and display it focusView->setTrackingBox(QRect(w - focusBoxSize->value() / (subBinX * 2), h - focusBoxSize->value() / (subBinY * 2), focusBoxSize->value() / subBinX, focusBoxSize->value() / subBinY)); focusView->setTrackingBoxEnabled(true); // Use can now move it to select the desired star state = Ekos::FOCUS_WAITING; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); // Start the wait timer so we abort after a timeout if the user does not make a choice waitStarSelectTimer.start(); return; } // set the tracking box on maxStar starCenter.setX(maxStar->x); starCenter.setY(maxStar->y); starCenter.setZ(subBinX); syncTrackingBoxPosition(); // Do we need to subframe? if (subFramed == false && useSubFrame->isEnabled() && useSubFrame->isChecked()) { int offset = (static_cast(focusBoxSize->value()) / subBinX) * 1.5; int subX = (maxStar->x - offset) * subBinX; int subY = (maxStar->y - offset) * subBinY; int subW = offset * 2 * subBinX; int subH = offset * 2 * subBinY; int minX, maxX, minY, maxY, minW, maxW, minH, maxH; targetChip->getFrameMinMax(&minX, &maxX, &minY, &maxY, &minW, &maxW, &minH, &maxH); // Try to limit the subframed selection if (subX < minX) subX = minX; if (subY < minY) subY = minY; if ((subW + subX) > maxW) subW = maxW - subX; if ((subH + subY) > maxH) subH = maxH - subY; // Now we store the subframe coordinates in the target chip frame settings so we // reuse it later when we capture again. QVariantMap settings = frameSettings[targetChip]; settings["x"] = subX; settings["y"] = subY; settings["w"] = subW; settings["h"] = subH; settings["binx"] = subBinX; settings["biny"] = subBinY; qCDebug(KSTARS_EKOS_FOCUS) << "Frame is subframed. X:" << subX << "Y:" << subY << "W:" << subW << "H:" << subH << "binX:" << subBinX << "binY:" << subBinY; starsHFR.clear(); frameSettings[targetChip] = settings; // Set the star center in the center of the subframed coordinates starCenter.setX(subW / (2 * subBinX)); starCenter.setY(subH / (2 * subBinY)); starCenter.setZ(subBinX); subFramed = true; focusView->setFirstLoad(true); // Now let's capture again for the actual requested subframed image. capture(); } // If we're subframed or don't need subframe, let's record the max star coordinates else { starCenter.setX(maxStar->x); starCenter.setY(maxStar->y); starCenter.setZ(subBinX); // Let's now capture again if we're autofocusing if (inAutoFocus) capture(); } defaultScale = static_cast(filterCombo->currentIndex()); return; } // If manual selection is enabled then let's ask the user to select the focus star else { appendLogText(i18n("Capture complete. Select a star to focus.")); starSelected = false; // Let's now display and set the tracking box in the center of the frame // so that the user moves it around to select the desired star. int subBinX = 1, subBinY = 1; targetChip->getBinning(&subBinX, &subBinY); focusView->setTrackingBox(QRect((w - focusBoxSize->value()) / (subBinX * 2), (h - focusBoxSize->value()) / (2 * subBinY), focusBoxSize->value() / subBinX, focusBoxSize->value() / subBinY)); focusView->setTrackingBoxEnabled(true); // Now we wait state = Ekos::FOCUS_WAITING; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); // If the user does not select for a timeout period, we abort. waitStarSelectTimer.start(); return; } } // Check if the focus module is requested to verify if the minimum HFR value is met. if (minimumRequiredHFR >= 0) { // In case we failed to detected, we capture again. if (currentHFR == -1) { if (noStarCount++ < MAX_RECAPTURE_RETRIES) { appendLogText(i18n("No stars detected, capturing again...")); // On Last Attempt reset focus frame to capture full frame and recapture star if possible if (noStarCount == MAX_RECAPTURE_RETRIES) resetFrame(); capture(); return; } // If we exceeded maximum tries we abort else { noStarCount = 0; setAutoFocusResult(false); } } // If the detect current HFR is more than the minimum required HFR // then we should start the autofocus process now to bring it down. else if (currentHFR > minimumRequiredHFR) { qCDebug(KSTARS_EKOS_FOCUS) << "Current HFR:" << currentHFR << "is above required minimum HFR:" << minimumRequiredHFR << ". Starting AutoFocus..."; inSequenceFocus = true; start(); } // Otherwise, the current HFR is fine and lower than the required minimum HFR so we announce success. else { qCDebug(KSTARS_EKOS_FOCUS) << "Current HFR:" << currentHFR << "is below required minimum HFR:" << minimumRequiredHFR << ". Autofocus successful."; setAutoFocusResult(true); drawProfilePlot(); } // We reset minimum required HFR and call it a day. minimumRequiredHFR = -1; return; } // Let's draw the HFR Plot drawProfilePlot(); // If focus logging is enabled, let's save the frame. if (Options::focusLogging() && Options::saveFocusImages()) { QDir dir; QDateTime now = KStarsData::Instance()->lt(); QString path = KSPaths::writableLocation(QStandardPaths::GenericDataLocation) + "autofocus/" + now.toString("yyyy-MM-dd"); dir.mkpath(path); // IS8601 contains colons but they are illegal under Windows OS, so replacing them with '-' // The timestamp is no longer ISO8601 but it should solve interoperality issues between different OS hosts QString name = "autofocus_frame_" + now.toString("HH-mm-ss") + ".fits"; QString filename = path + QStringLiteral("/") + name; focusView->getImageData()->saveFITS(filename); } // If we are not in autofocus process, we're done. if (inAutoFocus == false) return; // Set state to progress if (state != Ekos::FOCUS_PROGRESS) { state = Ekos::FOCUS_PROGRESS; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } // Now let's kick in the algorithms // Position-based algorithms if (canAbsMove || canRelMove) autoFocusAbs(); else // Time open-looped algorithms autoFocusRel(); } void Focus::clearDataPoints() { maxHFR = 1; hfr_position.clear(); hfr_value.clear(); drawHFRPlot(); } void Focus::drawHFRPlot() { v_graph->setData(hfr_position, hfr_value); if (inFocusLoop == false && (canAbsMove || canRelMove)) { //HFRPlot->xAxis->setLabel(i18n("Position")); HFRPlot->xAxis->setRange(minPos - pulseDuration, maxPos + pulseDuration); HFRPlot->yAxis->setRange(currentHFR / 1.5, maxHFR); } else { //HFRPlot->xAxis->setLabel(i18n("Iteration")); HFRPlot->xAxis->setRange(1, hfr_value.count() + 1); HFRPlot->yAxis->setRange(currentHFR / 1.5, maxHFR * 1.25); } HFRPlot->replot(); } void Focus::drawProfilePlot() { QVector currentIndexes; QVector currentFrequencies; // HFR = 50% * 1.36 = 68% aka one standard deviation double stdDev = currentHFR * 1.36; float start = -stdDev * 4; float end = stdDev * 4; float step = stdDev * 4 / 20.0; for (double x = start; x < end; x += step) { currentIndexes.append(x); currentFrequencies.append((1 / (stdDev * sqrt(2 * M_PI))) * exp(-1 * (x * x) / (2 * (stdDev * stdDev)))); } currentGaus->setData(currentIndexes, currentFrequencies); if (lastGausIndexes.count() > 0) lastGaus->setData(lastGausIndexes, lastGausFrequencies); if (focusType == FOCUS_AUTO && firstGaus == nullptr) { firstGaus = profilePlot->addGraph(); QPen pen; pen.setStyle(Qt::DashDotLine); pen.setWidth(2); pen.setColor(Qt::darkMagenta); firstGaus->setPen(pen); firstGaus->setData(currentIndexes, currentFrequencies); } else if (firstGaus) { profilePlot->removeGraph(firstGaus); firstGaus = nullptr; } profilePlot->rescaleAxes(); profilePlot->replot(); lastGausIndexes = currentIndexes; lastGausFrequencies = currentFrequencies; profilePixmap = profilePlot->grab(); //.scaled(200, 200, Qt::KeepAspectRatio, Qt::SmoothTransformation); emit newProfilePixmap(profilePixmap); } void Focus::autoFocusAbs() { static int minHFRPos = 0, focusOutLimit = 0, focusInLimit = 0; static double minHFR = 0; double targetPosition = 0, delta = 0; QString deltaTxt = QString("%1").arg(fabs(currentHFR - minHFR) * 100.0, 0, 'g', 3); QString HFRText = QString("%1").arg(currentHFR, 0, 'g', 3); qCDebug(KSTARS_EKOS_FOCUS) << "========================================"; qCDebug(KSTARS_EKOS_FOCUS) << "Current HFR: " << currentHFR << " Current Position: " << currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "Last minHFR: " << minHFR << " Last MinHFR Pos: " << minHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "Delta: " << deltaTxt << "%"; qCDebug(KSTARS_EKOS_FOCUS) << "========================================"; if (minHFR) appendLogText(i18n("FITS received. HFR %1 @ %2. Delta (%3%)", HFRText, currentPosition, deltaTxt)); else appendLogText(i18n("FITS received. HFR %1 @ %2.", HFRText, currentPosition)); if (++absIterations > MAXIMUM_ABS_ITERATIONS) { appendLogText(i18n("Autofocus failed to reach proper focus. Try increasing tolerance value.")); abort(); setAutoFocusResult(false); return; } // No stars detected, try to capture again if (currentHFR == -1) { if (noStarCount < MAX_RECAPTURE_RETRIES) { appendLogText(i18n("No stars detected, capturing again...")); capture(); noStarCount++; return; } else if (noStarCount == MAX_RECAPTURE_RETRIES) { currentHFR = 20; noStarCount++; } else { appendLogText(i18n("Failed to detect any stars. Reset frame and try again.")); abort(); setAutoFocusResult(false); return; } } else noStarCount = 0; if (hfr_position.empty()) { maxPos = 1; minPos = 1e6; } if (currentPosition > maxPos) maxPos = currentPosition; if (currentPosition < minPos) minPos = currentPosition; hfr_position.append(currentPosition); hfr_value.append(currentHFR); drawHFRPlot(); switch (lastFocusDirection) { case FOCUS_NONE: lastHFR = currentHFR; initialFocuserAbsPosition = currentPosition; minHFR = currentHFR; minHFRPos = currentPosition; HFRDec = 0; HFRInc = 0; focusOutLimit = 0; focusInLimit = 0; if (focusOut(pulseDuration) == false) { abort(); setAutoFocusResult(false); } break; case FOCUS_IN: case FOCUS_OUT: static int lastHFRPos = 0, initSlopePos = 0; static double initSlopeHFR = 0; if (reverseDir && focusInLimit && focusOutLimit && fabs(currentHFR - minHFR) < (toleranceIN->value() / 100.0) && HFRInc == 0) { if (absIterations <= 2) { appendLogText( i18n("Change in HFR is too small. Try increasing the step size or decreasing the tolerance.")); abort(); setAutoFocusResult(false); } else if (noStarCount > 0) { appendLogText(i18n("Failed to detect focus star in frame. Capture and select a focus star.")); abort(); setAutoFocusResult(false); } else { appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); } break; } else if (currentHFR < lastHFR) { double slope = 0; // Let's try to calculate slope of the V curve. if (initSlopeHFR == 0 && HFRInc == 0 && HFRDec >= 1) { initSlopeHFR = lastHFR; initSlopePos = lastHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "Setting initial slop to " << initSlopePos << " @ HFR " << initSlopeHFR; } // Let's now limit the travel distance of the focuser if (lastFocusDirection == FOCUS_OUT && lastHFRPos < focusInLimit && fabs(currentHFR - lastHFR) > 0.1) { focusInLimit = lastHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "New FocusInLimit " << focusInLimit; } else if (lastFocusDirection == FOCUS_IN && lastHFRPos > focusOutLimit && fabs(currentHFR - lastHFR) > 0.1) { focusOutLimit = lastHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "New FocusOutLimit " << focusOutLimit; } // If we have slope, get next target position if (initSlopeHFR && absMotionMax > 50) { double factor = 0.5; slope = (currentHFR - initSlopeHFR) / (currentPosition - initSlopePos); if (fabs(currentHFR - minHFR) * 100.0 < 0.5) factor = 1 - fabs(currentHFR - minHFR) * 10; targetPosition = currentPosition + (currentHFR * factor - currentHFR) / slope; if (targetPosition < 0) { factor = 1; while (targetPosition < 0 && factor > 0) { factor -= 0.005; targetPosition = currentPosition + (currentHFR * factor - currentHFR) / slope; } } qCDebug(KSTARS_EKOS_FOCUS) << "Using slope to calculate target pulse..."; } // Otherwise proceed iteratively else { if (lastFocusDirection == FOCUS_IN) targetPosition = currentPosition - pulseDuration; else targetPosition = currentPosition + pulseDuration; qCDebug(KSTARS_EKOS_FOCUS) << "Proceeding iteratively to next target pulse ..."; } qCDebug(KSTARS_EKOS_FOCUS) << "V-Curve Slope " << slope << " current Position " << currentPosition << " targetPosition " << targetPosition; lastHFR = currentHFR; // Let's keep track of the minimum HFR if (lastHFR < minHFR) { minHFR = lastHFR; minHFRPos = currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "new minHFR " << minHFR << " @ position " << minHFRPos; } lastHFRPos = currentPosition; // HFR is decreasing, we are on the right direction HFRDec++; HFRInc = 0; } else { // HFR increased, let's deal with it. HFRInc++; HFRDec = 0; // Reality Check: If it's first time, let's capture again and see if it changes. /*if (HFRInc <= 1 && reverseDir == false) { capture(); return; } // Looks like we're going away from optimal HFR else {*/ reverseDir = true; lastHFR = currentHFR; lastHFRPos = currentPosition; initSlopeHFR = 0; HFRInc = 0; qCDebug(KSTARS_EKOS_FOCUS) << "Focus is moving away from optimal HFR."; // Let's set new limits if (lastFocusDirection == FOCUS_IN) { focusInLimit = currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus IN limit to " << focusInLimit; if (hfr_position.count() > 3) { focusOutLimit = hfr_position[hfr_position.count() - 3]; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus OUT limit to " << focusOutLimit; } } else { focusOutLimit = currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus OUT limit to " << focusOutLimit; if (hfr_position.count() > 3) { focusInLimit = hfr_position[hfr_position.count() - 3]; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus IN limit to " << focusInLimit; } } bool polyMinimumFound = false; if (focusAlgorithm == FOCUS_POLYNOMIAL && hfr_position.count() > 5) { double chisq = 0, min_position = 0, min_hfr = 0; coeff = gsl_polynomial_fit(hfr_position.data(), hfr_value.data(), hfr_position.count(), 3, chisq); polyMinimumFound = findMinimum(minHFRPos, &min_position, &min_hfr); qCDebug(KSTARS_EKOS_FOCUS) << "Polynomial Coefficients c0:" << coeff[0] << "c1:" << coeff[1] << "c2:" << coeff[2] << "c3:" << coeff[3]; qCDebug(KSTARS_EKOS_FOCUS) << "Found Minimum?" << (polyMinimumFound ? "Yes" : "No"); if (polyMinimumFound) { qCDebug(KSTARS_EKOS_FOCUS) << "Minimum Solution:" << min_hfr << "@" << min_position; polySolutionFound++; targetPosition = floor(min_position); appendLogText(i18n("Found polynomial solution @ %1", QString::number(min_position, 'f', 0))); } } if (polyMinimumFound == false) { // Decrease pulse pulseDuration = pulseDuration * 0.75; // Let's get close to the minimum HFR position so far detected if (lastFocusDirection == FOCUS_OUT) targetPosition = minHFRPos - pulseDuration / 2; else targetPosition = minHFRPos + pulseDuration / 2; } qCDebug(KSTARS_EKOS_FOCUS) << "new targetPosition " << targetPosition; } // Limit target Pulse to algorithm limits if (focusInLimit != 0 && lastFocusDirection == FOCUS_IN && targetPosition < focusInLimit) { targetPosition = focusInLimit; qCDebug(KSTARS_EKOS_FOCUS) << "Limiting target pulse to focus in limit " << targetPosition; } else if (focusOutLimit != 0 && lastFocusDirection == FOCUS_OUT && targetPosition > focusOutLimit) { targetPosition = focusOutLimit; qCDebug(KSTARS_EKOS_FOCUS) << "Limiting target pulse to focus out limit " << targetPosition; } // Limit target pulse to focuser limits if (targetPosition < absMotionMin) targetPosition = absMotionMin; else if (targetPosition > absMotionMax) targetPosition = absMotionMax; // Ops, we can't go any further, we're done. if (targetPosition == currentPosition) { appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); return; } // Ops, deadlock if (focusOutLimit && focusOutLimit == focusInLimit) { appendLogText(i18n("Deadlock reached. Please try again with different settings.")); abort(); setAutoFocusResult(false); return; } if (fabs(targetPosition - initialFocuserAbsPosition) > maxTravelIN->value()) { int minTravelLimit = qMax(0.0, initialFocuserAbsPosition - maxTravelIN->value()); int maxTravelLimit = qMin(absMotionMax, initialFocuserAbsPosition + maxTravelIN->value()); // In case we are asked to go below travel limit, but we are not there yet // let us go there and see the result before aborting if (fabs(currentPosition - minTravelLimit) > 10 && targetPosition < minTravelLimit) { targetPosition = minTravelLimit; } // Same for max travel else if (fabs(currentPosition - maxTravelLimit) > 10 && targetPosition > maxTravelLimit) { targetPosition = maxTravelLimit; } else { qCDebug(KSTARS_EKOS_FOCUS) << "targetPosition (" << targetPosition << ") - initHFRAbsPos (" << initialFocuserAbsPosition << ") exceeds maxTravel distance of " << maxTravelIN->value(); appendLogText("Maximum travel limit reached. Autofocus aborted."); abort(); setAutoFocusResult(false); break; } } // Get delta for next move delta = (targetPosition - currentPosition); qCDebug(KSTARS_EKOS_FOCUS) << "delta (targetPosition - currentPosition) " << delta; qCDebug(KSTARS_EKOS_FOCUS) << "Focusing " << ((delta < 0) ? "IN" : "OUT"); // Now cross your fingers and wait bool rc = false; if (delta > 0) rc = focusOut(delta); else rc = focusIn(fabs(delta)); if (rc == false) { abort(); setAutoFocusResult(false); } break; } } void Focus::autoFocusRel() { static int noStarCount = 0; static double minHFR = 1e6; QString deltaTxt = QString("%1").arg(fabs(currentHFR - minHFR) * 100.0, 0, 'g', 2); QString minHFRText = QString("%1").arg(minHFR, 0, 'g', 3); QString HFRText = QString("%1").arg(currentHFR, 0, 'g', 3); appendLogText(i18n("FITS received. HFR %1. Delta (%2%) Min HFR (%3)", HFRText, deltaTxt, minHFRText)); if (pulseDuration <= MINIMUM_PULSE_TIMER) { appendLogText(i18n("Autofocus failed to reach proper focus. Try adjusting the tolerance value.")); abort(); setAutoFocusResult(false); return; } // No stars detected, try to capture again if (currentHFR == -1) { if (noStarCount++ < MAX_RECAPTURE_RETRIES) { appendLogText(i18n("No stars detected, capturing again...")); capture(); return; } else currentHFR = 20; } else noStarCount = 0; switch (lastFocusDirection) { case FOCUS_NONE: lastHFR = currentHFR; minHFR = 1e6; focusIn(pulseDuration); break; case FOCUS_IN: case FOCUS_OUT: if (fabs(currentHFR - minHFR) < (toleranceIN->value() / 100.0) && HFRInc == 0) { appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); break; } else if (currentHFR < lastHFR) { if (currentHFR < minHFR) minHFR = currentHFR; lastHFR = currentHFR; if (lastFocusDirection == FOCUS_IN) focusIn(pulseDuration); else focusOut(pulseDuration); HFRInc = 0; } else { HFRInc++; lastHFR = currentHFR; HFRInc = 0; pulseDuration *= 0.75; bool rc = false; if (lastFocusDirection == FOCUS_IN) rc = focusOut(pulseDuration); else rc = focusIn(pulseDuration); if (rc == false) { abort(); setAutoFocusResult(false); } } break; } } /*void Focus::registerFocusProperty(INDI::Property *prop) { // Return if it is not our current focuser if (strcmp(prop->getDeviceName(), currentFocuser->getDeviceName())) return; // Do not make unnecessary function call // Check if current focuser supports absolute mode if (canAbsMove == false && currentFocuser->canAbsMove()) { canAbsMove = true; getAbsFocusPosition(); absTicksSpin->setEnabled(true); absTicksLabel->setEnabled(true); startGotoB->setEnabled(true); } // Do not make unnecessary function call // Check if current focuser supports relative mode if (canRelMove == false && currentFocuser->canRelMove()) canRelMove = true; if (canTimerMove == false && currentFocuser->canTimerMove()) { canTimerMove = true; resetButtons(); } }*/ void Focus::processFocusNumber(INumberVectorProperty *nvp) { // Return if it is not our current focuser if (strcmp(nvp->device, currentFocuser->getDeviceName())) return; if (!strcmp(nvp->name, "FOCUS_BACKLASH_STEPS")) { focusBacklashSpin->setValue(nvp->np[0].value); return; } if (!strcmp(nvp->name, "ABS_FOCUS_POSITION")) { INumber *pos = IUFindNumber(nvp, "FOCUS_ABSOLUTE_POSITION"); if (pos) { currentPosition = pos->value; absTicksLabel->setText(QString::number(static_cast(currentPosition))); emit absolutePositionChanged(currentPosition); } if (adjustFocus && nvp->s == IPS_OK) { adjustFocus = false; lastFocusDirection = FOCUS_NONE; emit focusPositionAdjusted(); return; } if (resetFocus && nvp->s == IPS_OK) { resetFocus = false; appendLogText(i18n("Restarting autofocus process...")); start(); } if (canAbsMove && inAutoFocus) { if (nvp->s == IPS_OK && captureInProgress == false) QTimer::singleShot(FocusSettleTime->value() * 1000, this, &Ekos::Focus::capture); //capture(); else if (nvp->s == IPS_ALERT) { appendLogText(i18n("Focuser error, check INDI panel.")); abort(); setAutoFocusResult(false); } } else if (nvp->s == IPS_ALERT) appendLogText(i18n("Focuser error, check INDI panel.")); return; } if (canAbsMove) return; if (!strcmp(nvp->name, "REL_FOCUS_POSITION")) { INumber *pos = IUFindNumber(nvp, "FOCUS_RELATIVE_POSITION"); if (pos && nvp->s == IPS_OK) { currentPosition += pos->value * (lastFocusDirection == FOCUS_IN ? -1 : 1); absTicksLabel->setText(QString::number(static_cast(currentPosition))); emit absolutePositionChanged(currentPosition); } if (adjustFocus && nvp->s == IPS_OK) { adjustFocus = false; lastFocusDirection = FOCUS_NONE; emit focusPositionAdjusted(); return; } if (resetFocus && nvp->s == IPS_OK) { resetFocus = false; appendLogText(i18n("Restarting autofocus process...")); start(); } if (canRelMove && inAutoFocus) { if (nvp->s == IPS_OK && captureInProgress == false) QTimer::singleShot(FocusSettleTime->value() * 1000, this, &Ekos::Focus::capture); else if (nvp->s == IPS_ALERT) { appendLogText(i18n("Focuser error, check INDI panel.")); abort(); setAutoFocusResult(false); } } else if (nvp->s == IPS_ALERT) appendLogText(i18n("Focuser error, check INDI panel.")); return; } if (canRelMove) return; if (!strcmp(nvp->name, "FOCUS_TIMER")) { if (resetFocus && nvp->s == IPS_OK) { resetFocus = false; appendLogText(i18n("Restarting autofocus process...")); start(); } if (canAbsMove == false && canRelMove == false && inAutoFocus) { if (nvp->s == IPS_OK && captureInProgress == false) QTimer::singleShot(FocusSettleTime->value() * 1000, this, &Ekos::Focus::capture); else if (nvp->s == IPS_ALERT) { appendLogText(i18n("Focuser error, check INDI panel.")); abort(); setAutoFocusResult(false); } } else if (nvp->s == IPS_ALERT) appendLogText(i18n("Focuser error, check INDI panel.")); return; } } void Focus::appendLogText(const QString &text) { m_LogText.insert(0, i18nc("log entry; %1 is the date, %2 is the text", "%1 %2", KStarsData::Instance()->lt().toString("yyyy-MM-ddThh:mm:ss"), text)); qCInfo(KSTARS_EKOS_FOCUS) << text; emit newLog(text); } void Focus::clearLog() { m_LogText.clear(); emit newLog(QString()); } void Focus::startFraming() { if (currentCCD == nullptr) { appendLogText(i18n("No CCD connected.")); return; } waitStarSelectTimer.stop(); inFocusLoop = true; HFRFrames.clear(); clearDataPoints(); //emit statusUpdated(true); state = Ekos::FOCUS_FRAMING; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); resetButtons(); appendLogText(i18n("Starting continuous exposure...")); capture(); } void Focus::resetButtons() { if (inFocusLoop) { startFocusB->setEnabled(false); startLoopB->setEnabled(false); stopFocusB->setEnabled(true); captureB->setEnabled(false); return; } if (inAutoFocus) { stopFocusB->setEnabled(true); startFocusB->setEnabled(false); startLoopB->setEnabled(false); captureB->setEnabled(false); focusOutB->setEnabled(false); focusInB->setEnabled(false); startGotoB->setEnabled(false); stopGotoB->setEnabled(false); resetFrameB->setEnabled(false); return; } if (currentFocuser) { focusOutB->setEnabled(true); focusInB->setEnabled(true); startFocusB->setEnabled(focusType == FOCUS_AUTO); startGotoB->setEnabled(canAbsMove); stopGotoB->setEnabled(true); } else { focusOutB->setEnabled(false); focusInB->setEnabled(false); startFocusB->setEnabled(false); startGotoB->setEnabled(false); stopGotoB->setEnabled(false); } stopFocusB->setEnabled(false); startLoopB->setEnabled(true); if (captureInProgress == false) { captureB->setEnabled(true); resetFrameB->setEnabled(true); } } void Focus::updateBoxSize(int value) { if (currentCCD == nullptr) return; ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip == nullptr) return; int subBinX, subBinY; targetChip->getBinning(&subBinX, &subBinY); QRect trackBox = focusView->getTrackingBox(); QPoint center(trackBox.x() + (trackBox.width() / 2), trackBox.y() + (trackBox.height() / 2)); trackBox = QRect(center.x() - value / (2 * subBinX), center.y() - value / (2 * subBinY), value / subBinX, value / subBinY); focusView->setTrackingBox(trackBox); } void Focus::focusStarSelected(int x, int y) { if (state == Ekos::FOCUS_PROGRESS) return; if (subFramed == false) { rememberStarCenter.setX(x); rememberStarCenter.setY(y); } ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); int subBinX, subBinY; targetChip->getBinning(&subBinX, &subBinY); // If binning was changed outside of the focus module, recapture if (subBinX != activeBin) { capture(); return; } int offset = (static_cast(focusBoxSize->value()) / subBinX) * 1.5; QRect starRect; bool squareMovedOutside = false; if (subFramed == false && useSubFrame->isChecked() && targetChip->canSubframe()) { int minX, maxX, minY, maxY, minW, maxW, minH, maxH; //, fx,fy,fw,fh; targetChip->getFrameMinMax(&minX, &maxX, &minY, &maxY, &minW, &maxW, &minH, &maxH); //targetChip->getFrame(&fx, &fy, &fw, &fy); x = (x - offset) * subBinX; y = (y - offset) * subBinY; int w = offset * 2 * subBinX; int h = offset * 2 * subBinY; if (x < minX) x = minX; if (y < minY) y = minY; if ((x + w) > maxW) w = maxW - x; if ((y + h) > maxH) h = maxH - y; //fx += x; //fy += y; //fw = w; //fh = h; //targetChip->setFocusFrame(fx, fy, fw, fh); //frameModified=true; QVariantMap settings = frameSettings[targetChip]; settings["x"] = x; settings["y"] = y; settings["w"] = w; settings["h"] = h; settings["binx"] = subBinX; settings["biny"] = subBinY; frameSettings[targetChip] = settings; subFramed = true; qCDebug(KSTARS_EKOS_FOCUS) << "Frame is subframed. X:" << x << "Y:" << y << "W:" << w << "H:" << h << "binX:" << subBinX << "binY:" << subBinY; focusView->setFirstLoad(true); capture(); //starRect = QRect((w-focusBoxSize->value())/(subBinX*2), (h-focusBoxSize->value())/(subBinY*2), focusBoxSize->value()/subBinX, focusBoxSize->value()/subBinY); starCenter.setX(w / (2 * subBinX)); starCenter.setY(h / (2 * subBinY)); } else { //starRect = QRect(x-focusBoxSize->value()/(subBinX*2), y-focusBoxSize->value()/(subBinY*2), focusBoxSize->value()/subBinX, focusBoxSize->value()/subBinY); double dist = sqrt((starCenter.x() - x) * (starCenter.x() - x) + (starCenter.y() - y) * (starCenter.y() - y)); squareMovedOutside = (dist > (static_cast(focusBoxSize->value()) / subBinX)); starCenter.setX(x); starCenter.setY(y); //starRect = QRect( starCenter.x()-focusBoxSize->value()/(2*subBinX), starCenter.y()-focusBoxSize->value()/(2*subBinY), focusBoxSize->value()/subBinX, focusBoxSize->value()/subBinY); starRect = QRect(starCenter.x() - focusBoxSize->value() / (2 * subBinX), starCenter.y() - focusBoxSize->value() / (2 * subBinY), focusBoxSize->value() / subBinX, focusBoxSize->value() / subBinY); focusView->setTrackingBox(starRect); } starsHFR.clear(); starCenter.setZ(subBinX); //starSelected=true; defaultScale = static_cast(filterCombo->currentIndex()); if (squareMovedOutside && inAutoFocus == false && useAutoStar->isChecked()) { useAutoStar->blockSignals(true); useAutoStar->setChecked(false); useAutoStar->blockSignals(false); appendLogText(i18n("Disabling Auto Star Selection as star selection box was moved manually.")); starSelected = false; } else if (starSelected == false) { appendLogText(i18n("Focus star is selected.")); starSelected = true; capture(); } waitStarSelectTimer.stop(); state = inAutoFocus ? FOCUS_PROGRESS : FOCUS_IDLE; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } void Focus::checkFocus(double requiredHFR) { qCDebug(KSTARS_EKOS_FOCUS) << "Check Focus requested with minimum required HFR" << requiredHFR; minimumRequiredHFR = requiredHFR; capture(); } void Focus::toggleSubframe(bool enable) { if (enable == false) resetFrame(); starSelected = false; starCenter = QVector3D(); if (useFullField->isChecked()) useFullField->setChecked(!enable); } void Focus::filterChangeWarning(int index) { // index = 4 is MEDIAN filter which helps reduce noise if (index != 0 && index != FITS_MEDIAN) appendLogText(i18n("Warning: Only use filters for preview as they may interface with autofocus operation.")); Options::setFocusEffect(index); defaultScale = static_cast(index); } void Focus::setExposure(double value) { exposureIN->setValue(value); } void Focus::setBinning(int subBinX, int subBinY) { INDI_UNUSED(subBinY); binningCombo->setCurrentIndex(subBinX - 1); } void Focus::setImageFilter(const QString &value) { for (int i = 0; i < filterCombo->count(); i++) if (filterCombo->itemText(i) == value) { filterCombo->setCurrentIndex(i); break; } } void Focus::setAutoStarEnabled(bool enable) { useAutoStar->setChecked(enable); Options::setFocusAutoStarEnabled(enable); } void Focus::setAutoSubFrameEnabled(bool enable) { useSubFrame->setChecked(enable); Options::setFocusSubFrame(enable); } void Focus::setAutoFocusParameters(int boxSize, int stepSize, int maxTravel, double tolerance) { focusBoxSize->setValue(boxSize); stepIN->setValue(stepSize); maxTravelIN->setValue(maxTravel); toleranceIN->setValue(tolerance); } void Focus::setAutoFocusResult(bool status) { qCDebug(KSTARS_EKOS_FOCUS) << "AutoFocus result:" << status; // In case of failure, go back to last position if the focuser is absolute if (status == false && canAbsMove && currentFocuser && currentFocuser->isConnected() && initialFocuserAbsPosition >= 0) { currentFocuser->moveAbs(initialFocuserAbsPosition); appendLogText(i18n("Autofocus failed, moving back to initial focus position %1.", initialFocuserAbsPosition)); // If we're doing in sequence focusing using an absolute focuser, let's retry focusing starting from last known good position before we give up if (inSequenceFocus && resetFocusIteration++ < MAXIMUM_RESET_ITERATIONS && resetFocus == false) { resetFocus = true; // Reset focus frame in case the star in subframe was lost resetFrame(); return; } } int settleTime = m_GuidingSuspended ? GuideSettleTime->value() : 0; // Always resume guiding if we suspended it before if (m_GuidingSuspended) { emit resumeGuiding(); m_GuidingSuspended = false; } resetFocusIteration = 0; if (settleTime > 0) appendLogText(i18n("Settling...")); QTimer::singleShot(settleTime * 1000, this, [ &, status, settleTime]() { if (settleTime > 0) appendLogText(i18n("Settling complete.")); if (status) { KSNotification::event(QLatin1String("FocusSuccessful"), i18n("Autofocus operation completed successfully")); state = Ekos::FOCUS_COMPLETE; } else { KSNotification::event(QLatin1String("FocusFailed"), i18n("Autofocus operation failed with errors"), KSNotification::EVENT_ALERT); state = Ekos::FOCUS_FAILED; } qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); // Do not emit result back yet if we have a locked filter pending return to original filter if (fallbackFilterPending) { filterManager->setFilterPosition(fallbackFilterPosition, static_cast(FilterManager::CHANGE_POLICY | FilterManager::OFFSET_POLICY)); return; } emit newStatus(state); }); } void Focus::checkAutoStarTimeout() { //if (starSelected == false && inAutoFocus) if (starCenter.isNull() && (inAutoFocus || minimumRequiredHFR > 0)) { if (inAutoFocus) { if (rememberStarCenter.isNull() == false) { focusStarSelected(rememberStarCenter.x(), rememberStarCenter.y()); appendLogText(i18n("No star was selected. Using last known position...")); return; } } appendLogText(i18n("No star was selected. Aborting...")); initialFocuserAbsPosition = -1; abort(); setAutoFocusResult(false); } else if (state == FOCUS_WAITING) { state = FOCUS_IDLE; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } } void Focus::setAbsoluteFocusTicks() { if (currentFocuser == nullptr) return; if (currentFocuser->isConnected() == false) { appendLogText(i18n("Error: Lost connection to Focuser.")); return; } qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus ticks to " << absTicksSpin->value(); currentFocuser->moveAbs(absTicksSpin->value()); } //void Focus::setActiveBinning(int bin) //{ // activeBin = bin + 1; // Options::setFocusXBin(activeBin); //} // TODO remove from kstars.kcfg /*void Focus::setFrames(int value) { Options::setFocusFrames(value); }*/ void Focus::syncTrackingBoxPosition() { ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); Q_ASSERT(targetChip); int subBinX = 1, subBinY = 1; targetChip->getBinning(&subBinX, &subBinY); if (starCenter.isNull() == false) { double boxSize = focusBoxSize->value(); int x, y, w, h; targetChip->getFrame(&x, &y, &w, &h); // If box size is larger than image size, set it to lower index if (boxSize / subBinX >= w || boxSize / subBinY >= h) { focusBoxSize->setValue((boxSize / subBinX >= w) ? w : h); return; } // If binning changed, update coords accordingly if (subBinX != starCenter.z()) { if (starCenter.z() > 0) { starCenter.setX(starCenter.x() * (starCenter.z() / subBinX)); starCenter.setY(starCenter.y() * (starCenter.z() / subBinY)); } starCenter.setZ(subBinX); } QRect starRect = QRect(starCenter.x() - boxSize / (2 * subBinX), starCenter.y() - boxSize / (2 * subBinY), boxSize / subBinX, boxSize / subBinY); focusView->setTrackingBoxEnabled(true); focusView->setTrackingBox(starRect); } } void Focus::showFITSViewer() { FITSData *data = focusView->getImageData(); if (data) { QUrl url = QUrl::fromLocalFile(data->filename()); if (fv.isNull()) { if (Options::singleWindowCapturedFITS()) fv = KStars::Instance()->genericFITSViewer(); else { fv = new FITSViewer(Options::independentWindowFITS() ? nullptr : KStars::Instance()); KStars::Instance()->addFITSViewer(fv); } fv->addFITS(url); FITSView *currentView = fv->getCurrentView(); if (currentView) currentView->getImageData()->setAutoRemoveTemporaryFITS(false); } else fv->updateFITS(url, 0); fv->show(); } } void Focus::adjustFocusOffset(int value, bool useAbsoluteOffset) { adjustFocus = true; int relativeOffset = 0; if (useAbsoluteOffset == false) relativeOffset = value; else relativeOffset = value - currentPosition; if (relativeOffset > 0) focusOut(relativeOffset); else focusIn(abs(relativeOffset)); } void Focus::toggleFocusingWidgetFullScreen() { if (focusingWidget->parent() == nullptr) { focusingWidget->setParent(this); rightLayout->insertWidget(0, focusingWidget); focusingWidget->showNormal(); } else { focusingWidget->setParent(nullptr); focusingWidget->setWindowTitle(i18n("Focus Frame")); focusingWidget->setWindowFlags(Qt::Window | Qt::WindowTitleHint | Qt::CustomizeWindowHint); focusingWidget->showMaximized(); focusingWidget->show(); } } void Focus::setMountStatus(ISD::Telescope::Status newState) { switch (newState) { case ISD::Telescope::MOUNT_PARKING: case ISD::Telescope::MOUNT_SLEWING: case ISD::Telescope::MOUNT_MOVING: captureB->setEnabled(false); startFocusB->setEnabled(false); startLoopB->setEnabled(false); // If mount is moved while we have a star selected and subframed // let us reset the frame. if (subFramed) resetFrame(); break; default: resetButtons(); break; } } double Focus::fn1(double x, void *params) { Focus *module = static_cast(params); return (module->coeff[0] + module->coeff[1] * x + module->coeff[2] * pow(x, 2) + module->coeff[3] * pow(x, 3)); } bool Focus::findMinimum(double expected, double *position, double *hfr) { int status; int iter = 0, max_iter = 100; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; double m = expected; double a = *std::min_element(hfr_position.constBegin(), hfr_position.constEnd()); double b = *std::max_element(hfr_position.constBegin(), hfr_position.constEnd()); - ; gsl_function F; F.function = &Focus::fn1; F.params = this; // Must turn off error handler or it aborts on error gsl_set_error_handler_off(); T = gsl_min_fminimizer_brent; s = gsl_min_fminimizer_alloc(T); status = gsl_min_fminimizer_set(s, &F, m, a, b); if (status != GSL_SUCCESS) { qCWarning(KSTARS_EKOS_FOCUS) << "Focus GSL error:" << gsl_strerror(status); return false; } do { iter++; status = gsl_min_fminimizer_iterate(s); m = gsl_min_fminimizer_x_minimum(s); a = gsl_min_fminimizer_x_lower(s); b = gsl_min_fminimizer_x_upper(s); status = gsl_min_test_interval(a, b, 0.01, 0.0); if (status == GSL_SUCCESS) { *position = m; *hfr = fn1(m, this); } } while (status == GSL_CONTINUE && iter < max_iter); gsl_min_fminimizer_free(s); return (status == GSL_SUCCESS); } void Focus::removeDevice(ISD::GDInterface *deviceRemoved) { // Check in Focusers for (ISD::GDInterface *focuser : Focusers) { if (!strcmp(focuser->getDeviceName(), deviceRemoved->getDeviceName())) { Focusers.removeAll(dynamic_cast(focuser)); focuserCombo->removeItem(focuserCombo->findText(focuser->getDeviceName())); checkFocuser(); resetButtons(); } } // Check in CCDs for (ISD::GDInterface *ccd : CCDs) { if (!strcmp(ccd->getDeviceName(), deviceRemoved->getDeviceName())) { CCDs.removeAll(dynamic_cast(ccd)); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(ccd->getDeviceName())); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(ccd->getDeviceName() + QString(" Guider"))); checkCCD(); resetButtons(); } } // Check in Filters for (ISD::GDInterface *filter : Filters) { if (!strcmp(filter->getDeviceName(), deviceRemoved->getDeviceName())) { Filters.removeAll(filter); FilterDevicesCombo->removeItem(FilterDevicesCombo->findText(filter->getDeviceName())); if (Filters.empty()) currentFilter = nullptr; checkFilter(); resetButtons(); } } } void Focus::setFilterManager(const QSharedPointer &manager) { filterManager = manager; connect(filterManagerB, &QPushButton::clicked, [this]() { filterManager->show(); filterManager->raise(); }); connect(filterManager.data(), &FilterManager::ready, [this]() { if (filterPositionPending) { filterPositionPending = false; capture(); } else if (fallbackFilterPending) { fallbackFilterPending = false; emit newStatus(state); } } ); connect(filterManager.data(), &FilterManager::failed, [this]() { appendLogText(i18n("Filter operation failed.")); abort(); } ); connect(this, &Focus::newStatus, [this](Ekos::FocusState state) { if (FilterPosCombo->currentIndex() != -1 && canAbsMove && state == Ekos::FOCUS_COMPLETE) { filterManager->setFilterAbsoluteFocusPosition(FilterPosCombo->currentIndex(), currentPosition); } }); connect(exposureIN, &QDoubleSpinBox::editingFinished, [this]() { if (currentFilter) filterManager->setFilterExposure(FilterPosCombo->currentIndex(), exposureIN->value()); }); connect(filterManager.data(), &FilterManager::labelsChanged, this, [this]() { FilterPosCombo->clear(); FilterPosCombo->addItems(filterManager->getFilterLabels()); currentFilterPosition = filterManager->getFilterPosition(); FilterPosCombo->setCurrentIndex(currentFilterPosition - 1); //Options::setDefaultFocusFilterWheelFilter(FilterPosCombo->currentText()); }); connect(filterManager.data(), &FilterManager::positionChanged, this, [this]() { currentFilterPosition = filterManager->getFilterPosition(); FilterPosCombo->setCurrentIndex(currentFilterPosition - 1); //Options::setDefaultFocusFilterWheelFilter(FilterPosCombo->currentText()); }); connect(filterManager.data(), &FilterManager::exposureChanged, this, [this]() { exposureIN->setValue(filterManager->getFilterExposure()); - ; }); connect(FilterPosCombo, static_cast(&QComboBox::currentIndexChanged), [ = ](const QString & text) { exposureIN->setValue(filterManager->getFilterExposure(text)); //Options::setDefaultFocusFilterWheelFilter(text); }); } void Focus::toggleVideo(bool enabled) { if (currentCCD == nullptr) return; if (currentCCD->isBLOBEnabled() == false) { if (Options::guiderType() != Ekos::Guide::GUIDE_INTERNAL) currentCCD->setBLOBEnabled(true); else { connect(KSMessageBox::Instance(), &KSMessageBox::accepted, this, [this, enabled]() { //QObject::disconnect(KSMessageBox::Instance(), &KSMessageBox::accepted, this, nullptr); KSMessageBox::Instance()->disconnect(this); currentCCD->setVideoStreamEnabled(enabled); }); KSMessageBox::Instance()->questionYesNo(i18n("Image transfer is disabled for this camera. Would you like to enable it?")); } } else currentCCD->setVideoStreamEnabled(enabled); } void Focus::setVideoStreamEnabled(bool enabled) { if (enabled) { liveVideoB->setChecked(true); liveVideoB->setIcon(QIcon::fromTheme("camera-on")); } else { liveVideoB->setChecked(false); liveVideoB->setIcon(QIcon::fromTheme("camera-ready")); } } void Focus::processCaptureTimeout() { captureTimeoutCounter++; if (captureTimeoutCounter >= 3) { captureTimeoutCounter = 0; appendLogText(i18n("Exposure timeout. Aborting...")); abort(); if (inAutoFocus) setAutoFocusResult(false); else if (m_GuidingSuspended) { emit resumeGuiding(); m_GuidingSuspended = false; } return; } appendLogText(i18n("Exposure timeout. Restarting exposure...")); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); targetChip->abortExposure(); targetChip->capture(exposureIN->value()); captureTimeout.start(exposureIN->value() * 1000 + FOCUS_TIMEOUT_THRESHOLD); } +void Focus::processCaptureFailure() +{ + captureFailureCounter++; + + if (captureFailureCounter >= 3) + { + captureFailureCounter = 0; + appendLogText(i18n("Exposure failure. Aborting...")); + abort(); + if (inAutoFocus) + setAutoFocusResult(false); + else if (m_GuidingSuspended) + { + emit resumeGuiding(); + m_GuidingSuspended = false; + } + return; + } + + appendLogText(i18n("Exposure failure. Restarting exposure...")); + ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); + targetChip->abortExposure(); + targetChip->capture(exposureIN->value()); +} + void Focus::syncSettings() { QDoubleSpinBox *dsb = nullptr; QSpinBox *sb = nullptr; QCheckBox *cb = nullptr; QComboBox *cbox = nullptr; if ( (dsb = qobject_cast(sender()))) { /////////////////////////////////////////////////////////////////////////// /// Focuser Group /////////////////////////////////////////////////////////////////////////// if (dsb == FocusSettleTime) Options::setFocusSettleTime(dsb->value()); /////////////////////////////////////////////////////////////////////////// /// CCD & Filter Wheel Group /////////////////////////////////////////////////////////////////////////// else if (dsb == gainIN) Options::setFocusGain(dsb->value()); /////////////////////////////////////////////////////////////////////////// /// Settings Group /////////////////////////////////////////////////////////////////////////// else if (dsb == fullFieldInnerRing) Options::setFocusFullFieldInnerRadius(dsb->value()); else if (dsb == fullFieldOuterRing) Options::setFocusFullFieldOuterRadius(dsb->value()); else if (dsb == GuideSettleTime) Options::setGuideSettleTime(dsb->value()); else if (dsb == maxTravelIN) Options::setFocusMaxTravel(dsb->value()); else if (dsb == toleranceIN) Options::setFocusTolerance(dsb->value()); else if (dsb == thresholdSpin) Options::setFocusThreshold(dsb->value()); } else if ( (sb = qobject_cast(sender()))) { /////////////////////////////////////////////////////////////////////////// /// Settings Group /////////////////////////////////////////////////////////////////////////// if (sb == focusBoxSize) Options::setFocusBoxSize(sb->value()); else if (sb == stepIN) Options::setFocusTicks(sb->value()); else if (sb == focusFramesSpin) Options::setFocusFramesCount(sb->value()); } else if ( (cb = qobject_cast(sender()))) { /////////////////////////////////////////////////////////////////////////// /// Settings Group /////////////////////////////////////////////////////////////////////////// if (cb == useAutoStar) Options::setFocusAutoStarEnabled(cb->isChecked()); else if (cb == useSubFrame) Options::setFocusSubFrame(cb->isChecked()); else if (cb == darkFrameCheck) Options::setUseFocusDarkFrame(cb->isChecked()); else if (cb == useFullField) Options::setFocusUseFullField(cb->isChecked()); else if (cb == suspendGuideCheck) Options::setSuspendGuiding(cb->isChecked()); } else if ( (cbox = qobject_cast(sender()))) { /////////////////////////////////////////////////////////////////////////// /// CCD & Filter Wheel Group /////////////////////////////////////////////////////////////////////////// if (cbox == focuserCombo) Options::setDefaultFocusFocuser(cbox->currentText()); else if (cbox == CCDCaptureCombo) Options::setDefaultFocusCCD(cbox->currentText()); else if (cbox == binningCombo) { activeBin = cbox->currentIndex() + 1; Options::setFocusXBin(activeBin); } else if (cbox == FilterDevicesCombo) Options::setDefaultFocusFilterWheel(cbox->currentText()); // Filter Effects already taken care of in filterChangeWarning /////////////////////////////////////////////////////////////////////////// /// Settings Group /////////////////////////////////////////////////////////////////////////// else if (cbox == focusAlgorithmCombo) Options::setFocusAlgorithm(cbox->currentIndex()); else if (cbox == focusDetectionCombo) Options::setFocusDetection(cbox->currentIndex()); } } void Focus::loadSettings() { /////////////////////////////////////////////////////////////////////////// /// Focuser Group /////////////////////////////////////////////////////////////////////////// // Focus settle time FocusSettleTime->setValue(Options::focusSettleTime()); /////////////////////////////////////////////////////////////////////////// /// CCD & Filter Wheel Group /////////////////////////////////////////////////////////////////////////// // Binning activeBin = Options::focusXBin(); binningCombo->setCurrentIndex(activeBin - 1); // Gain gainIN->setValue(Options::focusGain()); /////////////////////////////////////////////////////////////////////////// /// Settings Group /////////////////////////////////////////////////////////////////////////// // Auto Star? useAutoStar->setChecked(Options::focusAutoStarEnabled()); // Subframe? useSubFrame->setChecked(Options::focusSubFrame()); // Dark frame? darkFrameCheck->setChecked(Options::useFocusDarkFrame()); // Use full field? useFullField->setChecked(Options::focusUseFullField()); // full field inner ring fullFieldInnerRing->setValue(Options::focusFullFieldInnerRadius()); // full field outer ring fullFieldOuterRing->setValue(Options::focusFullFieldOuterRadius()); // Suspend guiding? suspendGuideCheck->setChecked(Options::suspendGuiding()); // Guide Setting time GuideSettleTime->setValue(Options::guideSettleTime()); // Box Size focusBoxSize->setValue(Options::focusBoxSize()); // Max Travel if (Options::focusMaxTravel() > maxTravelIN->maximum()) maxTravelIN->setMaximum(Options::focusMaxTravel()); maxTravelIN->setValue(Options::focusMaxTravel()); // Step stepIN->setValue(Options::focusTicks()); // Tolerance toleranceIN->setValue(Options::focusTolerance()); // Threshold spin thresholdSpin->setValue(Options::focusThreshold()); // Focus Algorithm focusAlgorithm = static_cast(Options::focusAlgorithm()); focusAlgorithmCombo->setCurrentIndex(focusAlgorithm); // Frames Count focusFramesSpin->setValue(Options::focusFramesCount()); // Focus Detection focusDetection = static_cast(Options::focusDetection()); thresholdSpin->setEnabled(focusDetection == ALGORITHM_THRESHOLD); focusDetectionCombo->setCurrentIndex(focusDetection); } void Focus::initSettingsConnections() { /////////////////////////////////////////////////////////////////////////// /// Focuser Group /////////////////////////////////////////////////////////////////////////// connect(focuserCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); connect(FocusSettleTime, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); /////////////////////////////////////////////////////////////////////////// /// CCD & Filter Wheel Group /////////////////////////////////////////////////////////////////////////// connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); connect(binningCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); connect(gainIN, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(FilterDevicesCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); connect(FilterPosCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); /////////////////////////////////////////////////////////////////////////// /// Settings Group /////////////////////////////////////////////////////////////////////////// connect(useAutoStar, &QCheckBox::toggled, this, &Ekos::Focus::syncSettings); connect(useSubFrame, &QCheckBox::toggled, this, &Ekos::Focus::syncSettings); connect(darkFrameCheck, &QCheckBox::toggled, this, &Ekos::Focus::syncSettings); connect(useFullField, &QCheckBox::toggled, this, &Ekos::Focus::syncSettings); connect(fullFieldInnerRing, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(fullFieldOuterRing, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(suspendGuideCheck, &QCheckBox::toggled, this, &Ekos::Focus::syncSettings); connect(GuideSettleTime, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(focusBoxSize, static_cast(&QSpinBox::valueChanged), this, &Focus::syncSettings); connect(maxTravelIN, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(stepIN, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(toleranceIN, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(thresholdSpin, &QDoubleSpinBox::editingFinished, this, &Focus::syncSettings); connect(focusAlgorithmCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); connect(focusFramesSpin, static_cast(&QSpinBox::valueChanged), this, &Focus::syncSettings); connect(focusDetectionCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::syncSettings); } void Focus::initPlots() { connect(clearDataB, &QPushButton::clicked, this, &Ekos::Focus::clearDataPoints); profileDialog = new QDialog(this); profileDialog->setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); QVBoxLayout *profileLayout = new QVBoxLayout(profileDialog); profileDialog->setWindowTitle(i18n("Relative Profile")); profilePlot = new QCustomPlot(profileDialog); profilePlot->setBackground(QBrush(Qt::black)); profilePlot->xAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->yAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); profilePlot->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); profilePlot->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); profilePlot->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); profilePlot->xAxis->grid()->setZeroLinePen(Qt::NoPen); profilePlot->yAxis->grid()->setZeroLinePen(Qt::NoPen); profilePlot->xAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->yAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->xAxis->setTickPen(QPen(Qt::white, 1)); profilePlot->yAxis->setTickPen(QPen(Qt::white, 1)); profilePlot->xAxis->setSubTickPen(QPen(Qt::white, 1)); profilePlot->yAxis->setSubTickPen(QPen(Qt::white, 1)); profilePlot->xAxis->setTickLabelColor(Qt::white); profilePlot->yAxis->setTickLabelColor(Qt::white); profilePlot->xAxis->setLabelColor(Qt::white); profilePlot->yAxis->setLabelColor(Qt::white); profileLayout->addWidget(profilePlot); profileDialog->setLayout(profileLayout); profileDialog->resize(400, 300); connect(relativeProfileB, &QPushButton::clicked, profileDialog, &QDialog::show); currentGaus = profilePlot->addGraph(); currentGaus->setLineStyle(QCPGraph::lsLine); currentGaus->setPen(QPen(Qt::red, 2)); lastGaus = profilePlot->addGraph(); lastGaus->setLineStyle(QCPGraph::lsLine); QPen pen(Qt::darkGreen); pen.setStyle(Qt::DashLine); pen.setWidth(2); lastGaus->setPen(pen); HFRPlot->setBackground(QBrush(Qt::black)); HFRPlot->xAxis->setBasePen(QPen(Qt::white, 1)); HFRPlot->yAxis->setBasePen(QPen(Qt::white, 1)); HFRPlot->xAxis->setTickPen(QPen(Qt::white, 1)); HFRPlot->yAxis->setTickPen(QPen(Qt::white, 1)); HFRPlot->xAxis->setSubTickPen(QPen(Qt::white, 1)); HFRPlot->yAxis->setSubTickPen(QPen(Qt::white, 1)); HFRPlot->xAxis->setTickLabelColor(Qt::white); HFRPlot->yAxis->setTickLabelColor(Qt::white); HFRPlot->xAxis->setLabelColor(Qt::white); HFRPlot->yAxis->setLabelColor(Qt::white); HFRPlot->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); HFRPlot->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); HFRPlot->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); HFRPlot->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); HFRPlot->xAxis->grid()->setZeroLinePen(Qt::NoPen); HFRPlot->yAxis->grid()->setZeroLinePen(Qt::NoPen); HFRPlot->yAxis->setLabel(i18n("HFR")); HFRPlot->setInteractions(QCP::iRangeZoom); HFRPlot->setInteraction(QCP::iRangeDrag, true); v_graph = HFRPlot->addGraph(); v_graph->setLineStyle(QCPGraph::lsNone); v_graph->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssCircle, Qt::white, Qt::red, 3)); } void Focus::initConnections() { // How long do we wait until the user select a star? waitStarSelectTimer.setInterval(AUTO_STAR_TIMEOUT); connect(&waitStarSelectTimer, &QTimer::timeout, this, &Ekos::Focus::checkAutoStarTimeout); connect(liveVideoB, &QPushButton::clicked, this, &Ekos::Focus::toggleVideo); // Show FITS Image in a new window showFITSViewerB->setIcon(QIcon::fromTheme("kstars_fitsviewer")); showFITSViewerB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(showFITSViewerB, &QPushButton::clicked, this, &Ekos::Focus::showFITSViewer); // Toggle FITS View to full screen toggleFullScreenB->setIcon(QIcon::fromTheme("view-fullscreen")); toggleFullScreenB->setShortcut(Qt::Key_F4); toggleFullScreenB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(toggleFullScreenB, &QPushButton::clicked, this, &Ekos::Focus::toggleFocusingWidgetFullScreen); // How long do we wait until an exposure times out and needs a retry? captureTimeout.setSingleShot(true); connect(&captureTimeout, &QTimer::timeout, this, &Ekos::Focus::processCaptureTimeout); // Start/Stop focus connect(startFocusB, &QPushButton::clicked, this, &Ekos::Focus::start); connect(stopFocusB, &QPushButton::clicked, this, &Ekos::Focus::checkStopFocus); // Focus IN/OUT connect(focusOutB, &QPushButton::clicked, [&]() { focusOut(); }); connect(focusInB, &QPushButton::clicked, [&]() { focusIn(); }); // Capture a single frame connect(captureB, &QPushButton::clicked, this, &Ekos::Focus::capture); // Start continuous capture connect(startLoopB, &QPushButton::clicked, this, &Ekos::Focus::startFraming); // Use a subframe when capturing connect(useSubFrame, &QCheckBox::toggled, this, &Ekos::Focus::toggleSubframe); // Reset frame dimensions to default connect(resetFrameB, &QPushButton::clicked, this, &Ekos::Focus::resetFrame); // Sync setting if full field setting is toggled. connect(useFullField, &QCheckBox::toggled, [&](bool toggled) { fullFieldInnerRing->setEnabled(toggled); fullFieldOuterRing->setEnabled(toggled); if (toggled) { useSubFrame->setChecked(false); useAutoStar->setChecked(false); } else { // Disable the overlay focusView->setStarFilterRange(0, 1); } }); // Sync settings if the CCD selection is updated. connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::checkCCD); // Sync settings if the Focuser selection is updated. connect(focuserCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::checkFocuser); // Sync settings if the filter selection is updated. connect(FilterDevicesCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::checkFilter); // Set focuser absolute position connect(startGotoB, &QPushButton::clicked, this, &Ekos::Focus::setAbsoluteFocusTicks); connect(stopGotoB, &QPushButton::clicked, [this]() { if (currentFocuser) currentFocuser->stop(); }); // Update the focuser box size used to enclose a star connect(focusBoxSize, static_cast(&QSpinBox::valueChanged), this, &Ekos::Focus::updateBoxSize); // Update the focuser star detection if the detection algorithm selection changes. connect(focusDetectionCombo, static_cast(&QComboBox::activated), this, [&](int index) { focusDetection = static_cast(index); thresholdSpin->setEnabled(focusDetection == ALGORITHM_THRESHOLD); }); // Update the focuser solution algorithm if the selection changes. connect(focusAlgorithmCombo, static_cast(&QComboBox::activated), this, [&](int index) { focusAlgorithm = static_cast(index); }); // Reset star center on auto star check toggle connect(useAutoStar, &QCheckBox::toggled, this, [&](bool enabled) { if (enabled) { starCenter = QVector3D(); starSelected = false; focusView->setTrackingBox(QRect()); } }); } void Focus::initView() { focusView = new FITSView(focusingWidget, FITS_FOCUS); focusView->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); focusView->setBaseSize(focusingWidget->size()); focusView->createFloatingToolBar(); QVBoxLayout *vlayout = new QVBoxLayout(); vlayout->addWidget(focusView); focusingWidget->setLayout(vlayout); connect(focusView, &FITSView::trackingStarSelected, this, &Ekos::Focus::focusStarSelected, Qt::UniqueConnection); focusView->setStarsEnabled(true); focusView->setStarsHFREnabled(true); } } diff --git a/kstars/ekos/focus/focus.h b/kstars/ekos/focus/focus.h index ff19e602a..a7d3ff101 100644 --- a/kstars/ekos/focus/focus.h +++ b/kstars/ekos/focus/focus.h @@ -1,597 +1,600 @@ /* Ekos Focus tool Copyright (C) 2012 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include "ui_focus.h" #include "ekos/ekos.h" #include "ekos/auxiliary/filtermanager.h" #include "fitsviewer/fitsviewer.h" #include "indi/indiccd.h" #include "indi/indifocuser.h" #include "indi/indistd.h" #include "indi/inditelescope.h" #include namespace Ekos { /** * @class Focus * @short Supports manual focusing and auto focusing using relative and absolute INDI focusers. * * @author Jasem Mutlaq * @version 1.5 */ class Focus : public QWidget, public Ui::Focus { Q_OBJECT Q_CLASSINFO("D-Bus Interface", "org.kde.kstars.Ekos.Focus") Q_PROPERTY(Ekos::FocusState status READ status NOTIFY newStatus) Q_PROPERTY(QStringList logText READ logText NOTIFY newLog) Q_PROPERTY(QString camera READ camera WRITE setCamera) Q_PROPERTY(QString focuser READ focuser WRITE setFocuser) Q_PROPERTY(QString filterWheel READ filterWheel WRITE setFilterWheel) Q_PROPERTY(QString filter READ filter WRITE setFilter) Q_PROPERTY(double HFR READ getHFR NOTIFY newHFR) Q_PROPERTY(double exposure READ exposure WRITE setExposure) public: Focus(); ~Focus(); typedef enum { FOCUS_NONE, FOCUS_IN, FOCUS_OUT } FocusDirection; typedef enum { FOCUS_MANUAL, FOCUS_AUTO } FocusType; typedef enum { FOCUS_ITERATIVE, FOCUS_POLYNOMIAL } FocusAlgorithm; /** @defgroup FocusDBusInterface Ekos DBus Interface - Focus Module * Ekos::Focus interface provides advanced scripting capabilities to perform manual and automatic focusing operations. */ /*@{*/ /** DBUS interface function. * select the CCD device from the available CCD drivers. * @param device The CCD device name * @return Returns true if CCD device is found and set, false otherwise. */ Q_SCRIPTABLE bool setCamera(const QString &device); Q_SCRIPTABLE QString camera(); /** DBUS interface function. * select the focuser device from the available focuser drivers. The focuser device can be the same as the CCD driver if the focuser functionality was embedded within the driver. * @param device The focuser device name * @return Returns true if focuser device is found and set, false otherwise. */ Q_SCRIPTABLE bool setFocuser(const QString &device); Q_SCRIPTABLE QString focuser(); /** DBUS interface function. * select the filter device from the available filter drivers. The filter device can be the same as the CCD driver if the filter functionality was embedded within the driver. * @param device The filter device name * @return Returns true if filter device is found and set, false otherwise. */ Q_SCRIPTABLE bool setFilterWheel(const QString &device); Q_SCRIPTABLE QString filterWheel(); /** DBUS interface function. * select the filter from the available filters. * @param filter The filter name * @return Returns true if filter is found and set, false otherwise. */ Q_SCRIPTABLE bool setFilter(const QString &filter); Q_SCRIPTABLE QString filter(); /** DBUS interface function. * @return Returns True if current focuser supports auto-focusing */ Q_SCRIPTABLE bool canAutoFocus() { return (focusType == FOCUS_AUTO); } /** DBUS interface function. * @return Returns Half-Flux-Radius in pixels. */ Q_SCRIPTABLE double getHFR() { return currentHFR; } /** DBUS interface function. * Set CCD exposure value * @param value exposure value in seconds. */ Q_SCRIPTABLE Q_NOREPLY void setExposure(double value); Q_SCRIPTABLE double exposure() { return exposureIN->value(); } /** DBUS interface function. * Set CCD binning * @param binX horizontal binning * @param binY vertical binning */ Q_SCRIPTABLE Q_NOREPLY void setBinning(int binX, int binY); /** DBUS interface function. * Set image filter to apply to the image after capture. * @param value Image filter (Auto Stretch, High Contrast, Equalize, High Pass) */ Q_SCRIPTABLE Q_NOREPLY void setImageFilter(const QString &value); /** DBUS interface function. * Set Auto Focus options. The options must be set before starting the autofocus operation. If no options are set, the options loaded from the user configuration are used. * @param enable If true, Ekos will attempt to automatically select the best focus star in the frame. If it fails to select a star, the user will be asked to select a star manually. */ Q_SCRIPTABLE Q_NOREPLY void setAutoStarEnabled(bool enable); /** DBUS interface function. * Set Auto Focus options. The options must be set before starting the autofocus operation. If no options are set, the options loaded from the user configuration are used. * @param enable if true, Ekos will capture a subframe around the selected focus star. The subframe size is determined by the boxSize parameter. */ Q_SCRIPTABLE Q_NOREPLY void setAutoSubFrameEnabled(bool enable); /** DBUS interface function. * Set Autofocus parameters * @param boxSize the box size around the focus star in pixels. The boxsize is used to subframe around the focus star. * @param stepSize the initial step size to be commanded to the focuser. If the focuser is absolute, the step size is in ticks. For relative focusers, the focuser will be commanded to focus inward for stepSize milliseconds initially. * @param maxTravel the maximum steps permitted before the autofocus operation aborts. * @param tolerance Measure of how accurate the autofocus algorithm is. If the difference between the current HFR and minimum measured HFR is less than %tolerance after the focuser traversed both ends of the V-curve, then the focusing operation * is deemed successful. Otherwise, the focusing operation will continue. */ Q_SCRIPTABLE Q_NOREPLY void setAutoFocusParameters(int boxSize, int stepSize, int maxTravel, double tolerance); /** DBUS interface function. * resetFrame Resets the CCD frame to its full native resolution. */ Q_SCRIPTABLE Q_NOREPLY void resetFrame(); /** DBUS interface function. * Return state of Focuser modue (Ekos::FocusState) */ Q_SCRIPTABLE Ekos::FocusState status() { return state; } /** @}*/ /** * @brief Add CCD to the list of available CCD. * @param newCCD pointer to CCD device. */ void addCCD(ISD::GDInterface *newCCD); /** * @brief addFocuser Add focuser to the list of available focusers. * @param newFocuser pointer to focuser device. */ void addFocuser(ISD::GDInterface *newFocuser); /** * @brief addFilter Add filter to the list of available filters. * @param newFilter pointer to filter device. */ void addFilter(ISD::GDInterface *newFilter); /** * @brief removeDevice Remove device from Focus module * @param deviceRemoved pointer to device */ void removeDevice(ISD::GDInterface *deviceRemoved); void setFilterManager(const QSharedPointer &manager); void clearLog(); QStringList logText() { return m_LogText; } QString getLogText() { return m_LogText.join("\n"); } public slots: /** \addtogroup FocusDBusInterface * @{ */ /* Focus */ /** DBUS interface function. * Start the autofocus operation. */ Q_SCRIPTABLE Q_NOREPLY void start(); /** DBUS interface function. * Abort the autofocus operation. */ Q_SCRIPTABLE Q_NOREPLY void abort(); /** DBUS interface function. * Capture a focus frame. */ Q_SCRIPTABLE Q_NOREPLY void capture(); /** DBUS interface function. * Focus inward * @param ms If set, focus inward for ms ticks (Absolute Focuser), or ms milliseconds (Relative Focuser). If not set, it will use the value specified in the options. */ Q_SCRIPTABLE bool focusIn(int ms = -1); /** DBUS interface function. * Focus outward * @param ms If set, focus outward for ms ticks (Absolute Focuser), or ms milliseconds (Relative Focuser). If not set, it will use the value specified in the options. */ Q_SCRIPTABLE bool focusOut(int ms = -1); /** @}*/ /** * @brief startFraming Begins continuous capture of the CCD and calculates HFR every frame. */ void startFraming(); /** * @brief checkStopFocus Perform checks before stopping the autofocus operation. Some checks are necessary for in-sequence focusing. */ void checkStopFocus(); /** * @brief Check CCD and make sure information is updated accordingly. This simply calls syncCCDInfo for the current CCD. * @param CCDNum By default, we check the already selected CCD in the dropdown menu. If CCDNum is specified, the check is made against this specific CCD in the dropdown menu. * CCDNum is the index of the CCD in the dropdown menu. */ void checkCCD(int CCDNum = -1); /** * @brief syncCCDInfo Read current CCD information and update settings accordingly. */ void syncCCDInfo(); /** * @brief Check Focuser and make sure information is updated accordingly. * @param FocuserNum By default, we check the already selected focuser in the dropdown menu. If FocuserNum is specified, the check is made against this specific focuser in the dropdown menu. * FocuserNum is the index of the focuser in the dropdown menu. */ void checkFocuser(int FocuserNum = -1); /** * @brief Check Filter and make sure information is updated accordingly. * @param filterNum By default, we check the already selected filter in the dropdown menu. If filterNum is specified, the check is made against this specific filter in the dropdown menu. * filterNum is the index of the filter in the dropdown menu. */ void checkFilter(int filterNum = -1); /** * @brief clearDataPoints Remove all data points from HFR plots */ void clearDataPoints(); /** * @brief focusStarSelected The user selected a focus star, save its coordinates and subframe it if subframing is enabled. * @param x X coordinate * @param y Y coordinate */ void focusStarSelected(int x, int y); /** * @brief newFITS A new FITS blob is received by the CCD driver. * @param bp pointer to blob data */ void newFITS(IBLOB *bp); /** * @brief processFocusNumber Read focus number properties of interest as they arrive from the focuser driver and process them accordingly. * @param nvp pointer to updated focuser number property. */ void processFocusNumber(INumberVectorProperty *nvp); /** * @brief checkFocus Given the minimum required HFR, check focus and calculate HFR. If current HFR exceeds required HFR, start autofocus process, otherwise do nothing. * @param requiredHFR Minimum HFR to trigger autofocus process. */ void checkFocus(double requiredHFR); /** * @brief setFocusStatus Upon completion of the focusing process, set its status (fail or pass) and reset focus process to clean state. * @param status If true, the focus process finished successfully. Otherwise, it failed. */ void setAutoFocusResult(bool status); /** * @brief filterChangeWarning Warn the user it is not a good idea to apply image filter in the filter process as they can skew the HFR calculations. * @param index Index of image filter selected by the user. */ void filterChangeWarning(int index); // Log void appendLogText(const QString &); // Adjust focuser offset, relative or absolute void adjustFocusOffset(int value, bool useAbsoluteOffset); // Update Mount module status void setMountStatus(ISD::Telescope::Status newState); /** * @brief toggleVideo Turn on and off video streaming if supported by the camera. * @param enabled Set to true to start video streaming, false to stop it if active. */ void toggleVideo(bool enabled); private slots: /** * @brief toggleSubframe Process enabling and disabling subfrag. * @param enable If true, subframing is enabled. If false, subframing is disabled. Even if subframing is enabled, it must be supported by the CCD driver. */ void toggleSubframe(bool enable); void checkAutoStarTimeout(); void setAbsoluteFocusTicks(); void updateBoxSize(int value); void processCaptureTimeout(); + void processCaptureFailure(); + void setCaptureComplete(); void showFITSViewer(); void toggleFocusingWidgetFullScreen(); void setVideoStreamEnabled(bool enabled); void syncSettings(); signals: void newLog(const QString &text); void newStatus(Ekos::FocusState state); void newHFR(double hfr, int position); void absolutePositionChanged(int value); void focusPositionAdjusted(); void suspendGuiding(); void resumeGuiding(); void newStarPixmap(QPixmap &); void newProfilePixmap(QPixmap &); private: //////////////////////////////////////////////////////////////////// /// Connections //////////////////////////////////////////////////////////////////// void initConnections(); //////////////////////////////////////////////////////////////////// /// Settings //////////////////////////////////////////////////////////////////// /** * @brief initSettings Connect settings to slots to update the value when changed */ void initSettingsConnections(); /** * @brief loadSettings Load setting from Options and set them accordingly. */ void loadSettings(); //////////////////////////////////////////////////////////////////// /// HFR Plot //////////////////////////////////////////////////////////////////// void initPlots(); void drawHFRPlot(); void drawProfilePlot(); //////////////////////////////////////////////////////////////////// /// Positions //////////////////////////////////////////////////////////////////// void