diff --git a/kstars/ekos/focus/focus.cpp b/kstars/ekos/focus/focus.cpp index 60c82eeeb..9ba80f3bf 100644 --- a/kstars/ekos/focus/focus.cpp +++ b/kstars/ekos/focus/focus.cpp @@ -1,3124 +1,3150 @@ /* Ekos Copyright (C) 2012 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "focus.h" #include "focusadaptor.h" #include "kstars.h" #include "kstarsdata.h" #include "Options.h" #include "auxiliary/kspaths.h" #include "ekos/manager.h" #include "ekos/auxiliary/darklibrary.h" #include "fitsviewer/fitsdata.h" #include "fitsviewer/fitstab.h" #include "fitsviewer/fitsview.h" #include "indi/indifilter.h" #include "ksnotification.h" #include #include #include #include #include #define FOCUS_TIMEOUT_THRESHOLD 120000 #define MAXIMUM_ABS_ITERATIONS 30 #define MAXIMUM_RESET_ITERATIONS 2 #define AUTO_STAR_TIMEOUT 45000 #define MINIMUM_PULSE_TIMER 32 #define MAX_RECAPTURE_RETRIES 3 #define MINIMUM_POLY_SOLUTIONS 2 namespace Ekos { Focus::Focus() { setupUi(this); qRegisterMetaType("Ekos::FocusState"); qDBusRegisterMetaType(); new FocusAdaptor(this); QDBusConnection::sessionBus().registerObject("/KStars/Ekos/Focus", this); //frameModified = false; waitStarSelectTimer.setInterval(AUTO_STAR_TIMEOUT); connect(&waitStarSelectTimer, &QTimer::timeout, this, &Ekos::Focus::checkAutoStarTimeout); connect(liveVideoB, &QPushButton::clicked, this, &Ekos::Focus::toggleVideo); //fy=fw=fh=0; HFRFrames.clear(); FilterDevicesCombo->addItem("--"); showFITSViewerB->setIcon( QIcon::fromTheme("kstars_fitsviewer")); showFITSViewerB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(showFITSViewerB, &QPushButton::clicked, this, &Ekos::Focus::showFITSViewer); toggleFullScreenB->setIcon( QIcon::fromTheme("view-fullscreen")); toggleFullScreenB->setShortcut(Qt::Key_F4); toggleFullScreenB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(toggleFullScreenB, &QPushButton::clicked, this, &Ekos::Focus::toggleFocusingWidgetFullScreen); // Exposure Timeout captureTimeout.setSingleShot(true); connect(&captureTimeout, &QTimer::timeout, this, &Ekos::Focus::processCaptureTimeout); connect(startFocusB, &QPushButton::clicked, this, &Ekos::Focus::start); connect(stopFocusB, &QPushButton::clicked, this, &Ekos::Focus::checkStopFocus); - connect(focusOutB, &QPushButton::clicked, [&]() { + connect(focusOutB, &QPushButton::clicked, [&]() + { focusOut(); }); - connect(focusInB, &QPushButton::clicked, [&]() { + connect(focusInB, &QPushButton::clicked, [&]() + { focusIn(); }); connect(captureB, &QPushButton::clicked, this, &Ekos::Focus::capture); connect(startLoopB, &QPushButton::clicked, this, &Ekos::Focus::startFraming); connect(useSubFrame, &QCheckBox::toggled, this, &Ekos::Focus::toggleSubframe); connect(resetFrameB, &QPushButton::clicked, this, &Ekos::Focus::resetFrame); - connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::setDefaultCCD); + connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::setDefaultCCD); connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::checkCCD); connect(useFullField, &QCheckBox::toggled, [&](bool toggled) { Options::setFocusUseFullField(toggled); fullFieldInnerRing->setEnabled(toggled); fullFieldOuterRing->setEnabled(toggled); if (toggled) { useSubFrame->setChecked(false); useAutoStar->setChecked(false); } + else + { + // Disable the overlay + focusView->setStarFilterRange(0, 1); + } }); connect(fullFieldInnerRing, static_cast(&QDoubleSpinBox::valueChanged), - [=](double d) { Options::setFocusFullFieldInnerRadius(d); }); + [ = ](double d) + { + Options::setFocusFullFieldInnerRadius(d); + }); connect(fullFieldOuterRing, static_cast(&QDoubleSpinBox::valueChanged), - [=](double d) { Options::setFocusFullFieldOuterRadius(d); }); + [ = ](double d) + { + Options::setFocusFullFieldOuterRadius(d); + }); FocusSettleTime->setValue(Options::focusSettleTime()); connect(FocusSettleTime, static_cast(&QDoubleSpinBox::valueChanged), - [=](double d) { Options::setFocusSettleTime(d); }); + [ = ](double d) + { + Options::setFocusSettleTime(d); + }); GuideSettleTime->setValue(Options::guideSettleTime()); connect(GuideSettleTime, static_cast(&QDoubleSpinBox::valueChanged), - [=](double d) { Options::setGuideSettleTime(d); }); + [ = ](double