getAbsFocusPosition(); void autoFocusAbs(); void autoFocusRel(); void resetButtons(); void stop(bool aborted = false); bool findMinimum(double expected, double *position, double *hfr); static double fn1(double x, void *params); void initView(); /** * @brief syncTrackingBoxPosition Sync the tracking box to the current selected star center */ void syncTrackingBoxPosition(); /// Focuser device needed for focus operation ISD::Focuser *currentFocuser { nullptr }; /// CCD device needed for focus operation ISD::CCD *currentCCD { nullptr }; /// Optional device filter ISD::GDInterface *currentFilter { nullptr }; /// Current filter position int currentFilterPosition { -1 }; int fallbackFilterPosition { -1 }; /// True if we need to change filter position and wait for result before continuing capture bool filterPositionPending { false }; bool fallbackFilterPending { false }; /// List of Focusers QList Focusers; /// List of CCDs QList CCDs; /// They're generic GDInterface because they could be either ISD::CCD or ISD::Filter QList Filters; /// As the name implies FocusDirection lastFocusDirection { FOCUS_NONE }; /// What type of focusing are we doing right now? FocusType focusType { FOCUS_MANUAL }; /// Focus HFR & Centeroid algorithms StarAlgorithm focusDetection { ALGORITHM_GRADIENT }; /// Focus Process Algorithm FocusAlgorithm focusAlgorithm { FOCUS_ITERATIVE }; /********************* * HFR Club variables *********************/ /// Current HFR value just fetched from FITS file double currentHFR { 0 }; /// Last HFR value recorded double lastHFR { 0 }; /// If (currentHFR > deltaHFR) we start the autofocus process. double minimumRequiredHFR { -1 }; /// Maximum HFR recorded double maxHFR { 1 }; /// Is HFR increasing? We're going away from the sweet spot! If HFRInc=1, we re-capture just to make sure HFR calculations are correct, if HFRInc > 1, we switch directions int HFRInc { 0 }; /// If HFR decreasing? Well, good job. Once HFR start decreasing, we can start calculating HFR slope and estimating our next move. int HFRDec { 0 }; /**************************** * Absolute position focusers ****************************/ /// Absolute focus position double currentPosition { 0 }; /// What was our position before we started the focus process? int initialFocuserAbsPosition { -1 }; /// Pulse duration in ms for relative focusers that only support timers, or the number of ticks in a relative or absolute focuser int pulseDuration { 1000 }; /// Does the focuser support absolute motion? bool canAbsMove { false }; /// Does the focuser support relative motion? bool canRelMove { false }; /// Does the focuser support timer-based motion? bool canTimerMove { false }; /// Maximum range of motion for our lovely absolute focuser double absMotionMax { 0 }; /// Minimum range of motion for our lovely absolute focuser double absMotionMin { 0 }; /// How many iterations have we completed now in our absolute autofocus algorithm? We can't go forever int absIterations { 0 }; /**************************** * Misc. variables ****************************/ /// Are we in the process of capturing an image? bool captureInProgress { false }; // Was the frame modified by us? Better keep track since we need to return it to its previous state once we are done with the focus operation. //bool frameModified; /// Was the modified frame subFramed? bool subFramed { false }; /// If the autofocus process fails, let's not ruin the capture session probably taking place in the next tab. Instead, we should restart it and try again, but we keep count until we hit MAXIMUM_RESET_ITERATIONS /// and then we truly give up. int resetFocusIteration { 0 }; /// Which filter must we use once the autofocus process kicks in? int lockedFilterIndex { -1 }; /// Keep track of what we're doing right now bool inAutoFocus { false }; bool inFocusLoop { false }; bool inSequenceFocus { false }; bool resetFocus { false }; /// Did we reverse direction? bool reverseDir { false }; /// Did the user or the auto selection process finish selecting our focus star? bool starSelected { false }; /// Adjust the focus position to a target value bool adjustFocus { false }; // Target frame dimensions //int fx,fy,fw,fh; /// If HFR=-1 which means no stars detected, we need to decide how many times should the re-capture process take place before we give up or reverse direction. int noStarCount { 0 }; /// Track which upload mode the CCD is set to. If set to UPLOAD_LOCAL, then we need to switch it to UPLOAD_CLIENT in order to do focusing, and then switch it back to UPLOAD_LOCAL ISD::CCD::UploadMode rememberUploadMode { ISD::CCD::UPLOAD_CLIENT }; /// Previous binning setting int activeBin { 0 }; /// HFR values for captured frames before averages QVector HFRFrames; // CCD Exposure Looping bool rememberCCDExposureLooping = { false }; QStringList m_LogText; ITextVectorProperty *filterName { nullptr }; INumberVectorProperty *filterSlot { nullptr }; /**************************** * Plot variables ****************************/ /// Plot minimum positions double minPos { 1e6 }; /// Plot maximum positions double maxPos { 0 }; /// List of V curve plot points /// V-Curve graph QCPGraph *v_graph { nullptr }; // Last gaussian fit values QVector lastGausIndexes; QVector lastGausFrequencies; QCPGraph *currentGaus { nullptr }; QCPGraph *firstGaus { nullptr }; QCPGraph *lastGaus { nullptr }; QVector hfr_position, hfr_value; // Pixmaps QPixmap profilePixmap; /// State Ekos::FocusState state { Ekos::FOCUS_IDLE }; /// FITS Scale FITSScale defaultScale; /// CCD Chip frame settings QMap frameSettings; /// Selected star coordinates QVector3D starCenter; // Remember last star center coordinates in case of timeout in manual select mode QVector3D rememberStarCenter; /// Focus Frame FITSView *focusView { nullptr }; /// Star Select Timer QTimer waitStarSelectTimer; /// FITS Viewer in case user want to display in it instead of internal view QPointer fv; /// Track star position and HFR to know if we're detecting bogus stars due to detection algorithm false positive results QVector starsHFR; /// Relative Profile QCustomPlot *profilePlot { nullptr }; QDialog *profileDialog { nullptr }; /// Polynomial fitting coefficients std::vector coeff; int polySolutionFound { 0 }; // Capture timeout timer QTimer captureTimeout; uint8_t captureTimeoutCounter { 0 }; + uint8_t captureFailureCounter { 0 }; // Guide Suspend bool m_GuidingSuspended { false }; // Filter Manager QSharedPointer filterManager; }; } diff --git a/kstars/ekos/observatory/observatory.cpp b/kstars/ekos/observatory/observatory.cpp index f281320fa..caff8a16d 100644 --- a/kstars/ekos/observatory/observatory.cpp +++ b/kstars/ekos/observatory/observatory.cpp @@ -1,857 +1,881 @@ /* Ekos Observatory Module Copyright (C) Wolfgang Reissenberger This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "kstarsdata.h" #include "observatory.h" #include "ekos_observatory_debug.h" namespace Ekos { Observatory::Observatory() { setupUi(this); // status control mObservatoryModel = new ObservatoryModel(); setObseratoryStatusControl(mObservatoryModel->statusControl()); // update UI for status control connect(useDomeCB, &QCheckBox::clicked, this, &Ekos::Observatory::statusControlSettingsChanged); connect(useShutterCB, &QCheckBox::clicked, this, &Ekos::Observatory::statusControlSettingsChanged); connect(useWeatherCB, &QCheckBox::clicked, this, &Ekos::Observatory::statusControlSettingsChanged); connect(mObservatoryModel, &Ekos::ObservatoryModel::newStatus, this, &Ekos::Observatory::observatoryStatusChanged); // ready button deactivated // connect(statusReadyButton, &QPushButton::clicked, mObservatoryModel, &Ekos::ObservatoryModel::makeReady); statusReadyButton->setEnabled(false); setDomeModel(new ObservatoryDomeModel()); setWeatherModel(new ObservatoryWeatherModel()); } void Observatory::setObseratoryStatusControl(ObservatoryStatusControl control) { if (mObservatoryModel != nullptr) { useDomeCB->setChecked(control.useDome); useShutterCB->setChecked(control.useShutter); useWeatherCB->setChecked(control.useWeather); } } void Observatory::setDomeModel(ObservatoryDomeModel *model) { mObservatoryModel->setDomeModel(model); if (model != nullptr) { connect(model, &Ekos::ObservatoryDomeModel::ready, this, &Ekos::Observatory::initDome); connect(model, &Ekos::ObservatoryDomeModel::disconnected, this, &Ekos::Observatory::shutdownDome); connect(model, &Ekos::ObservatoryDomeModel::newStatus, this, &Ekos::Observatory::setDomeStatus); connect(model, &Ekos::ObservatoryDomeModel::newParkStatus, this, &Ekos::Observatory::setDomeParkStatus); connect(model, &Ekos::ObservatoryDomeModel::newShutterStatus, this, &Ekos::Observatory::setShutterStatus); connect(model, &Ekos::ObservatoryDomeModel::azimuthPositionChanged, this, &Ekos::Observatory::domeAzimuthChanged); connect(model, &Ekos::ObservatoryDomeModel::newAutoSyncStatus, this, &Ekos::Observatory::showAutoSync); // motion controls connect(motionMoveAbsButton, &QCheckBox::clicked, [this]() { mObservatoryModel->getDomeModel()->setAzimuthPosition(absoluteMotionSB->value()); }); connect(motionMoveRelButton, &QCheckBox::clicked, [this]() { mObservatoryModel->getDomeModel()->setRelativePosition(relativeMotionSB->value()); }); // abort button connect(motionAbortButton, &QPushButton::clicked, model, &ObservatoryDomeModel::abort); // weather controls connect(weatherWarningShutterCB, &QCheckBox::clicked, this, &Observatory::weatherWarningSettingsChanged); connect(weatherWarningDomeCB, &QCheckBox::clicked, this, &Observatory::weatherWarningSettingsChanged); connect(weatherWarningDelaySB, static_cast(&QSpinBox::valueChanged), [this](int i) { Q_UNUSED(i); weatherWarningSettingsChanged(); }); connect(weatherAlertShutterCB, &QCheckBox::clicked, this, &Observatory::weatherAlertSettingsChanged); connect(weatherAlertDomeCB, &QCheckBox::clicked, this, &Observatory::weatherAlertSettingsChanged); connect(weatherAlertDelaySB, static_cast(&QSpinBox::valueChanged), [this](int i) { Q_UNUSED(i); weatherAlertSettingsChanged(); }); } else { shutdownDome(); disconnect(weatherWarningShutterCB, &QCheckBox::clicked, this, &Observatory::weatherWarningSettingsChanged); disconnect(weatherWarningDomeCB, &QCheckBox::clicked, this, &Observatory::weatherWarningSettingsChanged); connect(weatherWarningDelaySB, static_cast(&QSpinBox::valueChanged), [this](int i) { Q_UNUSED(i); weatherWarningSettingsChanged(); }); disconnect(weatherAlertShutterCB, &QCheckBox::clicked, this, &Observatory::weatherAlertSettingsChanged); disconnect(weatherAlertDomeCB, &QCheckBox::clicked, this, &Observatory::weatherAlertSettingsChanged); connect(weatherAlertDelaySB, static_cast(&QSpinBox::valueChanged), [this](int i) { Q_UNUSED(i); weatherWarningSettingsChanged(); }); } } void Observatory::initDome() { domeBox->setEnabled(true); if (getDomeModel() != nullptr) { connect(getDomeModel(), &Ekos::ObservatoryDomeModel::newLog, this, &Ekos::Observatory::appendLogText); // dome motion buttons connect(motionCWButton, &QPushButton::clicked, [ = ](bool checked) { getDomeModel()->moveDome(true, checked); }); connect(motionCCWButton, &QPushButton::clicked, [ = ](bool checked) { getDomeModel()->moveDome(false, checked); }); if (getDomeModel()->canPark()) { connect(domePark, &QPushButton::clicked, getDomeModel(), &Ekos::ObservatoryDomeModel::park); connect(domeUnpark, &QPushButton::clicked, getDomeModel(), &Ekos::ObservatoryDomeModel::unpark); domePark->setEnabled(true); domeUnpark->setEnabled(true); } else { domePark->setEnabled(false); domeUnpark->setEnabled(false); } if (getDomeModel()->isRolloffRoof()) { SlavingBox->setVisible(false); domeAzimuthPosition->setText(i18nc("Not Applicable", "N/A")); enableMotionControl(true); } else { // initialize the dome motion controls domeAzimuthChanged(getDomeModel()->azimuthPosition()); // slaving showAutoSync(getDomeModel()->isAutoSync()); connect(slavingEnableButton, &QPushButton::clicked, this, [this]() { enableAutoSync(true); }); connect(slavingDisableButton, &QPushButton::clicked, this, [this]() { enableAutoSync(false); }); } // shutter handling if (getDomeModel()->hasShutter()) { shutterBox->setVisible(true); shutterBox->setEnabled(true); connect(shutterOpen, &QPushButton::clicked, getDomeModel(), &Ekos::ObservatoryDomeModel::openShutter); connect(shutterClosed, &QPushButton::clicked, getDomeModel(), &Ekos::ObservatoryDomeModel::closeShutter); shutterClosed->setEnabled(true); shutterOpen->setEnabled(true); setShutterStatus(getDomeModel()->shutterStatus()); useShutterCB->setVisible(true); } else { shutterBox->setVisible(false); weatherWarningShutterCB->setVisible(false); weatherAlertShutterCB->setVisible(false); useShutterCB->setVisible(false); } // abort button should always be available motionAbortButton->setEnabled(true); statusDefinitionBox->setVisible(true); statusDefinitionBox->setEnabled(true); // update the dome parking status setDomeParkStatus(getDomeModel()->parkStatus()); } } void Observatory::shutdownDome() { domeBox->setEnabled(false); shutterBox->setEnabled(false); shutterBox->setVisible(false); domePark->setEnabled(false); domeUnpark->setEnabled(false); shutterClosed->setEnabled(false); shutterOpen->setEnabled(false); disconnect(domePark, &QPushButton::clicked, getDomeModel(), &Ekos::ObservatoryDomeModel::park); disconnect(domeUnpark, &QPushButton::clicked, getDomeModel(), &Ekos::ObservatoryDomeModel::unpark); } void Observatory::setDomeStatus(ISD::Dome::Status status) { qCDebug(KSTARS_EKOS_OBSERVATORY) << "Setting dome status to " << status; switch (status) { case ISD::Dome::DOME_ERROR: appendLogText(i18n("%1 error. See INDI log for details.", getDomeModel()->isRolloffRoof() ? i18n("Rolloff roof") : i18n("Dome"))); motionCWButton->setChecked(false); motionCCWButton->setChecked(false); break; case ISD::Dome::DOME_IDLE: motionCWButton->setChecked(false); motionCWButton->setEnabled(true); motionCCWButton->setChecked(false); motionCCWButton->setEnabled(true); appendLogText(i18n("%1 is idle.", getDomeModel()->isRolloffRoof() ? i18n("Rolloff roof") : i18n("Dome"))); break; case ISD::Dome::DOME_MOVING_CW: motionCWButton->setChecked(true); motionCWButton->setEnabled(false); motionCCWButton->setChecked(false); motionCCWButton->setEnabled(true); if (getDomeModel()->isRolloffRoof()) { domeAzimuthPosition->setText(i18n("Opening")); toggleButtons(domeUnpark, i18n("Unparking"), domePark, i18n("Park")); appendLogText(i18n("Rolloff roof opening...")); } else { appendLogText(i18n("Dome is moving clockwise...")); } break; case ISD::Dome::DOME_MOVING_CCW: motionCWButton->setChecked(false); motionCWButton->setEnabled(true); motionCCWButton->setChecked(true); motionCCWButton->setEnabled(false); if (getDomeModel()->isRolloffRoof()) { domeAzimuthPosition->setText(i18n("Closing")); toggleButtons(domePark, i18n("Parking"), domeUnpark, i18n("Unpark")); appendLogText(i18n("Rolloff roof is closing...")); } else { appendLogText(i18n("Dome is moving counter clockwise...")); } break; case ISD::Dome::DOME_PARKED: setDomeParkStatus(ISD::PARK_PARKED); appendLogText(i18n("%1 is parked.", getDomeModel()->isRolloffRoof() ? i18n("Rolloff roof") : i18n("Dome"))); break; case ISD::Dome::DOME_PARKING: toggleButtons(domePark, i18n("Parking"), domeUnpark, i18n("Unpark")); motionCWButton->setEnabled(true); if (getDomeModel()->isRolloffRoof()) domeAzimuthPosition->setText(i18n("Closing")); else enableMotionControl(false); motionCWButton->setChecked(false); motionCCWButton->setChecked(true); appendLogText(i18n("%1 is parking...", getDomeModel()->isRolloffRoof() ? i18n("Rolloff roof") : i18n("Dome"))); break; case ISD::Dome::DOME_UNPARKING: toggleButtons(domeUnpark, i18n("Unparking"), domePark, i18n("Park")); motionCCWButton->setEnabled(true); if (getDomeModel()->isRolloffRoof()) domeAzimuthPosition->setText(i18n("Opening")); else enableMotionControl(false); motionCWButton->setChecked(true); motionCCWButton->setChecked(false); appendLogText(i18n("%1 is unparking...", getDomeModel()->isRolloffRoof() ? i18n("Rolloff roof") : i18n("Dome"))); break; case ISD::Dome::DOME_TRACKING: enableMotionControl(true); motionCWButton->setEnabled(true); motionCCWButton->setChecked(true); appendLogText(i18n("%1 is tracking.", getDomeModel()->isRolloffRoof() ? i18n("Rolloff roof") : i18n("Dome"))); break; } } void Observatory::setDomeParkStatus(ISD::ParkStatus status) { qCDebug(KSTARS_EKOS_OBSERVATORY) << "Setting dome park status to " << status; switch (status) { case ISD::PARK_UNPARKED: activateButton(domePark, i18n("Park")); buttonPressed(domeUnpark, i18n("Unparked")); motionCWButton->setChecked(false); motionCWButton->setEnabled(true); motionCCWButton->setChecked(false); if (getDomeModel()->isRolloffRoof()) domeAzimuthPosition->setText(i18n("Open")); else enableMotionControl(true); break; case ISD::PARK_PARKED: buttonPressed(domePark, i18n("Parked")); activateButton(domeUnpark, i18n("Unpark")); motionCWButton->setChecked(false); motionCCWButton->setChecked(false); motionCCWButton->setEnabled(false); if (getDomeModel()->isRolloffRoof()) domeAzimuthPosition->setText(i18n("Closed")); else enableMotionControl(false); break; default: break; } } void Observatory::setShutterStatus(ISD::Dome::ShutterStatus status) { qCDebug(KSTARS_EKOS_OBSERVATORY) << "Setting shutter status to " << status; switch (status) { case ISD::Dome::SHUTTER_OPEN: buttonPressed(shutterOpen, i18n("Opened")); activateButton(shutterClosed, i18n("Close")); appendLogText(i18n("Shutter is open.")); break; case ISD::Dome::SHUTTER_OPENING: toggleButtons(shutterOpen, i18n("Opening"), shutterClosed, i18n("Close")); appendLogText(i18n("Shutter is opening...")); break; case ISD::Dome::SHUTTER_CLOSED: buttonPressed(shutterClosed, i18n("Closed")); activateButton(shutterOpen, i18n("Open")); appendLogText(i18n("Shutter is closed.")); break; case ISD::Dome::SHUTTER_CLOSING: toggleButtons(shutterClosed, i18n("Closing"), shutterOpen, i18n("Open")); appendLogText(i18n("Shutter is closing...")); break; default: break; } } void Observatory::enableWeather(bool enable) { weatherBox->setEnabled(enable); clearGraphHistory->setVisible(enable); clearGraphHistory->setEnabled(enable); sensorGraphs->setVisible(enable); } void Observatory::clearSensorDataHistory() { std::map*>::iterator it; for (it=sensorGraphData.begin(); it != sensorGraphData.end(); ++it) { QVector* graphDataVector = it->second; if (graphDataVector->size() > 0) { // we keep only the last one QCPGraphData last = graphDataVector->last(); graphDataVector->clear(); QDateTime when = QDateTime(); - when.setSecsSinceEpoch(static_cast(last.key)); + when.setTime_t(static_cast(last.key)); updateSensorGraph(it->first, when, last.value); } } // force an update to the current graph if (selectedSensorID != "") selectedSensorChanged(selectedSensorID); } void Observatory::setWeatherModel(ObservatoryWeatherModel *model) { mObservatoryModel->setWeatherModel(model); // disable the weather UI enableWeather(false); if (model != nullptr) connect(model, &Ekos::ObservatoryWeatherModel::ready, this, &Ekos::Observatory::initWeather); else shutdownWeather(); // make invisible, since not implemented yet weatherWarningSchedulerCB->setVisible(false); weatherAlertSchedulerCB->setVisible(false); } void Observatory::enableMotionControl(bool enabled) { MotionBox->setEnabled(enabled); // absolute motion controls if (getDomeModel()->canAbsoluteMove()) { motionMoveAbsButton->setEnabled(enabled); absoluteMotionSB->setEnabled(enabled); } else { motionMoveAbsButton->setEnabled(false); absoluteMotionSB->setEnabled(false); } // relative motion controls if (getDomeModel()->canRelativeMove()) { motionMoveRelButton->setEnabled(enabled); relativeMotionSB->setEnabled(enabled); motionCWButton->setEnabled(enabled); motionCCWButton->setEnabled(enabled); } else { motionMoveRelButton->setEnabled(false); relativeMotionSB->setEnabled(false); motionCWButton->setEnabled(false); motionCCWButton->setEnabled(false); } // special case for rolloff roofs if (getDomeModel()->isRolloffRoof()) { motionCWButton->setText(i18n("Open")); motionCCWButton->setText(i18n("Close")); motionCWButton->setEnabled(enabled); motionCCWButton->setEnabled(enabled); motionMoveAbsButton->setVisible(false); motionMoveRelButton->setVisible(false); absoluteMotionSB->setVisible(false); relativeMotionSB->setVisible(false); } } void Observatory::enableAutoSync(bool enabled) { if (getDomeModel() == nullptr) showAutoSync(false); else { getDomeModel()->setAutoSync(enabled); showAutoSync(enabled); } } void Observatory::showAutoSync(bool enabled) { slavingEnableButton->setChecked(enabled); slavingDisableButton->setChecked(! enabled); } void Observatory::initWeather() { // initialize the weather sensor data group box sensorDataBoxLayout = new QGridLayout(); sensorData->setLayout(sensorDataBoxLayout); enableWeather(true); initSensorGraphs(); connect(weatherWarningBox, &QGroupBox::clicked, getWeatherModel(), &ObservatoryWeatherModel::setWarningActionsActive); connect(weatherAlertBox, &QGroupBox::clicked, getWeatherModel(), &ObservatoryWeatherModel::setAlertActionsActive); connect(getWeatherModel(), &Ekos::ObservatoryWeatherModel::newStatus, this, &Ekos::Observatory::setWeatherStatus); connect(getWeatherModel(), &Ekos::ObservatoryWeatherModel::disconnected, this, &Ekos::Observatory::shutdownWeather); connect(clearGraphHistory, &QPushButton::clicked, this, &Observatory::clearSensorDataHistory); connect(&weatherStatusTimer, &QTimer::timeout, [this]() { weatherWarningStatusLabel->setText(getWeatherModel()->getWarningActionsStatus()); weatherAlertStatusLabel->setText(getWeatherModel()->getAlertActionsStatus()); }); weatherBox->setEnabled(true); weatherActionsBox->setVisible(true); weatherActionsBox->setEnabled(true); weatherWarningBox->setChecked(getWeatherModel()->getWarningActionsActive()); weatherAlertBox->setChecked(getWeatherModel()->getAlertActionsActive()); setWeatherStatus(getWeatherModel()->status()); setWarningActions(getWeatherModel()->getWarningActions()); setAlertActions(getWeatherModel()->getAlertActions()); weatherStatusTimer.start(1000); + if (getWeatherModel()->refresh() == false) + appendLogText(i18n("Refreshing weather data failed.")); } void Observatory::shutdownWeather() { weatherStatusTimer.stop(); setWeatherStatus(ISD::Weather::WEATHER_IDLE); enableWeather(false); } void Observatory::updateSensorGraph(QString label, QDateTime now, double value) { // we assume that labels are unique and use the full label as identifier QString id = label; // lazy instantiation of the sensor data storage if (sensorGraphData[id] == nullptr) { sensorGraphData[id] = new QVector(); sensorRanges[id] = value > 0 ? 1 : (value < 0 ? -1 : 0); } // store the data - sensorGraphData[id]->append(QCPGraphData(static_cast(now.toSecsSinceEpoch()), value)); + sensorGraphData[id]->append(QCPGraphData(static_cast(now.toTime_t()), value)); // add data for the graphs we display if (selectedSensorID == id) { + // display first point in scattered style + if (sensorGraphData[id]->size() == 1) + sensorGraphs->graph()->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssCircle, QPen(Qt::black, 0), QBrush(Qt::green), 5)); + else + sensorGraphs->graph()->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssNone)); + // display data point sensorGraphs->graph()->addData(sensorGraphData[id]->last().key, sensorGraphData[id]->last().value); sensorGraphs->rescaleAxes(); // ensure that the 0-line is visible if ((sensorRanges[id] > 0 && value < 0) || (sensorRanges[id] < 0 && value > 0)) sensorRanges[id] = 0; // ensure visibility of the 0-line on the y-axis if (sensorRanges[id] > 0) sensorGraphs->yAxis->setRangeLower(0); else if (sensorRanges[id] < 0) sensorGraphs->yAxis->setRangeUpper(0); sensorGraphs->replot(); } } void Observatory::updateSensorData(std::vector weatherData) { std::vector::iterator it; QDateTime now = KStarsData::Instance()->lt(); for (it=weatherData.begin(); it != weatherData.end(); ++it) { QString const id = it->label; if (sensorDataWidgets[id] == nullptr) { QPushButton* labelWidget = new QPushButton(it->label); labelWidget->setSizePolicy(QSizePolicy(QSizePolicy::Expanding, QSizePolicy::Fixed)); labelWidget->setCheckable(true); labelWidget->setStyleSheet("QPushButton:checked\n{\nbackground-color: maroon;\nborder: 1px outset;\nfont-weight:bold;\n}"); // we need the object name since the label may contain '&' for keyboard shortcuts labelWidget->setObjectName(it->label); QLineEdit* valueWidget = new QLineEdit(QString().setNum(it->value, 'f', 2)); // fix width to enable stretching of the graph valueWidget->setMinimumWidth(96); valueWidget->setMaximumWidth(96); valueWidget->setReadOnly(true); valueWidget->setAlignment(Qt::AlignRight); sensorDataWidgets[id] = new QPair(labelWidget, valueWidget); sensorDataBoxLayout->addWidget(labelWidget, sensorDataBoxLayout->rowCount(), 0); sensorDataBoxLayout->addWidget(valueWidget, sensorDataBoxLayout->rowCount()-1, 1); // initial graph selection if (selectedSensorID == "" && id.indexOf('(') > 0 && id.indexOf('(') < id.indexOf(')')) { selectedSensorID = id; labelWidget->setChecked(true); } sensorDataNamesGroup->addButton(labelWidget); } else { sensorDataWidgets[id]->first->setText(QString(it->label)); sensorDataWidgets[id]->second->setText(QString().setNum(it->value, 'f', 2)); } // store sensor data unit if necessary updateSensorGraph(it->label, now, it->value); } } void Observatory::mouseOverLine(QMouseEvent *event) { double key = sensorGraphs->xAxis->pixelToCoord(event->localPos().x()); QCPGraph *graph = qobject_cast(sensorGraphs->plottableAt(event->pos(), false)); if (graph) { int index = sensorGraphs->graph(0)->findBegin(key); - double value = sensorGraphs->graph(0)->dataMainValue(index); + double value = sensorGraphs->graph(0)->dataMainValue(index); + QDateTime when = QDateTime::fromTime_t(sensorGraphs->graph(0)->dataMainKey(index)); QToolTip::showText( event->globalPos(), - i18n("%1 = %2", selectedSensorID, value)); + i18n("%1 = %2 @ %3", selectedSensorID, value, when.toString("hh:mm"))); } else { QToolTip::hideText(); } } void Observatory::selectedSensorChanged(QString id) { QVector *data = sensorGraphData[id]; if (data != nullptr) { // copy the graph data to the graph container QCPGraphDataContainer *container = new QCPGraphDataContainer(); for (QVector::iterator it = data->begin(); it != data->end(); ++it) container->add(QCPGraphData(it->key, it->value)); sensorGraphs->graph()->setData(QSharedPointer(container)); sensorGraphs->rescaleAxes(); sensorGraphs->replot(); selectedSensorID = id; } } void Observatory::setWeatherStatus(ISD::Weather::Status status) { std::string label; switch (status) { case ISD::Weather::WEATHER_OK: label = "security-high"; appendLogText(i18n("Weather is OK")); break; case ISD::Weather::WEATHER_WARNING: label = "security-medium"; appendLogText(i18n("Weather Warning")); break; case ISD::Weather::WEATHER_ALERT: label = "security-low"; appendLogText(i18n("Weather Alert")); break; default: label = ""; break; } weatherStatusLabel->setPixmap(QIcon::fromTheme(label.c_str()).pixmap(QSize(28, 28))); std::vector weatherData = getWeatherModel()->getWeatherData(); // update weather sensor data updateSensorData(weatherData); } void Observatory::initSensorGraphs() { // set some pens, brushes and backgrounds: sensorGraphs->xAxis->setBasePen(QPen(Qt::white, 1)); sensorGraphs->yAxis->setBasePen(QPen(Qt::white, 1)); sensorGraphs->xAxis->setTickPen(QPen(Qt::white, 1)); sensorGraphs->yAxis->setTickPen(QPen(Qt::white, 1)); sensorGraphs->xAxis->setSubTickPen(QPen(Qt::white, 1)); sensorGraphs->yAxis->setSubTickPen(QPen(Qt::white, 1)); sensorGraphs->xAxis->setTickLabelColor(Qt::white); sensorGraphs->yAxis->setTickLabelColor(Qt::white); sensorGraphs->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); sensorGraphs->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); sensorGraphs->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); sensorGraphs->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); sensorGraphs->xAxis->grid()->setSubGridVisible(true); sensorGraphs->yAxis->grid()->setSubGridVisible(true); sensorGraphs->xAxis->grid()->setZeroLinePen(Qt::NoPen); sensorGraphs->yAxis->grid()->setZeroLinePen(Qt::NoPen); sensorGraphs->xAxis->setUpperEnding(QCPLineEnding::esSpikeArrow); sensorGraphs->yAxis->setUpperEnding(QCPLineEnding::esSpikeArrow); QLinearGradient plotGradient; plotGradient.setStart(0, 0); plotGradient.setFinalStop(0, 350); plotGradient.setColorAt(0, QColor(80, 80, 80)); plotGradient.setColorAt(1, QColor(50, 50, 50)); sensorGraphs->setBackground(plotGradient); QLinearGradient axisRectGradient; axisRectGradient.setStart(0, 0); axisRectGradient.setFinalStop(0, 350); axisRectGradient.setColorAt(0, QColor(80, 80, 80)); axisRectGradient.setColorAt(1, QColor(30, 30, 30)); sensorGraphs->axisRect()->setBackground(axisRectGradient); QSharedPointer dateTicker(new QCPAxisTickerDateTime); dateTicker->setDateTimeFormat("hh:mm"); dateTicker->setTickCount(2); sensorGraphs->xAxis->setTicker(dateTicker); // allow dragging in all directions sensorGraphs->setInteraction(QCP::iRangeDrag, true); sensorGraphs->setInteraction(QCP::iRangeZoom); // create the universal graph QCPGraph *graph = sensorGraphs->addGraph(); - graph->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssCircle, QPen(Qt::black, 0), QBrush(Qt::green), 5)); - graph->setPen(QPen(Qt::darkGreen)); + graph->setPen(QPen(Qt::darkGreen, 2)); graph->setBrush(QColor(10, 100, 50, 70)); // ensure that the 0-line is visible sensorGraphs->yAxis->setRangeLower(0); sensorDataNamesGroup = new QButtonGroup(); // enable changing the displayed sensor connect(sensorDataNamesGroup, static_cast(&QButtonGroup::buttonClicked), [this](QAbstractButton *button) { selectedSensorChanged(button->objectName()); }); // show current temperature below the mouse connect(sensorGraphs, &QCustomPlot::mouseMove, this, &Ekos::Observatory::mouseOverLine); } void Observatory::weatherWarningSettingsChanged() { struct WeatherActions actions; actions.parkDome = weatherWarningDomeCB->isChecked(); actions.closeShutter = weatherWarningShutterCB->isChecked(); actions.delay = static_cast(weatherWarningDelaySB->value()); getWeatherModel()->setWarningActions(actions); } void Observatory::weatherAlertSettingsChanged() { struct WeatherActions actions; actions.parkDome = weatherAlertDomeCB->isChecked(); actions.closeShutter = weatherAlertShutterCB->isChecked(); actions.delay = static_cast(weatherAlertDelaySB->value()); getWeatherModel()->setAlertActions(actions); } void Observatory::observatoryStatusChanged(bool ready) { // statusReadyButton->setEnabled(!ready); statusReadyButton->setChecked(ready); emit newStatus(ready); } void Observatory::domeAzimuthChanged(double position) { domeAzimuthPosition->setText(QString::number(position, 'f', 2)); } void Observatory::setWarningActions(WeatherActions actions) { - weatherWarningDomeCB->setChecked(actions.parkDome); - weatherWarningShutterCB->setChecked(actions.closeShutter); + if (getDomeModel() != nullptr) + weatherWarningDomeCB->setChecked(actions.parkDome); + else + weatherWarningDomeCB->setChecked(actions.parkDome); + + if (getDomeModel() != nullptr && getDomeModel()->hasShutter()) + weatherWarningShutterCB->setChecked(actions.closeShutter); + else + weatherWarningShutterCB->setChecked(actions.closeShutter); + weatherWarningDelaySB->setValue(static_cast(actions.delay)); } void Observatory::setAlertActions(WeatherActions actions) { - weatherAlertDomeCB->setChecked(actions.parkDome); - weatherAlertShutterCB->setChecked(actions.closeShutter); + if (getDomeModel() != nullptr) + weatherAlertDomeCB->setChecked(actions.parkDome); + else + weatherAlertDomeCB->setChecked(false); + + if (getDomeModel() != nullptr && getDomeModel()->hasShutter()) + weatherAlertShutterCB->setChecked(actions.closeShutter); + else + weatherAlertShutterCB->setChecked(false); + weatherAlertDelaySB->setValue(static_cast(actions.delay)); } void Observatory::toggleButtons(QPushButton *buttonPressed, QString titlePressed, QPushButton *buttonCounterpart, QString titleCounterpart) { buttonPressed->setEnabled(false); buttonPressed->setText(titlePressed); buttonCounterpart->setEnabled(true); buttonCounterpart->setChecked(false); buttonCounterpart->setCheckable(false); buttonCounterpart->setText(titleCounterpart); } void Observatory::activateButton(QPushButton *button, QString title) { button->setEnabled(true); button->setCheckable(false); button->setText(title); } void Observatory::buttonPressed(QPushButton *button, QString title) { button->setEnabled(false); button->setCheckable(true); button->setChecked(true); button->setText(title); } void Observatory::statusControlSettingsChanged() { ObservatoryStatusControl control; control.useDome = useDomeCB->isChecked(); control.useShutter = useShutterCB->isChecked(); control.useWeather = useWeatherCB->isChecked(); mObservatoryModel->setStatusControl(control); } void Observatory::appendLogText(const QString &text) { m_LogText.insert(0, i18nc("log entry; %1 is the date, %2 is the text", "%1 %2", KStarsData::Instance()->lt().toString("yyyy-MM-ddThh:mm:ss"), text)); qCInfo(KSTARS_EKOS_OBSERVATORY) << text; emit newLog(text); } void Observatory::clearLog() { m_LogText.clear(); emit newLog(QString()); } } diff --git a/kstars/ekos/observatory/observatory.ui b/kstars/ekos/observatory/observatory.ui index 4f43c52c8..8e3fca6a5 100644 --- a/kstars/ekos/observatory/observatory.ui +++ b/kstars/ekos/observatory/observatory.ui @@ -1,1161 +1,1167 @@ Observatory 0 0 800 600 Observatory - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - - 3 + + + Qt::Horizontal - + 3 false + + + 1 + 0 + + Dome 3 3 3 3 160 0 320 16777215 24 75 true 0 Qt::AlignCenter Position 3 3 3 3 false Motion false Absolute position the dome should move. 999.990000000000009 false 96 36 96 36 Move the dome to the given absolute position. Move (abs) false Relative position the dome should move. -999.990000000000009 999.990000000000009 false 96 36 96 36 Move the dome for the given degrees and direction. QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Move (rel) false 96 36 96 36 Rotate clockwise QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } &CW true false 96 36 96 36 Rotate counter clockwise QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } CCW true 3 3 3 3 Slaving Qt::Horizontal 40 20 96 36 96 36 <html><head/><body><p>Enable slaving, dome motion <span style=" font-weight:600;">follows telescope motion</span></p></body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Enable true 96 36 96 36 <html><head/><body><p>Disable slaving, dome <span style=" font-weight:600;">does not follow telescope motion</span>.</p></body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Disable true 3 3 3 3 false 96 36 96 36 <html><head/><body><p>Park the dome. For advanced control of the dome please use the INDI tab.</p></body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Park 32 16 false false 96 36 96 36 <html><head/><body><p>Unpark the dome. For advanced control of the dome please use the INDI tab.</p></body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } UnPark false false Qt::Horizontal 40 20 false 96 36 96 36 Abort dome motion QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Abort false + + + 1 + 0 + + Shutter 3 3 3 3 3 Qt::Horizontal 40 20 false 96 36 72 36 <html><head/><body><p>Close the shutter of the dome. For advanced control of the dome please use the INDI tab.</p></body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Close 32 16 false false 96 36 72 36 <html><head/><body><p>Open the shutter of the dome. For advanced control of the dome please use the INDI tab.</p></body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Open false false false + + + 1 + 0 + + Observatory Status 3 3 3 3 3 <html><head/><body><p>If selected, the dome needs to be unparked for the observatory status being &quot;READY&quot;.</p></body></html> Dome <html><head/><body><p>If selected, the shutter needs to be open for the observatory status being &quot;READY&quot;.</p></body></html> Shutter <html><head/><body><p>If selected, the weather needs to be OK for the observatory status being &quot;READY&quot;.</p></body></html> Weather false 96 36 72 36 <html><head/><body><p>Observatory status. Select the observatory elements that are relevant for the status:</p> <ul> <li><b>Dome</b>: unparked &rarr; ready</li> <li><b>Shutter</b>: open &rarr; ready</li> <li><b>Weather</b>: OK &rarr; ready</li> </ul> </body></html> QPushButton:checked { background-color: maroon; border: 1px outset; font-weight:bold; } Ready 32 16 true false - - - - - false + + + + false + + + + 1 + 0 + + + + Weather + + + + 3 - - Weather + + 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - - - false + + 3 + + + 3 + + + 3 + + + + + + 0 + 0 + + + + + + + + + + + + 140 + 0 + + + + <html><head/><body><p>Current data of the weather sensors. Click on the sensor name to display its data over time.</p></body></html> + + + + + + + Qt::Horizontal + + + + 40 + 20 + + + + + + + + false + + + Actions + + + + 3 - - Actions + + 3 + + + 3 + + + 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - - - War&ning + + 3 + + + + + War&ning + + + true + + + + 3 - - true + + 0 - - - 3 - - - 0 - - - 3 - - - 0 - - - 3 - - - - - Park Dome - - - - - - - Close Shutter - - - - - - - Stop Scheduler - - - - - - - - - <html><head/><body><p><span style=" font-style:italic;">Status: inactive</span></p></body></html> - - - Qt::AutoText - - - - - - - Qt::Horizontal - - - - 40 - 20 - - - - - - - - Delay (sec): - - - - - - - Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter - - - 9999 - - - - - - - - - - - - Ale&rt + + 3 - - true + + 0 - - - 3 - - - 3 - - - 3 - - - 0 - - - 3 - - - - - Close Shutter - - - - - - - Park Dome - - - - - - - Stop Scheduler - - - - - - - - - <html><head/><body><p><span style=" font-style:italic;">Status: inactive</span></p></body></html> - - - Qt::AutoText - - - - - - - Qt::Horizontal - - - - 40 - 20 - - - - - - - - Delay (sec): - - - - - - - Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter - - - 9999 - - - - - - - - - - - - - - - - 0 - 0 - - - - - 28 - 28 - - - - - 28 - 28 - - - - - - - - - - - Qt::Horizontal - - - QSizePolicy::Fixed - - - - 10 - 20 - - - - - - - - - 0 - 0 - - - - - - - - - - - - 140 - 0 - - - - <html><head/><body><p>Current data of the weather sensors. Click on the sensor name to display its data over time.</p></body></html> - - - - - - - false - - - - 24 - 24 - - - - - 24 - 24 - - - - <html><head/><body><p>Clear sensor data history</p></body></html> - - - - - - - .. - - - - 24 - 24 - - - - - - - - Qt::Horizontal - - - - 40 - 20 - - - - - - - - + + 3 + + + + + Park Dome + + + + + + + Close Shutter + + + + + + + Stop Scheduler + + + + + + + + + <html><head/><body><p><span style=" font-style:italic;">Status: inactive</span></p></body></html> + + + Qt::AutoText + + + + + + + Qt::Horizontal + + + + 40 + 20 + + + + + + + + Delay (sec): + + + + + + + Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter + + + 9999 + + + + + + + + + + + + Ale&rt + + + true + + + + 3 + + + 3 + + + 3 + + + 0 + + + 3 + + + + + Close Shutter + + + + + + + Park Dome + + + + + + + Stop Scheduler + + + + + + + + + <html><head/><body><p><span style=" font-style:italic;">Status: inactive</span></p></body></html> + + + Qt::AutoText + + + + + + + Qt::Horizontal + + + + 40 + 20 + + + + + + + + Delay (sec): + + + + + + + Qt::AlignRight|Qt::AlignTrailing|Qt::AlignVCenter + + + 9999 + + + + + + + + + + + + + + + Qt::Horizontal + + + QSizePolicy::Fixed + + + + 10 + 20 + + + + + + + + + 0 + 0 + + + + + 28 + 28 + + + + + 28 + 28 + + + + + + + + + + + false + + + + 24 + 24 + + + + + 24 + 24 + + + + <html><head/><body><p>Clear sensor data history</p></body></html> + + + + + + + + + + 24 + 24 + + + + + + + Qt::Vertical 20 3 QCustomPlot QWidget
auxiliary/qcustomplot.h
1
diff --git a/kstars/ekos/observatory/observatoryweathermodel.cpp b/kstars/ekos/observatory/observatoryweathermodel.cpp index f3e082b1a..9df8da90b 100644 --- a/kstars/ekos/observatory/observatoryweathermodel.cpp +++ b/kstars/ekos/observatory/observatoryweathermodel.cpp @@ -1,193 +1,228 @@ /* Ekos Observatory Module Copyright (C) Wolfgang Reissenberger This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "observatoryweathermodel.h" #include "Options.h" #include namespace Ekos { void ObservatoryWeatherModel::initModel(Weather *weather) { weatherInterface = weather; // ensure that we start the timers if required weatherChanged(status()); connect(weatherInterface, &Weather::ready, this, &ObservatoryWeatherModel::updateWeatherStatus); connect(weatherInterface, &Weather::newStatus, this, &ObservatoryWeatherModel::weatherChanged); connect(weatherInterface, &Weather::newWeatherData, this, &ObservatoryWeatherModel::updateWeatherData); connect(weatherInterface, &Weather::disconnected, this, &ObservatoryWeatherModel::disconnected); // read the default values warningActionsActive = Options::warningActionsActive(); warningActions.parkDome = Options::weatherWarningCloseDome(); warningActions.closeShutter = Options::weatherWarningCloseShutter(); warningActions.delay = Options::weatherWarningDelay(); - warningActions.stopScheduler = Options::weatherAlertStopScheduler(); alertActionsActive = Options::alertActionsActive(); alertActions.parkDome = Options::weatherAlertCloseDome(); alertActions.closeShutter = Options::weatherAlertCloseShutter(); - alertActions.stopScheduler = Options::weatherAlertStopScheduler(); alertActions.delay = Options::weatherAlertDelay(); + // not implemented yet + warningActions.stopScheduler = false; + alertActions.stopScheduler = false; + warningTimer.setInterval(static_cast(warningActions.delay * 1000)); warningTimer.setSingleShot(true); alertTimer.setInterval(static_cast(alertActions.delay * 1000)); alertTimer.setSingleShot(true); connect(&warningTimer, &QTimer::timeout, [this]() { execute(warningActions); }); connect(&alertTimer, &QTimer::timeout, [this]() { execute(alertActions); }); if (weatherInterface->status() != ISD::Weather::WEATHER_IDLE) emit ready(); } ISD::Weather::Status ObservatoryWeatherModel::status() { if (weatherInterface == nullptr) return ISD::Weather::WEATHER_IDLE; return weatherInterface->status(); } +bool ObservatoryWeatherModel::refresh() +{ + return weatherInterface->refresh(); +} + void ObservatoryWeatherModel::setWarningActionsActive(bool active) { warningActionsActive = active; Options::setWarningActionsActive(active); // stop warning actions if deactivated if (!active && warningTimer.isActive()) warningTimer.stop(); // start warning timer if activated - else if (active && !warningTimer.isActive() && weatherInterface->status() == ISD::Weather::WEATHER_WARNING) - warningTimer.start(); + else if (weatherInterface->status() == ISD::Weather::WEATHER_WARNING) + startWarningTimer(); +} + +void ObservatoryWeatherModel::startWarningTimer() +{ + if (warningActionsActive && (warningActions.parkDome || warningActions.closeShutter || warningActions.stopScheduler)) + { + if (!warningTimer.isActive()) + warningTimer.start(); + } + else if (warningTimer.isActive()) + warningTimer.stop(); } void ObservatoryWeatherModel::setAlertActionsActive(bool active) { alertActionsActive = active; Options::setAlertActionsActive(active); // stop alert actions if deactivated if (!active && alertTimer.isActive()) alertTimer.stop(); // start alert timer if activated - else if (active && !alertTimer.isActive() && weatherInterface->status() == ISD::Weather::WEATHER_ALERT) - alertTimer.start(); + else if (weatherInterface->status() == ISD::Weather::WEATHER_ALERT) + startAlertTimer(); +} + +void ObservatoryWeatherModel::startAlertTimer() +{ + if (alertActionsActive && (alertActions.parkDome || alertActions.closeShutter || alertActions.stopScheduler)) + { + if (!alertTimer.isActive()) + alertTimer.start(); + } + else if (alertTimer.isActive()) + alertTimer.stop(); } void ObservatoryWeatherModel::setWarningActions(WeatherActions actions) { warningActions = actions; Options::setWeatherWarningCloseDome(actions.parkDome); Options::setWeatherWarningCloseShutter(actions.closeShutter); Options::setWeatherWarningDelay(actions.delay); - warningTimer.setInterval(static_cast(actions.delay * 1000)); + if (!warningTimer.isActive()) + warningTimer.setInterval(static_cast(actions.delay * 1000)); + + if (weatherInterface->status() == ISD::Weather::WEATHER_WARNING) + startWarningTimer(); } QString ObservatoryWeatherModel::getWarningActionsStatus() { if (warningTimer.isActive()) { int remaining = warningTimer.remainingTime() / 1000; return i18np("%1 second remaining", "%1 seconds remaining", remaining); } return i18n("Status: inactive"); } void ObservatoryWeatherModel::setAlertActions(WeatherActions actions) { alertActions = actions; Options::setWeatherAlertCloseDome(actions.parkDome); Options::setWeatherAlertCloseShutter(actions.closeShutter); Options::setWeatherAlertDelay(actions.delay); - alertTimer.setInterval(static_cast(actions.delay * 1000)); + if (!alertTimer.isActive()) + alertTimer.setInterval(static_cast(actions.delay * 1000)); + + if (weatherInterface->status() == ISD::Weather::WEATHER_ALERT) + startAlertTimer(); } QString ObservatoryWeatherModel::getAlertActionsStatus() { if (alertTimer.isActive()) { int remaining = alertTimer.remainingTime() / 1000; return i18np("%1 second remaining", "%1 seconds remaining", remaining); } return i18n("Status: inactive"); } void ObservatoryWeatherModel::updateWeatherStatus() { weatherChanged(status()); emit ready(); } void ObservatoryWeatherModel::weatherChanged(ISD::Weather::Status status) { switch (status) { case ISD::Weather::WEATHER_OK: warningTimer.stop(); alertTimer.stop(); break; case ISD::Weather::WEATHER_WARNING: - if (warningActionsActive) - warningTimer.start(); alertTimer.stop(); + startWarningTimer(); break; case ISD::Weather::WEATHER_ALERT: warningTimer.stop(); - if (alertActionsActive) - alertTimer.start(); + startAlertTimer(); break; default: break; } emit newStatus(status); } void ObservatoryWeatherModel::updateWeatherData(std::vector entries) { // add or update all received values for (std::vector::iterator entry = entries.begin(); entry != entries.end(); ++entry) { // update if already existing unsigned long pos = findWeatherData(entry->name); if (pos < m_WeatherData.size()) m_WeatherData[pos].value = entry->value; // new weather sensor? else if (entry->name.startsWith("WEATHER_")) m_WeatherData.push_back({QString(entry->name), QString(entry->label), entry->value}); } // update UI emit newStatus(status()); } unsigned long ObservatoryWeatherModel::findWeatherData(const QString name) { unsigned long i; for (i = 0; i < m_WeatherData.size(); i++) { if (m_WeatherData[i].name.compare(name) == 0) return i; } // none found return i; } } // Ekos diff --git a/kstars/ekos/observatory/observatoryweathermodel.h b/kstars/ekos/observatory/observatoryweathermodel.h index 28095d5ab..9586cb2e1 100644 --- a/kstars/ekos/observatory/observatoryweathermodel.h +++ b/kstars/ekos/observatory/observatoryweathermodel.h @@ -1,107 +1,112 @@ /* Ekos Observatory Module Copyright (C) Wolfgang Reissenberger This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include "ekos/auxiliary/weather.h" #include namespace Ekos { struct WeatherActions { bool parkDome, closeShutter, stopScheduler; uint delay; }; class ObservatoryWeatherModel : public QObject { Q_OBJECT public: ObservatoryWeatherModel() = default; void initModel(Weather *weather); ISD::Weather::Status status(); + bool refresh(); + /** * @brief Actions to be taken when a weather warning occurs */ WeatherActions getWarningActions() { return warningActions; } QString getWarningActionsStatus(); void setWarningActions(WeatherActions actions); bool getWarningActionsActive() { return warningActionsActive; } /** * @brief Actions to be taken when a weather alert occurs */ WeatherActions getAlertActions() { return alertActions; } QString getAlertActionsStatus(); void setAlertActions(WeatherActions actions); bool getAlertActionsActive() { return alertActionsActive; } /** * @brief Retrieve the currently known weather sensor values */ std::vector getWeatherData() { return m_WeatherData; } public slots: /** * @brief Activate or deactivate the weather warning actions */ void setWarningActionsActive(bool active); /** * @brief Activate or deactivate the weather alert actions */ void setAlertActionsActive(bool active); private: Weather *weatherInterface; QTimer warningTimer, alertTimer; struct WeatherActions warningActions, alertActions; bool warningActionsActive, alertActionsActive; + void startAlertTimer(); + void startWarningTimer(); + // hold all sensor data received from the weather station std::vector m_WeatherData; // update the stored values void updateWeatherData(std::vector entries); unsigned long findWeatherData(QString name); - private slots: +private slots: void weatherChanged(ISD::Weather::Status status); void updateWeatherStatus(); signals: void newStatus(ISD::Weather::Status status); void ready(); void disconnected(); /** * @brief signal that actions need to be taken due to weather conditions */ void execute(WeatherActions actions); }; } diff --git a/kstars/indi/indiccd.cpp b/kstars/indi/indiccd.cpp index adcbb7be8..48d1f0cb8 100644 --- a/kstars/indi/indiccd.cpp +++ b/kstars/indi/indiccd.cpp @@ -1,2488 +1,2490 @@ /* INDI CCD Copyright (C) 2012 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "indiccd.h" #include "config-kstars.h" #include "indi_debug.h" #include "clientmanager.h" #include "driverinfo.h" #include "guimanager.h" #include "kspaths.h" #include "kstars.h" #include "kstarsdata.h" #include "Options.h" #include "streamwg.h" //#include "ekos/manager.h" #ifdef HAVE_CFITSIO #include "fitsviewer/fitsdata.h" #endif #include #include #include #include const QStringList RAWFormats = { "cr2", "cr3", "crw", "nef", "raf", "dng", "arw" }; namespace ISD { CCDChip::CCDChip(ISD::CCD *ccd, ChipType cType) { baseDevice = ccd->getBaseDevice(); clientManager = ccd->getDriverInfo()->getClientManager(); parentCCD = ccd; type = cType; } FITSView *CCDChip::getImageView(FITSMode imageType) { switch (imageType) { case FITS_NORMAL: return normalImage; case FITS_FOCUS: return focusImage; case FITS_GUIDE: return guideImage; case FITS_CALIBRATE: return calibrationImage; case FITS_ALIGN: return alignImage; } return nullptr; } void CCDChip::setImageView(FITSView *image, FITSMode imageType) { switch (imageType) { case FITS_NORMAL: normalImage = image; break; case FITS_FOCUS: focusImage = image; break; case FITS_GUIDE: guideImage = image; break; case FITS_CALIBRATE: calibrationImage = image; break; case FITS_ALIGN: alignImage = image; break; } if (image) imageData = image->getImageData(); } bool CCDChip::getFrameMinMax(int *minX, int *maxX, int *minY, int *maxY, int *minW, int *maxW, int *minH, int *maxH) { INumberVectorProperty *frameProp = nullptr; switch (type) { case PRIMARY_CCD: frameProp = baseDevice->getNumber("CCD_FRAME"); break; case GUIDE_CCD: frameProp = baseDevice->getNumber("GUIDER_FRAME"); break; } if (frameProp == nullptr) return false; INumber *arg = IUFindNumber(frameProp, "X"); if (arg == nullptr) return false; if (minX) *minX = arg->min; if (maxX) *maxX = arg->max; arg = IUFindNumber(frameProp, "Y"); if (arg == nullptr) return false; if (minY) *minY = arg->min; if (maxY) *maxY = arg->max; arg = IUFindNumber(frameProp, "WIDTH"); if (arg == nullptr) return false; if (minW) *minW = arg->min; if (maxW) *maxW = arg->max; arg = IUFindNumber(frameProp, "HEIGHT"); if (arg == nullptr) return false; if (minH) *minH = arg->min; if (maxH) *maxH = arg->max; return true; } bool CCDChip::setImageInfo(uint16_t width, uint16_t height, double pixelX, double pixelY, uint8_t bitdepth) { INumberVectorProperty *ccdInfoProp = nullptr; switch (type) { case PRIMARY_CCD: ccdInfoProp = baseDevice->getNumber("CCD_INFO"); break; case GUIDE_CCD: ccdInfoProp = baseDevice->getNumber("GUIDER_INFO"); break; } if (ccdInfoProp == nullptr) return false; ccdInfoProp->np[0].value = width; ccdInfoProp->np[1].value = height; ccdInfoProp->np[2].value = std::hypotf(pixelX, pixelY); ccdInfoProp->np[3].value = pixelX; ccdInfoProp->np[4].value = pixelY; ccdInfoProp->np[5].value = bitdepth; clientManager->sendNewNumber(ccdInfoProp); return true; } bool CCDChip::getImageInfo(uint16_t &width, uint16_t &height, double &pixelX, double &pixelY, uint8_t &bitdepth) { INumberVectorProperty *ccdInfoProp = nullptr; switch (type) { case PRIMARY_CCD: ccdInfoProp = baseDevice->getNumber("CCD_INFO"); break; case GUIDE_CCD: ccdInfoProp = baseDevice->getNumber("GUIDER_INFO"); break; } if (ccdInfoProp == nullptr) return false; width = ccdInfoProp->np[0].value; height = ccdInfoProp->np[1].value; pixelX = ccdInfoProp->np[2].value; pixelY = ccdInfoProp->np[3].value; bitdepth = ccdInfoProp->np[5].value; return true; } bool CCDChip::getBayerInfo(uint16_t &offsetX, uint16_t &offsetY, QString &pattern) { ITextVectorProperty * bayerTP = baseDevice->getText("CCD_CFA"); if (!bayerTP) return false; offsetX = QString(bayerTP->tp[0].text).toInt(); offsetY = QString(bayerTP->tp[1].text).toInt(); pattern = QString(bayerTP->tp[2].text); return true; } bool CCDChip::getFrame(int *x, int *y, int *w, int *h) { INumberVectorProperty *frameProp = nullptr; switch (type) { case PRIMARY_CCD: frameProp = baseDevice->getNumber("CCD_FRAME"); break; case GUIDE_CCD: frameProp = baseDevice->getNumber("GUIDER_FRAME"); break; } if (frameProp == nullptr) return false; INumber *arg = IUFindNumber(frameProp, "X"); if (arg == nullptr) return false; *x = arg->value; arg = IUFindNumber(frameProp, "Y"); if (arg == nullptr) return false; *y = arg->value; arg = IUFindNumber(frameProp, "WIDTH"); if (arg == nullptr) return false; *w = arg->value; arg = IUFindNumber(frameProp, "HEIGHT"); if (arg == nullptr) return false; *h = arg->value; return true; } bool CCDChip::resetFrame() { INumberVectorProperty *frameProp = nullptr; switch (type) { case PRIMARY_CCD: frameProp = baseDevice->getNumber("CCD_FRAME"); break; case GUIDE_CCD: frameProp = baseDevice->getNumber("GUIDER_FRAME"); break; } if (frameProp == nullptr) return false; INumber *xarg = IUFindNumber(frameProp, "X"); INumber *yarg = IUFindNumber(frameProp, "Y"); INumber *warg = IUFindNumber(frameProp, "WIDTH"); INumber *harg = IUFindNumber(frameProp, "HEIGHT"); if (xarg && yarg && warg && harg) { if (xarg->value == xarg->min && yarg->value == yarg->min && warg->value == warg->max && harg->value == harg->max) return false; xarg->value = xarg->min; yarg->value = yarg->min; warg->value = warg->max; harg->value = harg->max; clientManager->sendNewNumber(frameProp); return true; } return false; } bool CCDChip::setFrame(int x, int y, int w, int h, bool force) { INumberVectorProperty *frameProp = nullptr; switch (type) { case PRIMARY_CCD: frameProp = baseDevice->getNumber("CCD_FRAME"); break; case GUIDE_CCD: frameProp = baseDevice->getNumber("GUIDER_FRAME"); break; } if (frameProp == nullptr) return false; INumber *xarg = IUFindNumber(frameProp, "X"); INumber *yarg = IUFindNumber(frameProp, "Y"); INumber *warg = IUFindNumber(frameProp, "WIDTH"); INumber *harg = IUFindNumber(frameProp, "HEIGHT"); if (xarg && yarg && warg && harg) { if (!force && xarg->value == x && yarg->value == y && warg->value == w && harg->value == h) return true; xarg->value = x; yarg->value = y; warg->value = w; harg->value = h; clientManager->sendNewNumber(frameProp); return true; } return false; } //bool CCDChip::capture(double exposure) //{ // INumberVectorProperty *expProp = nullptr; // switch (type) // { // case PRIMARY_CCD: // expProp = baseDevice->getNumber("CCD_EXPOSURE"); // break; // case GUIDE_CCD: // expProp = baseDevice->getNumber("GUIDER_EXPOSURE"); // break; // } // if (expProp == nullptr) // return false; // expProp->np[0].value = exposure; // clientManager->sendNewNumber(expProp); // return true; //} bool CCDChip::capture(double exposure) { INumberVectorProperty *expProp = nullptr; switch (type) { case PRIMARY_CCD: expProp = baseDevice->getNumber("CCD_EXPOSURE"); break; case GUIDE_CCD: expProp = baseDevice->getNumber("GUIDER_EXPOSURE"); break; } if (expProp == nullptr) return false; // If we have exposure presets, let's limit the exposure value // to the preset values if it falls within their range of max/min if (Options::forceDSLRPresets()) { QMap exposurePresets = parentCCD->getExposurePresets(); if (!exposurePresets.isEmpty()) { double min, max; QPair minmax = parentCCD->getExposurePresetsMinMax(); min = minmax.first; max = minmax.second; if (exposure > min && exposure < max) { double diff = 1e6; double closestMatch = exposure; for (auto oneValue : exposurePresets.values()) { double newDiff = std::fabs(exposure - oneValue); if (newDiff < diff) { closestMatch = oneValue; diff = newDiff; } } qCDebug(KSTARS_INDI) << "Requested exposure" << exposure << "closes match is" << closestMatch; exposure = closestMatch; } } } // clone the INumberVectorProperty, to avoid modifications to the same // property from two threads INumber n; strcpy(n.name, expProp->np[0].name); n.value = exposure; std::unique_ptr newExpProp(new INumberVectorProperty()); strncpy(newExpProp->device, expProp->device, MAXINDIDEVICE); strncpy(newExpProp->name, expProp->name, MAXINDINAME); strncpy(newExpProp->label, expProp->label, MAXINDILABEL); newExpProp->np = &n; newExpProp->nnp = 1; clientManager->sendNewNumber(newExpProp.get()); return true; } bool CCDChip::abortExposure() { ISwitchVectorProperty *abortProp = nullptr; switch (type) { case PRIMARY_CCD: abortProp = baseDevice->getSwitch("CCD_ABORT_EXPOSURE"); break; case GUIDE_CCD: abortProp = baseDevice->getSwitch("GUIDER_ABORT_EXPOSURE"); break; } if (abortProp == nullptr) return false; ISwitch *abort = IUFindSwitch(abortProp, "ABORT"); if (abort == nullptr) return false; abort->s = ISS_ON; //captureMode = FITS_NORMAL; clientManager->sendNewSwitch(abortProp); return true; } bool CCDChip::canBin() const { return CanBin; } void CCDChip::setCanBin(bool value) { CanBin = value; } bool CCDChip::canSubframe() const { return CanSubframe; } void CCDChip::setCanSubframe(bool value) { CanSubframe = value; } bool CCDChip::canAbort() const { return CanAbort; } void CCDChip::setCanAbort(bool value) { CanAbort = value; } FITSData *CCDChip::getImageData() const { return imageData; } int CCDChip::getISOIndex() const { ISwitchVectorProperty *isoProp = baseDevice->getSwitch("CCD_ISO"); if (isoProp == nullptr) return -1; return IUFindOnSwitchIndex(isoProp); } bool CCDChip::setISOIndex(int value) { ISwitchVectorProperty *isoProp = baseDevice->getSwitch("CCD_ISO"); if (isoProp == nullptr) return false; IUResetSwitch(isoProp); isoProp->sp[value].s = ISS_ON; clientManager->sendNewSwitch(isoProp); return true; } QStringList CCDChip::getISOList() const { QStringList isoList; ISwitchVectorProperty *isoProp = baseDevice->getSwitch("CCD_ISO"); if (isoProp == nullptr) return isoList; for (int i = 0; i < isoProp->nsp; i++) isoList << isoProp->sp[i].label; return isoList; } bool CCDChip::isCapturing() { INumberVectorProperty *expProp = nullptr; switch (type) { case PRIMARY_CCD: expProp = baseDevice->getNumber("CCD_EXPOSURE"); break; case GUIDE_CCD: expProp = baseDevice->getNumber("GUIDER_EXPOSURE"); break; } if (expProp == nullptr) return false; return (expProp->s == IPS_BUSY); } bool CCDChip::setFrameType(const QString &name) { CCDFrameType fType = FRAME_LIGHT; if (name == "FRAME_LIGHT" || name == "Light") fType = FRAME_LIGHT; else if (name == "FRAME_DARK" || name == "Dark") fType = FRAME_DARK; else if (name == "FRAME_BIAS" || name == "Bias") fType = FRAME_BIAS; else if (name == "FRAME_FLAT" || name == "Flat") fType = FRAME_FLAT; else { qCWarning(KSTARS_INDI) << name << " frame type is unknown." ; return false; } return setFrameType(fType); } bool CCDChip::setFrameType(CCDFrameType fType) { ISwitchVectorProperty *frameProp = nullptr; if (type == PRIMARY_CCD) frameProp = baseDevice->getSwitch("CCD_FRAME_TYPE"); else frameProp = baseDevice->getSwitch("GUIDER_FRAME_TYPE"); if (frameProp == nullptr) return false; ISwitch *ccdFrame = nullptr; if (fType == FRAME_LIGHT) ccdFrame = IUFindSwitch(frameProp, "FRAME_LIGHT"); else if (fType == FRAME_DARK) ccdFrame = IUFindSwitch(frameProp, "FRAME_DARK"); else if (fType == FRAME_BIAS) ccdFrame = IUFindSwitch(frameProp, "FRAME_BIAS"); else if (fType == FRAME_FLAT) ccdFrame = IUFindSwitch(frameProp, "FRAME_FLAT"); if (ccdFrame == nullptr) return false; if (ccdFrame->s == ISS_ON) return true; if (fType != FRAME_LIGHT) captureMode = FITS_CALIBRATE; IUResetSwitch(frameProp); ccdFrame->s = ISS_ON; clientManager->sendNewSwitch(frameProp); return true; } CCDFrameType CCDChip::getFrameType() { CCDFrameType fType = FRAME_LIGHT; ISwitchVectorProperty *frameProp = nullptr; if (type == PRIMARY_CCD) frameProp = baseDevice->getSwitch("CCD_FRAME_TYPE"); else frameProp = baseDevice->getSwitch("GUIDER_FRAME_TYPE"); if (frameProp == nullptr) return fType; ISwitch *ccdFrame = nullptr; ccdFrame = IUFindOnSwitch(frameProp); if (ccdFrame == nullptr) { qCWarning(KSTARS_INDI) << "ISD:CCD Cannot find active frame in CCD!"; return fType; } if (!strcmp(ccdFrame->name, "FRAME_LIGHT")) fType = FRAME_LIGHT; else if (!strcmp(ccdFrame->name, "FRAME_DARK")) fType = FRAME_DARK; else if (!strcmp(ccdFrame->name, "FRAME_FLAT")) fType = FRAME_FLAT; else if (!strcmp(ccdFrame->name, "FRAME_BIAS")) fType = FRAME_BIAS; return fType; } bool CCDChip::setBinning(CCDBinType binType) { switch (binType) { case SINGLE_BIN: return setBinning(1, 1); case DOUBLE_BIN: return setBinning(2, 2); case TRIPLE_BIN: return setBinning(3, 3); case QUADRAPLE_BIN: return setBinning(4, 4); } return false; } CCDBinType CCDChip::getBinning() { CCDBinType binType = SINGLE_BIN; INumberVectorProperty *binProp = nullptr; switch (type) { case PRIMARY_CCD: binProp = baseDevice->getNumber("CCD_BINNING"); break; case GUIDE_CCD: binProp = baseDevice->getNumber("GUIDER_BINNING"); break; } if (binProp == nullptr) return binType; INumber *horBin = nullptr, *verBin = nullptr; horBin = IUFindNumber(binProp, "HOR_BIN"); verBin = IUFindNumber(binProp, "VER_BIN"); if (!horBin || !verBin) return binType; switch (static_cast(horBin->value)) { case 2: binType = DOUBLE_BIN; break; case 3: binType = TRIPLE_BIN; break; case 4: binType = QUADRAPLE_BIN; break; default: break; } return binType; } bool CCDChip::getBinning(int *bin_x, int *bin_y) { INumberVectorProperty *binProp = nullptr; *bin_x = *bin_y = 1; switch (type) { case PRIMARY_CCD: binProp = baseDevice->getNumber("CCD_BINNING"); break; case GUIDE_CCD: binProp = baseDevice->getNumber("GUIDER_BINNING"); break; } if (binProp == nullptr) return false; INumber *horBin = nullptr, *verBin = nullptr; horBin = IUFindNumber(binProp, "HOR_BIN"); verBin = IUFindNumber(binProp, "VER_BIN"); if (!horBin || !verBin) return false; *bin_x = horBin->value; *bin_y = verBin->value; return true; } bool CCDChip::getMaxBin(int *max_xbin, int *max_ybin) { if (!max_xbin || !max_ybin) return false; INumberVectorProperty *binProp = nullptr; *max_xbin = *max_ybin = 1; switch (type) { case PRIMARY_CCD: binProp = baseDevice->getNumber("CCD_BINNING"); break; case GUIDE_CCD: binProp = baseDevice->getNumber("GUIDER_BINNING"); break; } if (binProp == nullptr) return false; INumber *horBin = nullptr, *verBin = nullptr; horBin = IUFindNumber(binProp, "HOR_BIN"); verBin = IUFindNumber(binProp, "VER_BIN"); if (!horBin || !verBin) return false; *max_xbin = horBin->max; *max_ybin = verBin->max; return true; } bool CCDChip::setBinning(int bin_x, int bin_y) { INumberVectorProperty *binProp = nullptr; switch (type) { case PRIMARY_CCD: binProp = baseDevice->getNumber("CCD_BINNING"); break; case GUIDE_CCD: binProp = baseDevice->getNumber("GUIDER_BINNING"); break; } if (binProp == nullptr) return false; INumber *horBin = nullptr, *verBin = nullptr; horBin = IUFindNumber(binProp, "HOR_BIN"); verBin = IUFindNumber(binProp, "VER_BIN"); if (!horBin || !verBin) return false; if (horBin->value == bin_x && verBin->value == bin_y) return true; if (bin_x > horBin->max || bin_y > verBin->max) return false; horBin->value = bin_x; verBin->value = bin_y; clientManager->sendNewNumber(binProp); return true; } CCD::CCD(GDInterface *iPtr) : DeviceDecorator(iPtr) { primaryChip.reset(new CCDChip(this, CCDChip::PRIMARY_CCD)); readyTimer.reset(new QTimer()); readyTimer.get()->setInterval(250); readyTimer.get()->setSingleShot(true); connect(readyTimer.get(), &QTimer::timeout, this, &CCD::ready); m_Media.reset(new WSMedia(this)); connect(m_Media.get(), &WSMedia::newFile, this, &CCD::setWSBLOB); connect(clientManager, &ClientManager::newBLOBManager, this, &CCD::setBLOBManager, Qt::UniqueConnection); m_LastNotificationTS = QDateTime::currentDateTime(); } CCD::~CCD() { if (m_ImageViewerWindow) m_ImageViewerWindow->close(); } void CCD::setBLOBManager(const char *device, INDI::Property *prop) { if (!strcmp(device, getDeviceName())) emit newBLOBManager(prop); } void CCD::registerProperty(INDI::Property *prop) { if (isConnected()) readyTimer.get()->start(); if (!strcmp(prop->getName(), "GUIDER_EXPOSURE")) { HasGuideHead = true; guideChip.reset(new CCDChip(this, CCDChip::GUIDE_CCD)); } else if (!strcmp(prop->getName(), "CCD_FRAME_TYPE")) { ISwitchVectorProperty *ccdFrame = prop->getSwitch(); primaryChip->clearFrameTypes(); for (int i = 0; i < ccdFrame->nsp; i++) primaryChip->addFrameLabel(ccdFrame->sp[i].label); } else if (!strcmp(prop->getName(), "CCD_FRAME")) { INumberVectorProperty *np = prop->getNumber(); if (np && np->p != IP_RO) primaryChip->setCanSubframe(true); } else if (!strcmp(prop->getName(), "GUIDER_FRAME")) { INumberVectorProperty *np = prop->getNumber(); if (np && np->p != IP_RO) guideChip->setCanSubframe(true); } else if (!strcmp(prop->getName(), "CCD_BINNING")) { INumberVectorProperty *np = prop->getNumber(); if (np && np->p != IP_RO) primaryChip->setCanBin(true); } else if (!strcmp(prop->getName(), "GUIDER_BINNING")) { INumberVectorProperty *np = prop->getNumber(); if (np && np->p != IP_RO) guideChip->setCanBin(true); } else if (!strcmp(prop->getName(), "CCD_ABORT_EXPOSURE")) { ISwitchVectorProperty *sp = prop->getSwitch(); if (sp && sp->p != IP_RO) primaryChip->setCanAbort(true); } else if (!strcmp(prop->getName(), "GUIDER_ABORT_EXPOSURE")) { ISwitchVectorProperty *sp = prop->getSwitch(); if (sp && sp->p != IP_RO) guideChip->setCanAbort(true); } else if (!strcmp(prop->getName(), "CCD_TEMPERATURE")) { INumberVectorProperty *np = prop->getNumber(); HasCooler = true; CanCool = (np->p != IP_RO); if (np) emit newTemperatureValue(np->np[0].value); } else if (!strcmp(prop->getName(), "CCD_COOLER")) { // Can turn cooling on/off HasCoolerControl = true; } else if (!strcmp(prop->getName(), "CCD_VIDEO_STREAM")) { // Has Video Stream HasVideoStream = true; } else if (!strcmp(prop->getName(), "CCD_TRANSFER_FORMAT")) { ISwitchVectorProperty *sp = prop->getSwitch(); if (sp) { ISwitch *format = IUFindSwitch(sp, "FORMAT_NATIVE"); if (format && format->s == ISS_ON) transferFormat = FORMAT_NATIVE; else transferFormat = FORMAT_FITS; } } else if (!strcmp(prop->getName(), "CCD_EXPOSURE_PRESETS")) { ISwitchVectorProperty *svp = prop->getSwitch(); if (svp) { bool ok = false; for (int i = 0; i < svp->nsp; i++) { QString key = QString(svp->sp[i].label); double value = key.toDouble(&ok); if (!ok) { QStringList parts = key.split("/"); if (parts.count() == 2) { bool numOk = false, denOk = false; double numerator = parts[0].toDouble(&numOk); double denominator = parts[1].toDouble(&denOk); if (numOk && denOk && denominator > 0) { ok = true; value = numerator / denominator; } } } if (ok) m_ExposurePresets.insert(key, value); double min = 1e6, max = 1e-6; for (auto oneValue : m_ExposurePresets.values()) { if (oneValue < min) min = oneValue; if (oneValue > max) max = oneValue; } m_ExposurePresetsMinMax = qMakePair(min, max); } } } else if (!strcmp(prop->getName(), "CCD_EXPOSURE_LOOP")) { ISwitchVectorProperty *sp = prop->getSwitch(); if (sp) { ISwitch *looping = IUFindSwitch(sp, "LOOP_ON"); if (looping && looping->s == ISS_ON) IsLooping = true; else IsLooping = false; } } else if (!strcmp(prop->getName(), "TELESCOPE_TYPE")) { ISwitchVectorProperty *sp = prop->getSwitch(); if (sp) { ISwitch *format = IUFindSwitch(sp, "TELESCOPE_PRIMARY"); if (format && format->s == ISS_ON) telescopeType = TELESCOPE_PRIMARY; else telescopeType = TELESCOPE_GUIDE; } } else if (!strcmp(prop->getName(), "CCD_WEBSOCKET_SETTINGS")) { INumberVectorProperty *np = prop->getNumber(); m_Media->setURL(QUrl(QString("ws://%1:%2").arg(clientManager->getHost()).arg(np->np[0].value))); m_Media->connectServer(); } else if (!strcmp(prop->getName(), "CCD1")) { IBLOBVectorProperty *bp = prop->getBLOB(); primaryCCDBLOB = bp->bp; primaryCCDBLOB->bvp = bp; } // try to find gain property, if any else if (gainN == nullptr && prop->getType() == INDI_NUMBER) { // Since gain is spread among multiple property depending on the camera providing it // we need to search in all possible number properties INumberVectorProperty *gainNP = prop->getNumber(); if (gainNP) { for (int i = 0; i < gainNP->nnp; i++) { QString name = QString(gainNP->np[i].name).toLower(); QString label = QString(gainNP->np[i].label).toLower(); if (name == "gain" || label == "gain") { gainN = gainNP->np + i; gainPerm = gainNP->p; break; } } } } DeviceDecorator::registerProperty(prop); } void CCD::removeProperty(INDI::Property *prop) { if (!strcmp(prop->getName(), "CCD_WEBSOCKET_SETTINGS")) { m_Media->disconnectServer(); } DeviceDecorator::removeProperty(prop); } void CCD::processLight(ILightVectorProperty *lvp) { DeviceDecorator::processLight(lvp); } void