d) + { + Options::setGuideSettleTime(d); + }); - connect(focuserCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::setDefaultFocuser); + connect(focuserCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::setDefaultFocuser); connect(focuserCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::checkFocuser); connect(FilterDevicesCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::checkFilter); connect(setAbsTicksB, &QPushButton::clicked, this, &Ekos::Focus::setAbsoluteFocusTicks); connect(binningCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::setActiveBinning); connect(focusBoxSize, static_cast(&QSpinBox::valueChanged), this, &Ekos::Focus::updateBoxSize); focusDetection = static_cast(Options::focusDetection()); focusDetectionCombo->setCurrentIndex(focusDetection); - connect(focusDetectionCombo, static_cast(&QComboBox::activated), this, [&](int index) { + connect(focusDetectionCombo, static_cast(&QComboBox::activated), this, [&](int index) + { focusDetection = static_cast(index); thresholdSpin->setEnabled(focusDetection == ALGORITHM_THRESHOLD); Options::setFocusDetection(index); }); focusAlgorithm = static_cast(Options::focusAlgorithm()); focusAlgorithmCombo->setCurrentIndex(focusAlgorithm); - connect(focusAlgorithmCombo, static_cast(&QComboBox::activated), this, [&](int index) { + connect(focusAlgorithmCombo, static_cast(&QComboBox::activated), this, [&](int index) + { focusAlgorithm = static_cast(index); //toleranceIN->setEnabled(focusAlgorithm == FOCUS_ITERATIVE); Options::setFocusAlgorithm(index); }); activeBin = Options::focusXBin(); binningCombo->setCurrentIndex(activeBin - 1); focusFramesSpin->setValue(Options::focusFramesCount()); connect(clearDataB, &QPushButton::clicked, this, &Ekos::Focus::clearDataPoints); profileDialog = new QDialog(this); profileDialog->setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); QVBoxLayout *profileLayout = new QVBoxLayout(profileDialog); profileDialog->setWindowTitle(i18n("Relative Profile")); profilePlot = new QCustomPlot(profileDialog); profilePlot->setBackground(QBrush(Qt::black)); profilePlot->xAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->yAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); profilePlot->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); profilePlot->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); profilePlot->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); profilePlot->xAxis->grid()->setZeroLinePen(Qt::NoPen); profilePlot->yAxis->grid()->setZeroLinePen(Qt::NoPen); profilePlot->xAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->yAxis->setBasePen(QPen(Qt::white, 1)); profilePlot->xAxis->setTickPen(QPen(Qt::white, 1)); profilePlot->yAxis->setTickPen(QPen(Qt::white, 1)); profilePlot->xAxis->setSubTickPen(QPen(Qt::white, 1)); profilePlot->yAxis->setSubTickPen(QPen(Qt::white, 1)); profilePlot->xAxis->setTickLabelColor(Qt::white); profilePlot->yAxis->setTickLabelColor(Qt::white); profilePlot->xAxis->setLabelColor(Qt::white); profilePlot->yAxis->setLabelColor(Qt::white); profileLayout->addWidget(profilePlot); profileDialog->setLayout(profileLayout); profileDialog->resize(400, 300); connect(relativeProfileB, &QPushButton::clicked, profileDialog, &QDialog::show); currentGaus = profilePlot->addGraph(); currentGaus->setLineStyle(QCPGraph::lsLine); currentGaus->setPen(QPen(Qt::red, 2)); lastGaus = profilePlot->addGraph(); lastGaus->setLineStyle(QCPGraph::lsLine); QPen pen(Qt::darkGreen); pen.setStyle(Qt::DashLine); pen.setWidth(2); lastGaus->setPen(pen); HFRPlot->setBackground(QBrush(Qt::black)); HFRPlot->xAxis->setBasePen(QPen(Qt::white, 1)); HFRPlot->yAxis->setBasePen(QPen(Qt::white, 1)); HFRPlot->xAxis->setTickPen(QPen(Qt::white, 1)); HFRPlot->yAxis->setTickPen(QPen(Qt::white, 1)); HFRPlot->xAxis->setSubTickPen(QPen(Qt::white, 1)); HFRPlot->yAxis->setSubTickPen(QPen(Qt::white, 1)); HFRPlot->xAxis->setTickLabelColor(Qt::white); HFRPlot->yAxis->setTickLabelColor(Qt::white); HFRPlot->xAxis->setLabelColor(Qt::white); HFRPlot->yAxis->setLabelColor(Qt::white); HFRPlot->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); HFRPlot->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); HFRPlot->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); HFRPlot->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); HFRPlot->xAxis->grid()->setZeroLinePen(Qt::NoPen); HFRPlot->yAxis->grid()->setZeroLinePen(Qt::NoPen); HFRPlot->yAxis->setLabel(i18n("HFR")); HFRPlot->setInteractions(QCP::iRangeZoom); HFRPlot->setInteraction(QCP::iRangeDrag, true); v_graph = HFRPlot->addGraph(); v_graph->setLineStyle(QCPGraph::lsNone); v_graph->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssCircle, Qt::white, Qt::red, 3)); resetButtons(); appendLogText(i18n("Idle.")); for (auto &filter : FITSViewer::filterTypes) filterCombo->addItem(filter); filterCombo->setCurrentIndex(Options::focusEffect()); defaultScale = static_cast(Options::focusEffect()); connect(filterCombo, static_cast(&QComboBox::activated), this, &Ekos::Focus::filterChangeWarning); exposureIN->setValue(Options::focusExposure()); toleranceIN->setValue(Options::focusTolerance()); stepIN->setValue(Options::focusTicks()); useAutoStar->setChecked(Options::focusAutoStarEnabled()); focusBoxSize->setValue(Options::focusBoxSize()); if (Options::focusMaxTravel() > maxTravelIN->maximum()) maxTravelIN->setMaximum(Options::focusMaxTravel()); maxTravelIN->setValue(Options::focusMaxTravel()); useSubFrame->setChecked(Options::focusSubFrame()); suspendGuideCheck->setChecked(Options::suspendGuiding()); darkFrameCheck->setChecked(Options::useFocusDarkFrame()); thresholdSpin->setValue(Options::focusThreshold()); useFullField->setChecked(Options::focusUseFullField()); fullFieldInnerRing->setValue(Options::focusFullFieldInnerRadius()); fullFieldOuterRing->setValue(Options::focusFullFieldOuterRadius()); //focusFramesSpin->setValue(Options::focusFrames()); connect(thresholdSpin, static_cast(&QDoubleSpinBox::valueChanged), this, &Ekos::Focus::setThreshold); focusView = new FITSView(focusingWidget, FITS_FOCUS); focusView->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); focusView->setBaseSize(focusingWidget->size()); focusView->createFloatingToolBar(); QVBoxLayout *vlayout = new QVBoxLayout(); vlayout->addWidget(focusView); focusingWidget->setLayout(vlayout); connect(focusView, &FITSView::trackingStarSelected, this, &Ekos::Focus::focusStarSelected, Qt::UniqueConnection); focusView->setStarsEnabled(true); // Reset star center on auto star check toggle - connect(useAutoStar, &QCheckBox::toggled, this, [&](bool enabled) { + connect(useAutoStar, &QCheckBox::toggled, this, [&](bool enabled) + { if (enabled) { starCenter = QVector3D(); starSelected = false; focusView->setTrackingBox(QRect()); } }); //Note: This is to prevent a button from being called the default button //and then executing when the user hits the enter key such as when on a Text Box QList qButtons = findChildren(); for (auto &button : qButtons) button->setAutoDefault(false); } Focus::~Focus() { if (focusingWidget->parent() == nullptr) toggleFocusingWidgetFullScreen(); } void Focus::resetFrame() { if (currentCCD) { ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip) { //fx=fy=fw=fh=0; targetChip->resetFrame(); int x, y, w, h; targetChip->getFrame(&x, &y, &w, &h); qCDebug(KSTARS_EKOS_FOCUS) << "Frame is reset. X:" << x << "Y:" << y << "W:" << w << "H:" << h << "binX:" << 1 << "binY:" << 1; QVariantMap settings; settings["x"] = x; settings["y"] = y; settings["w"] = w; settings["h"] = h; settings["binx"] = 1; settings["biny"] = 1; frameSettings[targetChip] = settings; starSelected = false; starCenter = QVector3D(); subFramed = false; focusView->setTrackingBox(QRect()); } } } bool Focus::setCamera(const QString &device) { for (int i = 0; i < CCDCaptureCombo->count(); i++) if (device == CCDCaptureCombo->itemText(i)) { CCDCaptureCombo->setCurrentIndex(i); checkCCD(i); return true; } return false; } void Focus::setDefaultCCD(QString ccd) { Options::setDefaultFocusCCD(ccd); } void Focus::setDefaultFocuser(QString focuser) { Options::setDefaultFocusFocuser(focuser); } QString Focus::camera() { - if (currentCCD) - return currentCCD->getDeviceName(); + if (currentCCD) + return currentCCD->getDeviceName(); - return QString(); + return QString(); } void Focus::checkCCD(int ccdNum) { if (ccdNum == -1) { ccdNum = CCDCaptureCombo->currentIndex(); if (ccdNum == -1) return; } if (ccdNum >= 0 && ccdNum <= CCDs.count()) { currentCCD = CCDs.at(ccdNum); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip && targetChip->isCapturing()) return; for (ISD::CCD *oneCCD : CCDs) { if (oneCCD == currentCCD) continue; if (captureInProgress == false) oneCCD->disconnect(this); } if (targetChip) { targetChip->setImageView(focusView, FITS_FOCUS); binningCombo->setEnabled(targetChip->canBin()); useSubFrame->setEnabled(targetChip->canSubframe()); if (targetChip->canBin()) { int subBinX = 1, subBinY = 1; binningCombo->clear(); targetChip->getMaxBin(&subBinX, &subBinY); for (int i = 1; i <= subBinX; i++) binningCombo->addItem(QString("%1x%2").arg(i).arg(i)); binningCombo->setCurrentIndex(activeBin - 1); } QStringList isoList = targetChip->getISOList(); ISOCombo->clear(); if (isoList.isEmpty()) { ISOCombo->setEnabled(false); ISOLabel->setEnabled(false); } else { ISOCombo->setEnabled(true); ISOLabel->setEnabled(true); ISOCombo->addItems(isoList); ISOCombo->setCurrentIndex(targetChip->getISOIndex()); } connect(currentCCD, &ISD::CCD::videoStreamToggled, this, &Ekos::Focus::setVideoStreamEnabled, Qt::UniqueConnection); liveVideoB->setEnabled(currentCCD->hasVideoStream()); if (currentCCD->hasVideoStream()) setVideoStreamEnabled(currentCCD->isStreamingEnabled()); else liveVideoB->setIcon(QIcon::fromTheme("camera-off")); bool hasGain = currentCCD->hasGain(); gainLabel->setEnabled(hasGain); gainIN->setEnabled(hasGain && currentCCD->getGainPermission() != IP_RO); if (hasGain) { double gain = 0, min = 0, max = 0, step = 1; currentCCD->getGainMinMaxStep(&min, &max, &step); if (currentCCD->getGain(&gain)) { gainIN->setMinimum(min); gainIN->setMaximum(max); if (step > 0) gainIN->setSingleStep(step); gainIN->setValue(gain); } } else gainIN->clear(); } } syncCCDInfo(); } void Focus::syncCCDInfo() { if (currentCCD == nullptr) return; ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); useSubFrame->setEnabled(targetChip->canSubframe()); if (frameSettings.contains(targetChip) == false) { int x, y, w, h; if (targetChip->getFrame(&x, &y, &w, &h)) { int binx = 1, biny = 1; targetChip->getBinning(&binx, &biny); if (w > 0 && h > 0) { int minX, maxX, minY, maxY, minW, maxW, minH, maxH; targetChip->getFrameMinMax(&minX, &maxX, &minY, &maxY, &minW, &maxW, &minH, &maxH); QVariantMap settings; settings["x"] = useSubFrame->isChecked() ? x : minX; settings["y"] = useSubFrame->isChecked() ? y : minY; settings["w"] = useSubFrame->isChecked() ? w : maxW; settings["h"] = useSubFrame->isChecked() ? h : maxH; settings["binx"] = binx; settings["biny"] = biny; frameSettings[targetChip] = settings; } } } } void Focus::addFilter(ISD::GDInterface *newFilter) { foreach (ISD::GDInterface *filter, Filters) { if (!strcmp(filter->getDeviceName(), newFilter->getDeviceName())) return; } FilterCaptureLabel->setEnabled(true); FilterDevicesCombo->setEnabled(true); FilterPosLabel->setEnabled(true); FilterPosCombo->setEnabled(true); filterManagerB->setEnabled(true); FilterDevicesCombo->addItem(newFilter->getDeviceName()); Filters.append(static_cast(newFilter)); checkFilter(1); FilterDevicesCombo->setCurrentIndex(1); } bool Focus::setFilterWheel(const QString &device) { bool deviceFound = false; for (int i = 1; i < FilterDevicesCombo->count(); i++) if (device == FilterDevicesCombo->itemText(i)) { checkFilter(i); deviceFound = true; break; } if (deviceFound == false) return false; return true; } QString Focus::filterWheel() { if (FilterDevicesCombo->currentIndex() >= 1) return FilterDevicesCombo->currentText(); return QString(); } bool Focus::setFilter(const QString &filter) { if (FilterDevicesCombo->currentIndex() >= 1) { FilterPosCombo->setCurrentText(filter); return true; } return false; } QString Focus::filter() { return FilterPosCombo->currentText(); } void Focus::checkFilter(int filterNum) { if (filterNum == -1) { filterNum = FilterDevicesCombo->currentIndex(); if (filterNum == -1) return; } // "--" is no filter if (filterNum == 0) { currentFilter = nullptr; - currentFilterPosition=-1; + currentFilterPosition = -1; FilterPosCombo->clear(); return; } if (filterNum <= Filters.count()) - currentFilter = Filters.at(filterNum-1); + currentFilter = Filters.at(filterNum - 1); filterManager->setCurrentFilterWheel(currentFilter); FilterPosCombo->clear(); FilterPosCombo->addItems(filterManager->getFilterLabels()); currentFilterPosition = filterManager->getFilterPosition(); - FilterPosCombo->setCurrentIndex(currentFilterPosition-1); + FilterPosCombo->setCurrentIndex(currentFilterPosition - 1); exposureIN->setValue(filterManager->getFilterExposure()); } void Focus::addFocuser(ISD::GDInterface *newFocuser) { ISD::Focuser *oneFocuser = static_cast(newFocuser); if (Focusers.contains(oneFocuser)) return; focuserCombo->addItem(oneFocuser->getDeviceName()); Focusers.append(oneFocuser); currentFocuser = oneFocuser; checkFocuser(); } -bool Focus::setFocuser(const QString & device) +bool Focus::setFocuser(const QString &device) { for (int i = 0; i < focuserCombo->count(); i++) if (device == focuserCombo->itemText(i)) { focuserCombo->setCurrentIndex(i); checkFocuser(i); return true; } return false; } QString Focus::focuser() { if (currentFocuser) return currentFocuser->getDeviceName(); return QString(); } void Focus::checkFocuser(int FocuserNum) { if (FocuserNum == -1) FocuserNum = focuserCombo->currentIndex(); if (FocuserNum == -1) { currentFocuser = nullptr; return; } if (FocuserNum <= Focusers.count()) currentFocuser = Focusers.at(FocuserNum); filterManager->setFocusReady(currentFocuser->isConnected()); // Disconnect all focusers foreach (ISD::Focuser *oneFocuser, Focusers) { disconnect(oneFocuser, &ISD::GDInterface::numberUpdated, this, &Ekos::Focus::processFocusNumber); } canAbsMove = currentFocuser->canAbsMove(); if (canAbsMove) { getAbsFocusPosition(); absTicksSpin->setEnabled(true); absTicksLabel->setEnabled(true); setAbsTicksB->setEnabled(true); absTicksSpin->setValue(currentPosition); } else { absTicksSpin->setEnabled(false); absTicksLabel->setEnabled(false); setAbsTicksB->setEnabled(false); } canRelMove = currentFocuser->canRelMove(); // In case we have a purely relative focuser, we pretend // it is an absolute focuser with initial point set at 50,000 // This is done we can use the same algorithm used for absolute focuser if (canAbsMove == false && canRelMove == true) { currentPosition = 50000; absMotionMax = 100000; absMotionMin = 0; } canTimerMove = currentFocuser->canTimerMove(); focusType = (canRelMove || canAbsMove || canTimerMove) ? FOCUS_AUTO : FOCUS_MANUAL; connect(currentFocuser, &ISD::GDInterface::numberUpdated, this, &Ekos::Focus::processFocusNumber, Qt::UniqueConnection); //connect(currentFocuser, SIGNAL(propertyDefined(INDI::Property*)), this, &Ekos::Focus::(registerFocusProperty(INDI::Property*)), Qt::UniqueConnection); resetButtons(); //if (!inAutoFocus && !inFocusLoop && !captureInProgress && !inSequenceFocus) // emit autoFocusFinished(true, -1); } void Focus::addCCD(ISD::GDInterface *newCCD) { if (CCDs.contains(static_cast(newCCD))) return; CCDs.append(static_cast(newCCD)); CCDCaptureCombo->addItem(newCCD->getDeviceName()); checkCCD(); } void Focus::getAbsFocusPosition() { if (!canAbsMove) return; INumberVectorProperty *absMove = currentFocuser->getBaseDevice()->getNumber("ABS_FOCUS_POSITION"); if (absMove) { currentPosition = absMove->np[0].value; absMotionMax = absMove->np[0].max; absMotionMin = absMove->np[0].min; absTicksSpin->setMinimum(absMove->np[0].min); absTicksSpin->setMaximum(absMove->np[0].max); absTicksSpin->setSingleStep(absMove->np[0].step); maxTravelIN->setMinimum(absMove->np[0].min); maxTravelIN->setMaximum(absMove->np[0].max); absTicksLabel->setText(QString::number(static_cast(currentPosition))); //absTicksSpin->setValue(currentPosition); } } void Focus::start() { if (currentCCD == nullptr) { appendLogText(i18n("No CCD connected.")); return; } lastFocusDirection = FOCUS_NONE; polySolutionFound = 0; waitStarSelectTimer.stop(); starsHFR.clear(); lastHFR = 0; if (canAbsMove) { absIterations = 0; getAbsFocusPosition(); pulseDuration = stepIN->value(); } else if (canRelMove) { appendLogText(i18n("Setting dummy central position to 50000")); absIterations = 0; pulseDuration = stepIN->value(); currentPosition = 50000; absMotionMax = 100000; absMotionMin = 0; } else { pulseDuration = stepIN->value(); if (pulseDuration <= MINIMUM_PULSE_TIMER) { appendLogText(i18n("Starting pulse step is too low. Increase the step size to %1 or higher...", MINIMUM_PULSE_TIMER * 5)); return; } } inAutoFocus = true; HFRFrames.clear(); resetButtons(); reverseDir = false; /*if (fw > 0 && fh > 0) starSelected= true; else starSelected= false;*/ clearDataPoints(); if (firstGaus) { profilePlot->removeGraph(firstGaus); firstGaus = nullptr; } Options::setFocusTicks(stepIN->value()); Options::setFocusTolerance(toleranceIN->value()); //Options::setFocusExposure(exposureIN->value()); Options::setFocusMaxTravel(maxTravelIN->value()); Options::setFocusBoxSize(focusBoxSize->value()); Options::setFocusSubFrame(useSubFrame->isChecked()); Options::setFocusAutoStarEnabled(useAutoStar->isChecked()); Options::setSuspendGuiding(suspendGuideCheck->isChecked()); Options::setUseFocusDarkFrame(darkFrameCheck->isChecked()); Options::setFocusFramesCount(focusFramesSpin->value()); Options::setFocusUseFullField(useFullField->isChecked()); qCDebug(KSTARS_EKOS_FOCUS) << "Starting focus with box size: " << focusBoxSize->value() - << " Subframe: " << ( useSubFrame->isChecked() ? "yes" : "no" ) - << " Autostar: " << ( useAutoStar->isChecked() ? "yes" : "no" ) - << " Full frame: " << ( useFullField->isChecked() ? "yes" : "no " ) - << " [" << fullFieldInnerRing->value() << "%," << fullFieldOuterRing->value() << "%]" - << " Step