CCD::processNumber(INumberVectorProperty *nvp) { if (!strcmp(nvp->name, "CCD_EXPOSURE")) { INumber *np = IUFindNumber(nvp, "CCD_EXPOSURE_VALUE"); if (np) emit newExposureValue(primaryChip.get(), np->value, nvp->s); + if (nvp->s == IPS_ALERT) + emit captureFailed(); } else if (!strcmp(nvp->name, "CCD_TEMPERATURE")) { HasCooler = true; INumber *np = IUFindNumber(nvp, "CCD_TEMPERATURE_VALUE"); if (np) emit newTemperatureValue(np->value); } else if (!strcmp(nvp->name, "GUIDER_EXPOSURE")) { INumber *np = IUFindNumber(nvp, "GUIDER_EXPOSURE_VALUE"); if (np) emit newExposureValue(guideChip.get(), np->value, nvp->s); } else if (!strcmp(nvp->name, "FPS")) { emit newFPS(nvp->np[0].value, nvp->np[1].value); } else if (!strcmp(nvp->name, "CCD_RAPID_GUIDE_DATA")) { double dx = -1, dy = -1, fit = -1; INumber *np = nullptr; if (nvp->s == IPS_ALERT) { emit newGuideStarData(primaryChip.get(), -1, -1, -1); } else { np = IUFindNumber(nvp, "GUIDESTAR_X"); if (np) dx = np->value; np = IUFindNumber(nvp, "GUIDESTAR_Y"); if (np) dy = np->value; np = IUFindNumber(nvp, "GUIDESTAR_FIT"); if (np) fit = np->value; if (dx >= 0 && dy >= 0 && fit >= 0) emit newGuideStarData(primaryChip.get(), dx, dy, fit); } } else if (!strcmp(nvp->name, "GUIDER_RAPID_GUIDE_DATA")) { double dx = -1, dy = -1, fit = -1; INumber *np = nullptr; if (nvp->s == IPS_ALERT) { emit newGuideStarData(guideChip.get(), -1, -1, -1); } else { np = IUFindNumber(nvp, "GUIDESTAR_X"); if (np) dx = np->value; np = IUFindNumber(nvp, "GUIDESTAR_Y"); if (np) dy = np->value; np = IUFindNumber(nvp, "GUIDESTAR_FIT"); if (np) fit = np->value; if (dx >= 0 && dy >= 0 && fit >= 0) emit newGuideStarData(guideChip.get(), dx, dy, fit); } } DeviceDecorator::processNumber(nvp); } void CCD::processSwitch(ISwitchVectorProperty *svp) { if (!strcmp(svp->name, "CCD_COOLER")) { // Can turn cooling on/off HasCoolerControl = true; emit coolerToggled(svp->sp[0].s == ISS_ON); } else if (QString(svp->name).endsWith("VIDEO_STREAM")) { // If BLOB is not enabled for this camera, then ignore all VIDEO_STREAM calls. if (isBLOBEnabled() == false) return; HasVideoStream = true; if (streamWindow.get() == nullptr && svp->sp[0].s == ISS_ON) { streamWindow.reset(new StreamWG(this)); INumberVectorProperty *streamFrame = baseDevice->getNumber("CCD_STREAM_FRAME"); INumber *w = nullptr, *h = nullptr; if (streamFrame) { w = IUFindNumber(streamFrame, "WIDTH"); h = IUFindNumber(streamFrame, "HEIGHT"); } if (w && h) { streamW = w->value; streamH = h->value; } else { // Only use CCD dimensions if we are receiving raw stream and not stream of images (i.e. mjpeg..etc) IBLOBVectorProperty *rawBP = baseDevice->getBLOB("CCD1"); if (rawBP) { int x = 0, y = 0, w = 0, h = 0; int binx = 0, biny = 0; primaryChip->getFrame(&x, &y, &w, &h); primaryChip->getBinning(&binx, &biny); streamW = w / binx; streamH = h / biny; } } streamWindow->setSize(streamW, streamH); } if (streamWindow.get() != nullptr) { connect(streamWindow.get(), &StreamWG::hidden, this, &CCD::StreamWindowHidden, Qt::UniqueConnection); connect(streamWindow.get(), &StreamWG::imageChanged, this, &CCD::newVideoFrame, Qt::UniqueConnection); streamWindow->enableStream(svp->sp[0].s == ISS_ON); emit videoStreamToggled(svp->sp[0].s == ISS_ON); } } else if (!strcmp(svp->name, "CCD_TRANSFER_FORMAT")) { ISwitch *format = IUFindSwitch(svp, "FORMAT_NATIVE"); if (format && format->s == ISS_ON) transferFormat = FORMAT_NATIVE; else transferFormat = FORMAT_FITS; } else if (!strcmp(svp->name, "RECORD_STREAM")) { ISwitch *recordOFF = IUFindSwitch(svp, "RECORD_OFF"); if (recordOFF && recordOFF->s == ISS_ON) { emit videoRecordToggled(false); KNotification::event(QLatin1String("RecordingStopped"), i18n("Video Recording Stopped")); } else { emit videoRecordToggled(true); KNotification::event(QLatin1String("RecordingStarted"), i18n("Video Recording Started")); } } else if (!strcmp(svp->name, "TELESCOPE_TYPE")) { ISwitch *format = IUFindSwitch(svp, "TELESCOPE_PRIMARY"); if (format && format->s == ISS_ON) telescopeType = TELESCOPE_PRIMARY; else telescopeType = TELESCOPE_GUIDE; } else if (!strcmp(svp->name, "CCD_EXPOSURE_LOOP")) { ISwitch *looping = IUFindSwitch(svp, "LOOP_ON"); if (looping && looping->s == ISS_ON) IsLooping = true; else IsLooping = false; } else if (!strcmp(svp->name, "CONNECTION")) { ISwitch *dSwitch = IUFindSwitch(svp, "DISCONNECT"); if (dSwitch && dSwitch->s == ISS_ON && streamWindow.get() != nullptr) { streamWindow->enableStream(false); emit videoStreamToggled(false); streamWindow->close(); streamWindow.reset(); } //emit switchUpdated(svp); //return; } DeviceDecorator::processSwitch(svp); } void CCD::processText(ITextVectorProperty *tvp) { if (!strcmp(tvp->name, "CCD_FILE_PATH")) { IText *filepath = IUFindText(tvp, "FILE_PATH"); if (filepath) emit newRemoteFile(QString(filepath->text)); } DeviceDecorator::processText(tvp); } void CCD::setWSBLOB(const QByteArray &message, const QString &extension) { if (!primaryCCDBLOB) return; primaryCCDBLOB->blob = const_cast(message.data()); primaryCCDBLOB->size = message.size(); strncpy(primaryCCDBLOB->format, extension.toLatin1().constData(), MAXINDIFORMAT); processBLOB(primaryCCDBLOB); // Disassociate primaryCCDBLOB->blob = nullptr; } void CCD::processBLOB(IBLOB *bp) { // Ignore write-only BLOBs since we only receive it for state-change if (bp->bvp->p == IP_WO || bp->size == 0) return; BType = BLOB_OTHER; QString format = QString(bp->format).toLower(); // If stream, process it first if (format.contains("stream") && streamWindow.get() != nullptr) { if (streamWindow->isStreamEnabled() == false) return; INumberVectorProperty *streamFrame = baseDevice->getNumber("CCD_STREAM_FRAME"); INumber *w = nullptr, *h = nullptr; if (streamFrame) { w = IUFindNumber(streamFrame, "WIDTH"); h = IUFindNumber(streamFrame, "HEIGHT"); } if (w && h) { streamW = w->value; streamH = h->value; } else { int x, y, w, h; int binx, biny; primaryChip->getFrame(&x, &y, &w, &h); primaryChip->getBinning(&binx, &biny); streamW = w / binx; streamH = h / biny; /*IBLOBVectorProperty *rawBP = baseDevice->getBLOB("CCD1"); if (rawBP) { rawBP->bp[0].aux0 = &(streamW); rawBP->bp[0].aux1 = &(streamH); }*/ } //if (streamWindow->getStreamWidth() != streamW || streamWindow->getStreamHeight() != streamH) streamWindow->setSize(streamW, streamH); streamWindow->show(); streamWindow->newFrame(bp); return; } // Format without leading . (.jpg --> jpg) QString shortFormat = format.mid(1); // If it's not FITS or an image, don't process it. if ((QImageReader::supportedImageFormats().contains(shortFormat.toLatin1()))) BType = BLOB_IMAGE; else if (format.contains("fits")) BType = BLOB_FITS; else if (RAWFormats.contains(shortFormat)) BType = BLOB_RAW; if (BType == BLOB_OTHER) { DeviceDecorator::processBLOB(bp); return; } CCDChip *targetChip = nullptr; if (!strcmp(bp->name, "CCD2")) targetChip = guideChip.get(); else targetChip = primaryChip.get(); QString currentDir; if (targetChip->isBatchMode() == false) currentDir = KSPaths::writableLocation(QStandardPaths::TempLocation); else currentDir = fitsDir.isEmpty() ? Options::fitsDir() : fitsDir; int nr, n = 0; QTemporaryFile tmpFile(QDir::tempPath() + "/fitsXXXXXX" + format); //if (currentDir.endsWith('/')) //currentDir.truncate(currentDir.size()-1); if (QDir(currentDir).exists() == false) QDir().mkpath(currentDir); QString filename(currentDir); if (filename.endsWith('/') == false) filename.append('/'); // Create temporary name if ANY of the following conditions are met: // 1. file is preview or batch mode is not enabled // 2. file type is not FITS_NORMAL (focus, guide..etc) if (targetChip->isBatchMode() == false || targetChip->getCaptureMode() != FITS_NORMAL) { //tmpFile.setPrefix("fits"); tmpFile.setAutoRemove(false); if (!tmpFile.open()) { qCCritical(KSTARS_INDI) << "ISD:CCD Error: Unable to open " << filename; emit BLOBUpdated(nullptr); return; } QDataStream out(&tmpFile); for (nr = 0; nr < static_cast(bp->size); nr += n) n = out.writeRawData(static_cast(bp->blob) + nr, bp->size - nr); tmpFile.close(); filename = tmpFile.fileName(); } // Create file name for others else { // IS8601 contains colons but they are illegal under Windows OS, so replacing them with '-' // The timestamp is no longer ISO8601 but it should solve interoperality issues between different OS hosts QString ts = QDateTime::currentDateTime().toString("yyyy-MM-ddThh-mm-ss"); if (seqPrefix.contains("_ISO8601")) { QString finalPrefix = seqPrefix; finalPrefix.replace("ISO8601", ts); filename += finalPrefix + QString("_%1%2").arg(QString().sprintf("%03d", nextSequenceID), format); } else filename += seqPrefix + (seqPrefix.isEmpty() ? "" : "_") + QString("%1%2").arg(QString().sprintf("%03d", nextSequenceID), format); QFile fits_temp_file(filename); if (!fits_temp_file.open(QIODevice::WriteOnly)) { qCCritical(KSTARS_INDI) << "ISD:CCD Error: Unable to open " << fits_temp_file.fileName(); emit BLOBUpdated(nullptr); return; } QDataStream out(&fits_temp_file); for (nr = 0; nr < static_cast(bp->size); nr += n) n = out.writeRawData(static_cast(bp->blob) + nr, bp->size - nr); fits_temp_file.close(); } if (BType == BLOB_FITS) addFITSKeywords(filename); // store file name strncpy(BLOBFilename, filename.toLatin1(), MAXINDIFILENAME); bp->aux0 = targetChip; bp->aux1 = &BType; bp->aux2 = BLOBFilename; if (targetChip->getCaptureMode() == FITS_NORMAL && targetChip->isBatchMode() == true) { KStars::Instance()->statusBar()->showMessage(i18n("%1 file saved to %2", shortFormat.toUpper(), filename), 0); qCInfo(KSTARS_INDI) << shortFormat.toUpper() << "file saved to" << filename; } // Don't spam, just one notification per 3 seconds if (QDateTime::currentDateTime().secsTo(m_LastNotificationTS) <= -3) { KNotification::event(QLatin1String("FITSReceived"), i18n("Image file is received")); m_LastNotificationTS = QDateTime::currentDateTime(); } // Check if we need to process RAW or regular image if (BType == BLOB_IMAGE || BType == BLOB_RAW) { bool useFITSViewer = Options::autoImageToFITS() && (Options::useFITSViewer() || (Options::useDSLRImageViewer() == false && targetChip->isBatchMode() == false)); bool useDSLRViewer = (Options::useDSLRImageViewer() || targetChip->isBatchMode() == false); // For raw image, we only process them to JPG if we need to open them in the image // viewer if (BType == BLOB_RAW && (useFITSViewer || useDSLRViewer)) { QString rawFileName = filename; rawFileName = rawFileName.remove(0, rawFileName.lastIndexOf(QLatin1String("/"))); QString templateName = QString("%1/%2.XXXXXX").arg(QDir::tempPath(), rawFileName); QTemporaryFile imgPreview(templateName); imgPreview.setAutoRemove(false); imgPreview.open(); imgPreview.close(); QString preview_filename = imgPreview.fileName(); QString errorMessage; if (KSUtils::RAWToJPEG(filename, preview_filename, errorMessage) == false) { KStars::Instance()->statusBar()->showMessage(errorMessage); emit BLOBUpdated(bp); return; } // Remove tempeorary CR2 files if (targetChip->isBatchMode() == false) QFile::remove(filename); filename = preview_filename; format = ".jpg"; shortFormat = "jpg"; } // store file name in // strncpy(BLOBFilename, filename.toLatin1(), MAXINDIFILENAME); // bp->aux0 = targetChip; // bp->aux1 = &BType; // bp->aux2 = BLOBFilename; // Convert to FITS if checked. QString output; if (useFITSViewer && (FITSData::ImageToFITS(filename, shortFormat, output))) { if (BType == BLOB_RAW || targetChip->isBatchMode() == false) QFile::remove(filename); filename = output; BType = BLOB_FITS; emit previewFITSGenerated(output); } else if (useDSLRViewer) { if (m_ImageViewerWindow.isNull()) m_ImageViewerWindow = new ImageViewer(getDeviceName(), KStars::Instance()); m_ImageViewerWindow->loadImage(filename); emit previewJPEGGenerated(filename, m_ImageViewerWindow->metadata()); } } // Unless we have cfitsio, we're done. #ifdef HAVE_CFITSIO if (BType == BLOB_FITS) { QUrl fileURL = QUrl::fromLocalFile(filename); // Get or Create FITSViewer if we are using FITSViewer // or if capture mode is calibrate since for now we are forced to open the file in the viewer // this should be fixed in the future and should only use FITSData if (Options::useFITSViewer() || targetChip->isBatchMode() == false) { if (m_FITSViewerWindows.isNull() && targetChip->getCaptureMode() != FITS_GUIDE && targetChip->getCaptureMode() != FITS_FOCUS && targetChip->getCaptureMode() != FITS_ALIGN) { normalTabID = calibrationTabID = focusTabID = guideTabID = alignTabID = -1; if (Options::singleWindowCapturedFITS()) m_FITSViewerWindows = KStars::Instance()->genericFITSViewer(); else { m_FITSViewerWindows = new FITSViewer(Options::independentWindowFITS() ? nullptr : KStars::Instance()); KStars::Instance()->addFITSViewer(m_FITSViewerWindows); } connect(m_FITSViewerWindows, &FITSViewer::closed, [&](int tabIndex) { if (tabIndex == normalTabID) normalTabID = -1; else if (tabIndex == calibrationTabID) calibrationTabID = -1; else if (tabIndex == focusTabID) focusTabID = -1; else if (tabIndex == guideTabID) guideTabID = -1; else if (tabIndex == alignTabID) alignTabID = -1; }); //connect(fv, SIGNAL(destroyed()), this, SLOT(FITSViewerDestroyed())); //connect(fv, SIGNAL(destroyed()), this, SIGNAL(FITSViewerClosed())); } } FITSScale captureFilter = targetChip->getCaptureFilter(); FITSMode captureMode = targetChip->getCaptureMode(); QString previewTitle; // If image is preview and we should display all captured images in a single tab called "Preview" // Then set the title to "Preview" // Otherwise, the title will be the captured image name if (targetChip->isBatchMode() == false && Options::singlePreviewFITS()) { // If we are displayed all images from all cameras in a single FITS Viewer window // Then we prefix the camera name to the "Preview" string if (Options::singleWindowCapturedFITS()) previewTitle = i18n("%1 Preview", getDeviceName()); else // Otherwise, just use "Preview" previewTitle = i18n("Preview"); } switch (captureMode) { case FITS_NORMAL: case FITS_CALIBRATE: { int *tabID = (captureMode == FITS_NORMAL) ? &normalTabID : &calibrationTabID; // Check if we need to display the image if (Options::useFITSViewer() || targetChip->isBatchMode() == false) { m_FITSViewerWindows->disconnect(this); auto m_Loaded = std::make_shared(); *m_Loaded = connect(m_FITSViewerWindows, &FITSViewer::loaded, [ = ](int tabIndex) { *tabID = tabIndex; targetChip->setImageView(m_FITSViewerWindows->getView(tabIndex), captureMode); if (Options::focusFITSOnNewImage()) m_FITSViewerWindows->raise(); QObject::disconnect(*m_Loaded); emit BLOBUpdated(bp); }); auto m_Failed = std::make_shared(); *m_Failed = connect(m_FITSViewerWindows, &FITSViewer::failed, [ = ]() { // If opening file fails, we treat it the same as exposure failure and recapture again if possible emit newExposureValue(targetChip, 0, IPS_ALERT); QObject::disconnect(*m_Failed); return; }); if (*tabID == -1 || Options::singlePreviewFITS() == false) m_FITSViewerWindows->addFITS(fileURL, captureMode, captureFilter, previewTitle); else m_FITSViewerWindows->updateFITS(fileURL, *tabID, captureFilter); } else // If not displayed in FITS Viewer then we just inform that a blob was received. emit BLOBUpdated(bp); } break; case FITS_FOCUS: case FITS_GUIDE: case FITS_ALIGN: loadImageInView(bp, targetChip); break; } } else emit BLOBUpdated(bp); #endif } void CCD::loadImageInView(IBLOB *bp, ISD::CCDChip *targetChip) { FITSMode mode = targetChip->getCaptureMode(); FITSView *view = targetChip->getImageView(mode); QString filename = QString(static_cast(bp->aux2)); if (view) { auto m_Loaded = std::make_shared(); *m_Loaded = connect(view, &FITSView::loaded, [ = ]() { //view->updateFrame(); // FITSViewer is shown if: // Image in preview mode, or useFITSViewre is true; AND // Image type is either NORMAL or CALIBRATION since the rest have their dedicated windows. // NORMAL is used for raw INDI drivers without Ekos. if ( (Options::useFITSViewer() || targetChip->isBatchMode() == false) && (mode == FITS_NORMAL || mode == FITS_CALIBRATE)) m_FITSViewerWindows->show(); QObject::disconnect(*m_Loaded); emit BLOBUpdated(bp); }); auto m_Failed = std::make_shared(); *m_Failed = connect(view, &FITSView::failed, [ = ]() { QObject::disconnect(*m_Failed); emit newExposureValue(targetChip, 0, IPS_ALERT); return; }); view->setFilter(targetChip->getCaptureFilter()); view->loadFITS(filename, true); } } void CCD::addFITSKeywords(const QString &filename) { #ifdef HAVE_CFITSIO int status = 0; if (filter.isEmpty() == false) { QString key_comment("Filter name"); filter.replace(' ', '_'); fitsfile *fptr = nullptr; #if 0 if (fits_open_image(&fptr, filename.toLatin1(), READWRITE, &status)) { fits_report_error(stderr, status); return; } #endif // Use open diskfile as it does not use extended file names which has problems opening // files with [ ] or ( ) in their names. if (fits_open_diskfile(&fptr, filename.toLatin1(), READONLY, &status)) { fits_report_error(stderr, status); return; } if (fits_movabs_hdu(fptr, 1, IMAGE_HDU, &status)) { fits_report_error(stderr, status); return; } if (fits_update_key_str(fptr, "FILTER", filter.toLatin1().data(), key_comment.toLatin1().data(), &status)) { fits_report_error(stderr, status); return; } fits_close_file(fptr, &status); filter = ""; } #endif } CCD::TransferFormat CCD::getTargetTransferFormat() const { return targetTransferFormat; } void CCD::setTargetTransferFormat(const TransferFormat &value) { targetTransferFormat = value; } void CCD::FITSViewerDestroyed() { m_FITSViewerWindows = nullptr; normalTabID = calibrationTabID = focusTabID = guideTabID = alignTabID = -1; } void CCD::StreamWindowHidden() { if (baseDevice->isConnected()) { // We can have more than one *_VIDEO_STREAM property active so disable them all ISwitchVectorProperty *streamSP = baseDevice->getSwitch("CCD_VIDEO_STREAM"); if (streamSP) { IUResetSwitch(streamSP); streamSP->sp[0].s = ISS_OFF; streamSP->sp[1].s = ISS_ON; streamSP->s = IPS_IDLE; clientManager->sendNewSwitch(streamSP); } streamSP = baseDevice->getSwitch("VIDEO_STREAM"); if (streamSP) { IUResetSwitch(streamSP); streamSP->sp[0].s = ISS_OFF; streamSP->sp[1].s = ISS_ON; streamSP->s = IPS_IDLE; clientManager->sendNewSwitch(streamSP); } streamSP = baseDevice->getSwitch("AUX_VIDEO_STREAM"); if (streamSP) { IUResetSwitch(streamSP); streamSP->sp[0].s = ISS_OFF; streamSP->sp[1].s = ISS_ON; streamSP->s = IPS_IDLE; clientManager->sendNewSwitch(streamSP); } } if (streamWindow.get() != nullptr) streamWindow->disconnect(); } bool CCD::hasGuideHead() { return HasGuideHead; } bool CCD::hasCooler() { return HasCooler; } bool CCD::hasCoolerControl() { return HasCoolerControl; } bool CCD::setCoolerControl(bool enable) { if (HasCoolerControl == false) return false; ISwitchVectorProperty *coolerSP = baseDevice->getSwitch("CCD_COOLER"); if (coolerSP == nullptr) return false; // Cooler ON/OFF ISwitch *coolerON = IUFindSwitch(coolerSP, "COOLER_ON"); ISwitch *coolerOFF = IUFindSwitch(coolerSP, "COOLER_OFF"); if (coolerON == nullptr || coolerOFF == nullptr) return false; coolerON->s = enable ? ISS_ON : ISS_OFF; coolerOFF->s = enable ? ISS_OFF : ISS_ON; clientManager->sendNewSwitch(coolerSP); return true; } CCDChip *CCD::getChip(CCDChip::ChipType cType) { switch (cType) { case CCDChip::PRIMARY_CCD: return primaryChip.get(); case CCDChip::GUIDE_CCD: return guideChip.get(); } return nullptr; } bool CCD::setRapidGuide(CCDChip *targetChip, bool enable) { ISwitchVectorProperty *rapidSP = nullptr; ISwitch *enableS = nullptr; if (targetChip == primaryChip.get()) rapidSP = baseDevice->getSwitch("CCD_RAPID_GUIDE"); else rapidSP = baseDevice->getSwitch("GUIDER_RAPID_GUIDE"); if (rapidSP == nullptr) return false; enableS = IUFindSwitch(rapidSP, "ENABLE"); if (enableS == nullptr) return false; // Already updated, return OK if ((enable && enableS->s == ISS_ON) || (!enable && enableS->s == ISS_OFF)) return true; IUResetSwitch(rapidSP); rapidSP->sp[0].s = enable ? ISS_ON : ISS_OFF; rapidSP->sp[1].s = enable ? ISS_OFF : ISS_ON; clientManager->sendNewSwitch(rapidSP); return true; } bool CCD::configureRapidGuide(CCDChip *targetChip, bool autoLoop, bool sendImage, bool showMarker) { ISwitchVectorProperty *rapidSP = nullptr; ISwitch *autoLoopS = nullptr, *sendImageS = nullptr, *showMarkerS = nullptr; if (targetChip == primaryChip.get()) rapidSP = baseDevice->getSwitch("CCD_RAPID_GUIDE_SETUP"); else rapidSP = baseDevice->getSwitch("GUIDER_RAPID_GUIDE_SETUP"); if (rapidSP == nullptr) return false; autoLoopS = IUFindSwitch(rapidSP, "AUTO_LOOP"); sendImageS = IUFindSwitch(rapidSP, "SEND_IMAGE"); showMarkerS = IUFindSwitch(rapidSP, "SHOW_MARKER"); if (!autoLoopS || !sendImageS || !showMarkerS) return false; // If everything is already set, let's return. if (((autoLoop && autoLoopS->s == ISS_ON) || (!autoLoop && autoLoopS->s == ISS_OFF)) && ((sendImage && sendImageS->s == ISS_ON) || (!sendImage && sendImageS->s == ISS_OFF)) && ((showMarker && showMarkerS->s == ISS_ON) || (!showMarker && showMarkerS->s == ISS_OFF))) return true; autoLoopS->s = autoLoop ? ISS_ON : ISS_OFF; sendImageS->s = sendImage ? ISS_ON : ISS_OFF; showMarkerS->s = showMarker ? ISS_ON : ISS_OFF; clientManager->sendNewSwitch(rapidSP); return true; } void CCD::updateUploadSettings(const QString &remoteDir) { QString filename = seqPrefix + (seqPrefix.isEmpty() ? "" : "_") + QString("XXX"); ITextVectorProperty *uploadSettingsTP = nullptr; IText *uploadT = nullptr; uploadSettingsTP = baseDevice->getText("UPLOAD_SETTINGS"); if (uploadSettingsTP) { uploadT = IUFindText(uploadSettingsTP, "UPLOAD_DIR"); if (uploadT && remoteDir.isEmpty() == false) IUSaveText(uploadT, remoteDir.toLatin1().constData()); uploadT = IUFindText(uploadSettingsTP, "UPLOAD_PREFIX"); if (uploadT) IUSaveText(uploadT, filename.toLatin1().constData()); clientManager->sendNewText(uploadSettingsTP); } } CCD::UploadMode CCD::getUploadMode() { ISwitchVectorProperty *uploadModeSP = nullptr; uploadModeSP = baseDevice->getSwitch("UPLOAD_MODE"); if (uploadModeSP == nullptr) { qWarning() << "No UPLOAD_MODE in CCD driver. Please update driver to INDI compliant CCD driver."; return UPLOAD_CLIENT; } if (uploadModeSP) { ISwitch *modeS = nullptr; modeS = IUFindSwitch(uploadModeSP, "UPLOAD_CLIENT"); if (modeS && modeS->s == ISS_ON) return UPLOAD_CLIENT; modeS = IUFindSwitch(uploadModeSP, "UPLOAD_LOCAL"); if (modeS && modeS->s == ISS_ON) return UPLOAD_LOCAL; modeS = IUFindSwitch(uploadModeSP, "UPLOAD_BOTH"); if (modeS && modeS->s == ISS_ON) return UPLOAD_BOTH; } // Default return UPLOAD_CLIENT; } bool CCD::setUploadMode(UploadMode mode) { ISwitchVectorProperty *uploadModeSP = nullptr; ISwitch *modeS = nullptr; uploadModeSP = baseDevice->getSwitch("UPLOAD_MODE"); if (uploadModeSP == nullptr) { qWarning() << "No UPLOAD_MODE in CCD driver. Please update driver to INDI compliant CCD driver."; return false; } switch (mode) { case UPLOAD_CLIENT: modeS = IUFindSwitch(uploadModeSP, "UPLOAD_CLIENT"); if (modeS == nullptr) return false; if (modeS->s == ISS_ON) return true; break; case UPLOAD_BOTH: modeS = IUFindSwitch(uploadModeSP, "UPLOAD_BOTH"); if (modeS == nullptr) return false; if (modeS->s == ISS_ON) return true; break; case UPLOAD_LOCAL: modeS = IUFindSwitch(uploadModeSP, "UPLOAD_LOCAL"); if (modeS == nullptr) return