Size: " << stepIN->value() << " Threshold: " << thresholdSpin->value() - << " Tolerance: " << toleranceIN->value() - << " Frames: " << 1 /*focusFramesSpin->value()*/ << " Maximum Travel: " << maxTravelIN->value(); + << " Subframe: " << ( useSubFrame->isChecked() ? "yes" : "no" ) + << " Autostar: " << ( useAutoStar->isChecked() ? "yes" : "no" ) + << " Full frame: " << ( useFullField->isChecked() ? "yes" : "no " ) + << " [" << fullFieldInnerRing->value() << "%," << fullFieldOuterRing->value() << "%]" + << " Step Size: " << stepIN->value() << " Threshold: " << thresholdSpin->value() + << " Tolerance: " << toleranceIN->value() + << " Frames: " << 1 /*focusFramesSpin->value()*/ << " Maximum Travel: " << maxTravelIN->value(); if (useAutoStar->isChecked()) appendLogText(i18n("Autofocus in progress...")); else appendLogText(i18n("Please wait until image capture is complete...")); if (suspendGuideCheck->isChecked()) { m_GuidingSuspended = true; emit suspendGuiding(); } //emit statusUpdated(true); state = Ekos::FOCUS_PROGRESS; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); // Denoise with median filter //defaultScale = FITS_MEDIAN; KSNotification::event(QLatin1String("FocusStarted"), i18n("Autofocus operation started")); capture(); } void Focus::checkStopFocus() { if (inSequenceFocus == true) { inSequenceFocus = false; setAutoFocusResult(false); } if (captureInProgress && inAutoFocus == false && inFocusLoop == false) { captureB->setEnabled(true); stopFocusB->setEnabled(false); appendLogText(i18n("Capture aborted.")); } abort(); } void Focus::abort() { stop(true); } void Focus::stop(bool aborted) { qCDebug(KSTARS_EKOS_FOCUS) << "Stopppig Focus"; captureTimeout.stop(); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); inAutoFocus = false; inFocusLoop = false; // Why starSelected is set to false below? We should retain star selection status under: // 1. Autostar is off, or // 2. Toggle subframe, or // 3. Reset frame // 4. Manual motion? //starSelected = false; polySolutionFound = 0; captureInProgress = false; minimumRequiredHFR = -1; noStarCount = 0; HFRFrames.clear(); //maxHFR=1; disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Focus::newFITS); if (rememberUploadMode != currentCCD->getUploadMode()) currentCCD->setUploadMode(rememberUploadMode); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); targetChip->abortExposure(); resetButtons(); absIterations = 0; HFRInc = 0; reverseDir = false; //emit statusUpdated(false); if (aborted) { state = Ekos::FOCUS_ABORTED; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } } void Focus::capture() { captureTimeout.stop(); if (captureInProgress) { qCWarning(KSTARS_EKOS_FOCUS) << "Capture called while already in progress. Capture is ignored."; return; } if (currentCCD == nullptr) { appendLogText(i18n("No CCD connected.")); return; } waitStarSelectTimer.stop(); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); double seqExpose = exposureIN->value(); if (currentCCD->isConnected() == false) { appendLogText(i18n("Error: Lost connection to CCD.")); return; } if (currentCCD->isBLOBEnabled() == false) { currentCCD->setBLOBEnabled(true); } if (currentFilter != nullptr && FilterPosCombo->currentIndex() != -1) { if (currentFilter->isConnected() == false) { appendLogText(i18n("Error: Lost connection to filter wheel.")); return; } int targetPosition = FilterPosCombo->currentIndex() + 1; QString lockedFilter = filterManager->getFilterLock(FilterPosCombo->currentText()); // We change filter if: // 1. Target position is not equal to current position. // 2. Locked filter of CURRENT filter is a different filter. if (lockedFilter != "--" && lockedFilter != FilterPosCombo->currentText()) { int lockedFilterIndex = FilterPosCombo->findText(lockedFilter); if (lockedFilterIndex >= 0) { // Go back to this filter one we are done fallbackFilterPending = true; fallbackFilterPosition = targetPosition; targetPosition = lockedFilterIndex + 1; } } filterPositionPending = (targetPosition != currentFilterPosition); // If either the target position is not equal to the current position, OR if (filterPositionPending) { // Apply all policies except autofocus since we are already in autofocus module doh. - filterManager->setFilterPosition(targetPosition, static_cast(FilterManager::CHANGE_POLICY|FilterManager::OFFSET_POLICY)); + filterManager->setFilterPosition(targetPosition, static_cast(FilterManager::CHANGE_POLICY | FilterManager::OFFSET_POLICY)); return; } } if (currentCCD->getUploadMode() == ISD::CCD::UPLOAD_LOCAL) { rememberUploadMode = ISD::CCD::UPLOAD_LOCAL; currentCCD->setUploadMode(ISD::CCD::UPLOAD_CLIENT); } rememberCCDExposureLooping = currentCCD->isLooping(); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(false); currentCCD->setTransformFormat(ISD::CCD::FORMAT_FITS); targetChip->setBinning(activeBin, activeBin); targetChip->setCaptureMode(FITS_FOCUS); // Always disable filtering if using a dark frame and then re-apply after subtraction. TODO: Implement this in capture and guide and align if (darkFrameCheck->isChecked()) targetChip->setCaptureFilter(FITS_NONE); else targetChip->setCaptureFilter(defaultScale); if (ISOCombo->isEnabled() && ISOCombo->currentIndex() != -1 && - targetChip->getISOIndex() != ISOCombo->currentIndex()) + targetChip->getISOIndex() != ISOCombo->currentIndex()) targetChip->setISOIndex(ISOCombo->currentIndex()); if (gainIN->isEnabled()) currentCCD->setGain(gainIN->value()); connect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Focus::newFITS); targetChip->setFrameType(FRAME_LIGHT); if (frameSettings.contains(targetChip)) { QVariantMap settings = frameSettings[targetChip]; targetChip->setFrame(settings["x"].toInt(), settings["y"].toInt(), settings["w"].toInt(), settings["h"].toInt()); settings["binx"] = activeBin; settings["biny"] = activeBin; frameSettings[targetChip] = settings; } captureInProgress = true; focusView->setBaseSize(focusingWidget->size()); // Timeout is exposure duration + timeout threshold in seconds captureTimeout.start(seqExpose * 1000 + FOCUS_TIMEOUT_THRESHOLD); targetChip->capture(seqExpose); if (inFocusLoop == false) { appendLogText(i18n("Capturing image...")); if (inAutoFocus == false) { captureB->setEnabled(false); stopFocusB->setEnabled(true); } } } bool Focus::focusIn(int ms) { if (currentFocuser == nullptr) return false; if (currentFocuser->isConnected() == false) { appendLogText(i18n("Error: Lost connection to Focuser.")); return false; } if (ms == -1) ms = stepIN->value(); qCDebug(KSTARS_EKOS_FOCUS) << "Focus in (" << ms << ")"; lastFocusDirection = FOCUS_IN; currentFocuser->focusIn(); if (canAbsMove) { currentFocuser->moveAbs(currentPosition - ms); appendLogText(i18n("Focusing inward by %1 steps...", ms)); } else if (canRelMove) { currentFocuser->moveRel(ms); appendLogText(i18n("Focusing inward by %1 steps...", ms)); } else { currentFocuser->moveByTimer(ms); appendLogText(i18n("Focusing inward by %1 ms...", ms)); } return true; } bool Focus::focusOut(int ms) { if (currentFocuser == nullptr) return false; if (currentFocuser->isConnected() == false) { appendLogText(i18n("Error: Lost connection to Focuser.")); return false; } lastFocusDirection = FOCUS_OUT; if (ms == -1) ms = stepIN->value(); qCDebug(KSTARS_EKOS_FOCUS) << "Focus out (" << ms << ")"; currentFocuser->focusOut(); if (canAbsMove) { currentFocuser->moveAbs(currentPosition + ms); appendLogText(i18n("Focusing outward by %1 steps...", ms)); } else if (canRelMove) { currentFocuser->moveRel(ms); appendLogText(i18n("Focusing outward by %1 steps...", ms)); } else { currentFocuser->moveByTimer(ms); appendLogText(i18n("Focusing outward by %1 ms...", ms)); } return true; } void Focus::newFITS(IBLOB *bp) { if (bp == nullptr) { capture(); return; } // Ignore guide head if there is any. if (!strcmp(bp->name, "CCD2")) return; captureTimeout.stop(); captureTimeoutCounter = 0; ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Focus::newFITS); if (darkFrameCheck->isChecked()) { FITSData *darkData = DarkLibrary::Instance()->getDarkFrame(targetChip, exposureIN->value()); QVariantMap settings = frameSettings[targetChip]; uint16_t offsetX = settings["x"].toInt() / settings["binx"].toInt(); uint16_t offsetY = settings["y"].toInt() / settings["biny"].toInt(); connect(DarkLibrary::Instance(), &DarkLibrary::darkFrameCompleted, this, &Ekos::Focus::setCaptureComplete); connect(DarkLibrary::Instance(), &DarkLibrary::newLog, this, &Ekos::Focus::appendLogText); targetChip->setCaptureFilter(defaultScale); if (darkData) DarkLibrary::Instance()->subtract(darkData, focusView, defaultScale, offsetX, offsetY); else { bool rc = DarkLibrary::Instance()->captureAndSubtract(targetChip, focusView, exposureIN->value(), offsetX, - offsetY); + offsetY); darkFrameCheck->setChecked(rc); } return; } setCaptureComplete(); } void Focus::setCaptureComplete() { DarkLibrary::Instance()->disconnect(this); // Get Binning ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); int