false; if (modeS->s == ISS_ON) return true; break; } IUResetSwitch(uploadModeSP); modeS->s = ISS_ON; clientManager->sendNewSwitch(uploadModeSP); return true; } bool CCD::getTemperature(double *value) { if (HasCooler == false) return false; INumberVectorProperty *temperatureNP = baseDevice->getNumber("CCD_TEMPERATURE"); if (temperatureNP == nullptr) return false; *value = temperatureNP->np[0].value; return true; } bool CCD::setTemperature(double value) { INumberVectorProperty *nvp = baseDevice->getNumber("CCD_TEMPERATURE"); if (nvp == nullptr) return false; INumber *np = IUFindNumber(nvp, "CCD_TEMPERATURE_VALUE"); if (np == nullptr) return false; np->value = value; clientManager->sendNewNumber(nvp); return true; } bool CCD::setTransformFormat(CCD::TransferFormat format) { if (format == transferFormat) return true; ISwitchVectorProperty *svp = baseDevice->getSwitch("CCD_TRANSFER_FORMAT"); if (svp == nullptr) return false; ISwitch *formatFITS = IUFindSwitch(svp, "FORMAT_FITS"); ISwitch *formatNative = IUFindSwitch(svp, "FORMAT_NATIVE"); if (formatFITS == nullptr || formatNative == nullptr) return false; transferFormat = format; formatFITS->s = (transferFormat == FORMAT_FITS) ? ISS_ON : ISS_OFF; formatNative->s = (transferFormat == FORMAT_FITS) ? ISS_OFF : ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::setTelescopeType(TelescopeType type) { if (type == telescopeType) return true; ISwitchVectorProperty *svp = baseDevice->getSwitch("TELESCOPE_TYPE"); if (svp == nullptr) return false; ISwitch *typePrimary = IUFindSwitch(svp, "TELESCOPE_PRIMARY"); ISwitch *typeGuide = IUFindSwitch(svp, "TELESCOPE_GUIDE"); if (typePrimary == nullptr || typeGuide == nullptr) return false; telescopeType = type; typePrimary->s = (telescopeType == TELESCOPE_PRIMARY) ? ISS_ON : ISS_OFF; typeGuide->s = (telescopeType == TELESCOPE_PRIMARY) ? ISS_OFF : ISS_ON; clientManager->sendNewSwitch(svp); setConfig(SAVE_CONFIG); return true; } bool CCD::setVideoStreamEnabled(bool enable) { if (HasVideoStream == false) return false; ISwitchVectorProperty *svp = baseDevice->getSwitch("CCD_VIDEO_STREAM"); if (svp == nullptr) return false; // If already on and enable is set or vice versa no need to change anything we return true if ((enable && svp->sp[0].s == ISS_ON) || (!enable && svp->sp[1].s == ISS_ON)) return true; svp->sp[0].s = enable ? ISS_ON : ISS_OFF; svp->sp[1].s = enable ? ISS_OFF : ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::resetStreamingFrame() { INumberVectorProperty *frameProp = baseDevice->getNumber("CCD_STREAM_FRAME"); if (frameProp == nullptr) return false; INumber *xarg = IUFindNumber(frameProp, "X"); INumber *yarg = IUFindNumber(frameProp, "Y"); INumber *warg = IUFindNumber(frameProp, "WIDTH"); INumber *harg = IUFindNumber(frameProp, "HEIGHT"); if (xarg && yarg && warg && harg) { if (xarg->value == xarg->min && yarg->value == yarg->min && warg->value == warg->max && harg->value == harg->max) return false; xarg->value = xarg->min; yarg->value = yarg->min; warg->value = warg->max; harg->value = harg->max; clientManager->sendNewNumber(frameProp); return true; } return false; } bool CCD::setStreamingFrame(int x, int y, int w, int h) { INumberVectorProperty *frameProp = baseDevice->getNumber("CCD_STREAM_FRAME"); if (frameProp == nullptr) return false; INumber *xarg = IUFindNumber(frameProp, "X"); INumber *yarg = IUFindNumber(frameProp, "Y"); INumber *warg = IUFindNumber(frameProp, "WIDTH"); INumber *harg = IUFindNumber(frameProp, "HEIGHT"); if (xarg && yarg && warg && harg) { if (xarg->value == x && yarg->value == y && warg->value == w && harg->value == h) return true; // N.B. We add offset since the X, Y are relative to whatever streaming frame is currently active xarg->value = qBound(xarg->min, static_cast(x) + xarg->value, xarg->max); yarg->value = qBound(yarg->min, static_cast(y) + yarg->value, yarg->max); warg->value = qBound(warg->min, static_cast(w), warg->max); harg->value = qBound(harg->min, static_cast(h), harg->max); clientManager->sendNewNumber(frameProp); return true; } return false; } bool CCD::isStreamingEnabled() { if (HasVideoStream == false || streamWindow.get() == nullptr) return false; return streamWindow->isStreamEnabled(); } bool CCD::setSERNameDirectory(const QString &filename, const QString &directory) { ITextVectorProperty *tvp = baseDevice->getText("RECORD_FILE"); if (tvp == nullptr) return false; IText *filenameT = IUFindText(tvp, "RECORD_FILE_NAME"); IText *dirT = IUFindText(tvp, "RECORD_FILE_DIR"); if (filenameT == nullptr || dirT == nullptr) return false; IUSaveText(filenameT, filename.toLatin1().data()); IUSaveText(dirT, directory.toLatin1().data()); clientManager->sendNewText(tvp); return true; } bool CCD::getSERNameDirectory(QString &filename, QString &directory) { ITextVectorProperty *tvp = baseDevice->getText("RECORD_FILE"); if (tvp == nullptr) return false; IText *filenameT = IUFindText(tvp, "RECORD_FILE_NAME"); IText *dirT = IUFindText(tvp, "RECORD_FILE_DIR"); if (filenameT == nullptr || dirT == nullptr) return false; filename = QString(filenameT->text); directory = QString(dirT->text); return true; } bool CCD::startRecording() { ISwitchVectorProperty *svp = baseDevice->getSwitch("RECORD_STREAM"); if (svp == nullptr) return false; ISwitch *recordON = IUFindSwitch(svp, "RECORD_ON"); if (recordON == nullptr) return false; if (recordON->s == ISS_ON) return true; IUResetSwitch(svp); recordON->s = ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::startDurationRecording(double duration) { INumberVectorProperty *nvp = baseDevice->getNumber("RECORD_OPTIONS"); if (nvp == nullptr) return false; INumber *durationN = IUFindNumber(nvp, "RECORD_DURATION"); if (durationN == nullptr) return false; ISwitchVectorProperty *svp = baseDevice->getSwitch("RECORD_STREAM"); if (svp == nullptr) return false; ISwitch *recordON = IUFindSwitch(svp, "RECORD_DURATION_ON"); if (recordON == nullptr) return false; if (recordON->s == ISS_ON) return true; durationN->value = duration; clientManager->sendNewNumber(nvp); IUResetSwitch(svp); recordON->s = ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::startFramesRecording(uint32_t frames) { INumberVectorProperty *nvp = baseDevice->getNumber("RECORD_OPTIONS"); if (nvp == nullptr) return false; INumber *frameN = IUFindNumber(nvp, "RECORD_FRAME_TOTAL"); ISwitchVectorProperty *svp = baseDevice->getSwitch("RECORD_STREAM"); if (frameN == nullptr || svp == nullptr) return false; ISwitch *recordON = IUFindSwitch(svp, "RECORD_FRAME_ON"); if (recordON == nullptr) return false; if (recordON->s == ISS_ON) return true; frameN->value = frames; clientManager->sendNewNumber(nvp); IUResetSwitch(svp); recordON->s = ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::stopRecording() { ISwitchVectorProperty *svp = baseDevice->getSwitch("RECORD_STREAM"); if (svp == nullptr) return false; ISwitch *recordOFF = IUFindSwitch(svp, "RECORD_OFF"); if (recordOFF == nullptr) return false; // If already set if (recordOFF->s == ISS_ON) return true; IUResetSwitch(svp); recordOFF->s = ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::setFITSHeader(const QMap &values) { ITextVectorProperty *tvp = baseDevice->getText("FITS_HEADER"); if (tvp == nullptr) return false; QMapIterator i(values); while (i.hasNext()) { i.next(); IText *headerT = IUFindText(tvp, i.key().toLatin1().data()); if (headerT == nullptr) continue; IUSaveText(headerT, i.value().toLatin1().data()); } clientManager->sendNewText(tvp); return true; } bool CCD::setGain(double value) { if (gainN == nullptr) return false; gainN->value = value; clientManager->sendNewNumber(gainN->nvp); return true; } bool CCD::getGain(double *value) { if (gainN == nullptr) return false; *value = gainN->value; return true; } bool CCD::getGainMinMaxStep(double *min, double *max, double *step) { if (gainN == nullptr) return false; *min = gainN->min; *max = gainN->max; *step = gainN->step; return true; } bool CCD::isBLOBEnabled() { return (clientManager->isBLOBEnabled(getDeviceName(), "CCD1")); } bool CCD::setBLOBEnabled(bool enable, const QString &prop) { clientManager->setBLOBEnabled(enable, getDeviceName(), prop); return true; } bool CCD::setExposureLoopingEnabled(bool enable) { // Set value immediately IsLooping = enable; ISwitchVectorProperty *svp = baseDevice->getSwitch("CCD_EXPOSURE_LOOP"); if (svp == nullptr) return false; svp->sp[0].s = enable ? ISS_ON : ISS_OFF; svp->sp[1].s = enable ? ISS_OFF : ISS_ON; clientManager->sendNewSwitch(svp); return true; } bool CCD::setExposureLoopCount(uint32_t count) { INumberVectorProperty *nvp = baseDevice->getNumber("CCD_EXPOSURE_LOOP_COUNT"); if (nvp == nullptr) return false; nvp->np[0].value = count; clientManager->sendNewNumber(nvp); return true; } bool CCD::setStreamExposure(double duration) { INumberVectorProperty *nvp = baseDevice->getNumber("STREAMING_EXPOSURE"); if (nvp == nullptr) return false; nvp->np[0].value = duration; clientManager->sendNewNumber(nvp); return true; } bool CCD::getStreamExposure(double *duration) { INumberVectorProperty *nvp = baseDevice->getNumber("STREAMING_EXPOSURE"); if (nvp == nullptr) return false; *duration = nvp->np[0].value; return true; } bool CCD::isCoolerOn() { ISwitchVectorProperty *svp = baseDevice->getSwitch("CCD_COOLER"); if (svp == nullptr) return false; return (svp->sp[0].s == ISS_ON); } } diff --git a/kstars/indi/indiccd.h b/kstars/indi/indiccd.h index ff8dd3840..7f016fcbc 100644 --- a/kstars/indi/indiccd.h +++ b/kstars/indi/indiccd.h @@ -1,398 +1,399 @@ /* INDI CCD Copyright (C) 2012 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include "indistd.h" #include "wsmedia.h" #include "auxiliary/imageviewer.h" #include "fitsviewer/fitscommon.h" #include "fitsviewer/fitsview.h" #include "fitsviewer/fitsviewer.h" #include #include #include class FITSData; class FITSView; class QTimer; class StreamWG; /** * \namespace ISD * * ISD is a collection of INDI Standard Devices. It encapsulates common types of INDI devices such as telescopes and CCDs. * */ namespace ISD { class CCD; /** * @class CCDChip * CCDChip class controls a particular chip in CCD device. While most amateur CCDs only have a single chip on the CCD, some * CCDs have additional chips targetted for guiding purposes. */ class CCDChip { public: typedef enum { PRIMARY_CCD, GUIDE_CCD } ChipType; CCDChip(ISD::CCD *ccd, ChipType cType); FITSView *getImageView(FITSMode imageType); void setImageView(FITSView *image, FITSMode imageType); void setCaptureMode(FITSMode mode) { captureMode = mode; } void setCaptureFilter(FITSScale fType) { captureFilter = fType; } // Common commands bool getFrame(int *x, int *y, int *w, int *h); bool getFrameMinMax(int *minX, int *maxX, int *minY, int *maxY, int *minW, int *maxW, int *minH, int *maxH); bool setFrame(int x, int y, int w, int h, bool force = false); bool resetFrame(); bool capture(double exposure); bool setFrameType(CCDFrameType fType); bool setFrameType(const QString &name); CCDFrameType getFrameType(); bool setBinning(int bin_x, int bin_y); bool setBinning(CCDBinType binType); CCDBinType getBinning(); bool getBinning(int *bin_x, int *bin_y); bool getMaxBin(int *max_xbin, int *max_ybin); ChipType getType() const { return type; } ISD::CCD *getCCD() { return parentCCD; } // Set Image Info bool setImageInfo(uint16_t width, uint16_t height, double pixelX, double pixelY, uint8_t bitdepth); // Get Image Info bool getImageInfo(uint16_t &width, uint16_t &height, double &pixelX, double &pixelY, uint8_t &bitdepth); // Bayer Info bool getBayerInfo(uint16_t &offsetX, uint16_t &offsetY, QString &pattern); bool isCapturing(); bool abortExposure(); FITSMode getCaptureMode() const { return captureMode; } FITSScale getCaptureFilter() const { return captureFilter; } bool isBatchMode() const { return batchMode; } void setBatchMode(bool enable) { batchMode = enable; } QStringList getFrameTypes() const { return frameTypes; } void addFrameLabel(const QString &label) { frameTypes << label; } void clearFrameTypes() { frameTypes.clear(); } bool canBin() const; void setCanBin(bool value); bool canSubframe() const; void setCanSubframe(bool value); bool canAbort() const; void setCanAbort(bool value); FITSData *getImageData() const; void setImageData(FITSData *data) { imageData = data; } int getISOIndex() const; bool setISOIndex(int value); QStringList getISOList() const; private: QPointer normalImage, focusImage, guideImage, calibrationImage, alignImage; FITSData *imageData { nullptr }; FITSMode captureMode { FITS_NORMAL }; FITSScale captureFilter { FITS_NONE }; INDI::BaseDevice *baseDevice { nullptr }; ClientManager *clientManager { nullptr }; ChipType type; bool batchMode { false }; QStringList frameTypes; bool CanBin { false }; bool CanSubframe { false }; bool CanAbort { false }; ISD::CCD *parentCCD { nullptr }; }; /** * @class CCD * CCD class controls an INDI CCD device. It can be used to issue and abort capture commands, receive and process BLOBs, * and return information on the capabilities of the CCD. * * @author Jasem Mutlaq */ class CCD : public DeviceDecorator { Q_OBJECT public: explicit CCD(GDInterface *iPtr); virtual ~CCD() override; typedef enum { UPLOAD_CLIENT, UPLOAD_LOCAL, UPLOAD_BOTH } UploadMode; typedef enum { FORMAT_FITS, FORMAT_NATIVE } TransferFormat; enum BlobType { BLOB_IMAGE, BLOB_FITS, BLOB_RAW, BLOB_OTHER } BType; typedef enum { TELESCOPE_PRIMARY, TELESCOPE_GUIDE, TELESCOPE_UNKNOWN } TelescopeType; void registerProperty(INDI::Property *prop) override; void removeProperty(INDI::Property *prop) override; void processSwitch(ISwitchVectorProperty *svp) override; void processText(ITextVectorProperty *tvp) override; void processNumber(INumberVectorProperty *nvp) override; void processLight(ILightVectorProperty *lvp) override; void processBLOB(IBLOB *bp) override; DeviceFamily getType() override { return dType; } // Does it an on-chip dedicated guide head? bool hasGuideHead(); // Does it report temperature? bool hasCooler(); // Can temperature be controlled? bool canCool() { return CanCool; } // Does it have active cooler on/off controls? bool hasCoolerControl(); bool setCoolerControl(bool enable); bool isCoolerOn(); // Does it have a video stream? bool hasVideoStream() { return HasVideoStream; } // Temperature controls bool getTemperature(double *value); bool setTemperature(double value); // Utility functions void setISOMode(bool enable) { ISOMode = enable; } void setSeqPrefix(const QString &preFix) { seqPrefix = preFix; } void setNextSequenceID(int count) { nextSequenceID = count; } void setFilter(const QString &newFilter) { filter = newFilter; } // Gain controls bool hasGain() { return gainN != nullptr; } bool getGain(double *value); IPerm getGainPermission() const { return gainPerm; } bool setGain(double value); bool getGainMinMaxStep(double *min, double *max, double *step); // Rapid Guide bool configureRapidGuide(CCDChip *targetChip, bool autoLoop, bool sendImage = false, bool showMarker = false); bool setRapidGuide(CCDChip *targetChip, bool enable); // Upload Settings void updateUploadSettings(const QString &remoteDir); UploadMode getUploadMode(); bool setUploadMode(UploadMode mode); // Transfer Format TransferFormat getTransferFormat() { return transferFormat; } bool setTransformFormat(CCD::TransferFormat format); // BLOB control bool isBLOBEnabled(); bool setBLOBEnabled(bool enable, const QString &prop = QString()); // Video Stream bool setVideoStreamEnabled(bool enable); bool resetStreamingFrame(); bool setStreamingFrame(int x, int y, int w, int h); bool isStreamingEnabled(); bool setStreamExposure(double duration); bool getStreamExposure(double *duration); // Video Recording bool setSERNameDirectory(const QString &filename, const QString &directory); bool getSERNameDirectory(QString &filename, QString &directory); bool startRecording(); bool startDurationRecording(double duration); bool startFramesRecording(uint32_t frames); bool stopRecording(); // Telescope type TelescopeType getTelescopeType() { return telescopeType; } bool setTelescopeType(TelescopeType type); // Update FITS Header bool setFITSHeader(const QMap &values); CCDChip *getChip(CCDChip::ChipType cType); void setFITSDir(const QString &dir) { fitsDir = dir; } TransferFormat getTargetTransferFormat() const; void setTargetTransferFormat(const TransferFormat &value); bool setExposureLoopingEnabled(bool enable); bool isLooping() const { return IsLooping; } bool setExposureLoopCount(uint32_t count); const QMap &getExposurePresets() const { return m_ExposurePresets; } const QPair getExposurePresetsMinMax() const { return m_ExposurePresetsMinMax; } public slots: void FITSViewerDestroyed(); void StreamWindowHidden(); // Blob manager void setBLOBManager(const char *device, INDI::Property * prop); protected slots: void setWSBLOB(const QByteArray &message, const QString &extension); signals: //void FITSViewerClosed(); void newTemperatureValue(double value); void newExposureValue(ISD::CCDChip *chip, double value, IPState state); void newGuideStarData(ISD::CCDChip *chip, double dx, double dy, double fit); void newBLOBManager(INDI::Property *prop); void newRemoteFile(QString); void videoStreamToggled(bool enabled); void videoRecordToggled(bool enabled); void newFPS(double instantFPS, double averageFPS); void newVideoFrame(std::unique_ptr &frame); void coolerToggled(bool enabled); void previewFITSGenerated(const QString &previewFITS); void previewJPEGGenerated(const QString &previewJPEG, QJsonObject metadata); void ready(); + void captureFailed(); private: void addFITSKeywords(const QString &filename); void loadImageInView(IBLOB *bp, ISD::CCDChip *targetChip); QString filter; bool ISOMode { true }; bool HasGuideHead { false }; bool HasCooler { false }; bool CanCool { false }; bool HasCoolerControl { false }; bool HasVideoStream { false }; bool IsLooping { false }; QString seqPrefix; QString fitsDir; int nextSequenceID { 0 }; std::unique_ptr streamWindow; int streamW { 0 }; int streamH { 0 }; int normalTabID { -1 }; int calibrationTabID { -1 }; int focusTabID { -1 }; int guideTabID { -1 }; int alignTabID { -1 }; char BLOBFilename[MAXINDIFILENAME + 1]; IBLOB *primaryCCDBLOB { nullptr }; std::unique_ptr readyTimer; std::unique_ptr primaryChip; std::unique_ptr guideChip; std::unique_ptr m_Media; TransferFormat transferFormat { FORMAT_FITS }; TransferFormat targetTransferFormat { FORMAT_FITS }; TelescopeType telescopeType { TELESCOPE_UNKNOWN }; // Gain, since it is spread among different vector properties, let's try to find the property itself. INumber *gainN { nullptr }; IPerm gainPerm { IP_RO }; QPointer m_FITSViewerWindows; QPointer m_ImageViewerWindow; QDateTime m_LastNotificationTS; // Typically for DSLRs QMap m_ExposurePresets; QPair m_ExposurePresetsMinMax; }; } diff --git a/kstars/indi/indiweather.cpp b/kstars/indi/indiweather.cpp index ac3880a82..639717c81 100644 --- a/kstars/indi/indiweather.cpp +++ b/kstars/indi/indiweather.cpp @@ -1,119 +1,139 @@ /* INDI Weather Copyright (C) 2015 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include #include "indiweather.h" #include "clientmanager.h" namespace ISD { Weather::Weather(GDInterface *iPtr) : DeviceDecorator(iPtr) { dType = KSTARS_WEATHER; readyTimer.reset(new QTimer()); readyTimer.get()->setInterval(250); readyTimer.get()->setSingleShot(true); connect(readyTimer.get(), &QTimer::timeout, this, &Weather::ready); } void Weather::registerProperty(INDI::Property *prop) { if (isConnected()) readyTimer.get()->start(); DeviceDecorator::registerProperty(prop); } void Weather::processLight(ILightVectorProperty *lvp) { if (!strcmp(lvp->name, "WEATHER_STATUS")) { Status currentStatus = static_cast(lvp->s); if (currentStatus != m_WeatherStatus) { m_WeatherStatus = currentStatus; emit newStatus(m_WeatherStatus); } } DeviceDecorator::processLight(lvp); } void Weather::processNumber(INumberVectorProperty *nvp) { if (nvp == nullptr) return; std::vector entries; // read all sensor values recieved for (int i = 0; i < nvp->nnp; i++) { INumber number = nvp->np[i]; entries.push_back({QString(number.name), QString(number.label), number.value}); } emit newWeatherData(entries); // and now continue with the standard behavior DeviceDecorator::processNumber(nvp); } void Weather::processSwitch(ISwitchVectorProperty *svp) { DeviceDecorator::processSwitch(svp); } void Weather::processText(ITextVectorProperty *tvp) { DeviceDecorator::processText(tvp); } Weather::Status Weather::getWeatherStatus() { ILightVectorProperty *weatherLP = baseDevice->getLight("WEATHER_STATUS"); if (weatherLP == nullptr) return WEATHER_IDLE; m_WeatherStatus = static_cast(weatherLP->s); return static_cast(weatherLP->s); } quint16 Weather::getUpdatePeriod() { INumberVectorProperty *updateNP = baseDevice->getNumber("WEATHER_UPDATE"); if (updateNP == nullptr) return 0; return static_cast(updateNP->np[0].value); } + +bool Weather::refresh() +{ + ISwitchVectorProperty *refreshSP = baseDevice->getSwitch("WEATHER_REFRESH"); + + if (refreshSP == nullptr) + return false; + + ISwitch *refreshSW = IUFindSwitch(refreshSP, "REFRESH"); + + if (refreshSW == nullptr) + return false; + + IUResetSwitch(refreshSP); + refreshSW->s = ISS_ON; + clientManager->sendNewSwitch(refreshSP); + + return true; + +} } #ifndef KSTARS_LITE QDBusArgument &operator<<(QDBusArgument &argument, const ISD::Weather::Status &source) { argument.beginStructure(); argument << static_cast(source); argument.endStructure(); return argument; } const QDBusArgument &operator>>(const QDBusArgument &argument, ISD::Weather::Status &dest) { int a; argument.beginStructure(); argument >> a; argument.endStructure(); dest = static_cast(a); return argument; } #endif diff --git a/kstars/indi/indiweather.h b/kstars/indi/indiweather.h index 29295c338..fe931790f 100644 --- a/kstars/indi/indiweather.h +++ b/kstars/indi/indiweather.h @@ -1,71 +1,72 @@ /* INDI Weather Copyright (C) 2015 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include #include #include "indistd.h" namespace ISD { /** * @class Weather * Focuser class handles control of INDI Weather devices. It reports overall state and the value of each parameter * * @author Jasem Mutlaq */ class Weather : public DeviceDecorator { Q_OBJECT public: explicit Weather(GDInterface *iPtr); typedef enum { WEATHER_IDLE, WEATHER_OK, WEATHER_WARNING, WEATHER_ALERT, } Status; typedef struct { QString name; QString label; double value; } WeatherData; void registerProperty(INDI::Property *prop) override; void processSwitch(ISwitchVectorProperty *svp) override; void processText(ITextVectorProperty *tvp) override; void processNumber(INumberVectorProperty *nvp) override; void processLight(ILightVectorProperty *lvp) override; DeviceFamily getType() override { return dType; } Status getWeatherStatus(); quint16 getUpdatePeriod(); + bool refresh(); signals: void newStatus(Status status); void newWeatherData(std::vector); void ready(); private: Status m_WeatherStatus { WEATHER_IDLE }; std::unique_ptr readyTimer; }; } #ifndef KSTARS_LITE Q_DECLARE_METATYPE(ISD::Weather::Status) QDBusArgument &operator<<(QDBusArgument &argument, const ISD::Weather::Status &source); const QDBusArgument &operator>>(const QDBusArgument &argument, ISD::Weather::Status &dest); #endif