subBinX = 1, subBinY = 1; targetChip->getBinning(&subBinX, &subBinY); // If we have a box, sync the bounding box to its position. syncTrackingBoxPosition(); // Notify user if we're not looping if (inFocusLoop == false) appendLogText(i18n("Image received.")); // If we're not looping and not in autofocus, enable user to capture again. if (captureInProgress && inFocusLoop == false && inAutoFocus == false) { captureB->setEnabled(true); stopFocusB->setEnabled(false); currentCCD->setUploadMode(rememberUploadMode); } if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); captureInProgress = false; // Get handle to the image data FITSData *image_data = focusView->getImageData(); // Emit the tracking (bounding) box view emit newStarPixmap(focusView->getTrackingBoxPixmap(10)); // If we are not looping; OR // If we are looping but we already have tracking box enabled; OR // If we are asked to analyze _all_ the stars within the field // THEN let's find stars in the image and get current HFR if (inFocusLoop == false || (inFocusLoop && (focusView->isTrackingBoxEnabled() || Options::focusUseFullField()))) { // First check that we haven't already search for stars // Since star-searching algorithm are time-consuming, we should only search when necessary if (image_data->areStarsSearched() == false) { // Reset current HFR currentHFR = -1; // When we're using FULL field view, we always use either CENTROID algorithm which is the default // standard algorithm in KStars, or SEP. The other algorithms are too inefficient to run on full frames and require // a bounding box for them to be effective in near real-time application. if (Options::focusUseFullField()) { if (focusDetection != ALGORITHM_CENTROID && focusDetection != ALGORITHM_SEP) focusView->findStars(ALGORITHM_CENTROID); else focusView->findStars(focusDetection); - focusView->filterStars(static_cast (fullFieldInnerRing->value()/100.0), - static_cast (fullFieldOuterRing->value()/100.0)); + focusView->setStarFilterRange(static_cast (fullFieldInnerRing->value() / 100.0), + static_cast (fullFieldOuterRing->value() / 100.0)); + focusView->filterStars(); focusView->updateFrame(); // Get the average HFR of the whole frame currentHFR = image_data->getHFR(HFR_AVERAGE); } else { // If star is already selected then use whatever algorithm currently selected. if (starSelected) { focusView->findStars(focusDetection); focusView->updateFrame(); currentHFR = image_data->getHFR(HFR_MAX); } else { - // Disable tracking box - focusView->setTrackingBoxEnabled(false); + // Disable tracking box + focusView->setTrackingBoxEnabled(false); - // If algorithm is set something other than Centeroid or SEP, then force Centroid - // Since it is the most reliable detector when nothing was selected before. - if (focusDetection != ALGORITHM_CENTROID && focusDetection != ALGORITHM_SEP) - focusView->findStars(ALGORITHM_CENTROID); - else - // Otherwise, continue to find use using the selected algorithm - focusView->findStars(focusDetection); + // If algorithm is set something other than Centeroid or SEP, then force Centroid + // Since it is the most reliable detector when nothing was selected before. + if (focusDetection != ALGORITHM_CENTROID && focusDetection != ALGORITHM_SEP) + focusView->findStars(ALGORITHM_CENTROID); + else + // Otherwise, continue to find use using the selected algorithm + focusView->findStars(focusDetection); - // Reenable tracking box - focusView->setTrackingBoxEnabled(true); + // Reenable tracking box + focusView->setTrackingBoxEnabled(true); - focusView->updateFrame(); + focusView->updateFrame(); - // Get maximum HFR in the frame - currentHFR = image_data->getHFR(HFR_MAX); + // Get maximum HFR in the frame + currentHFR = image_data->getHFR(HFR_MAX); } } } // Let's now report the current HFR qCDebug(KSTARS_EKOS_FOCUS) << "Focus newFITS #" << HFRFrames.count() + 1 << ": Current HFR " << currentHFR; // Add it to existing frames in case we need to take an average HFRFrames.append(currentHFR); // Check if we need to average more than a single frame if (HFRFrames.count() >= focusFramesSpin->value()) { currentHFR = 0; // Remove all -1 QMutableVectorIterator i(HFRFrames); while (i.hasNext()) { if (i.next() == -1) i.remove(); } if (HFRFrames.isEmpty()) currentHFR = -1; else { // Perform simple sigma clipping if frames count > 3 if (HFRFrames.count() > 3) { // Sort all HFRs std::sort(HFRFrames.begin(), HFRFrames.end()); const auto median = ((HFRFrames.size() % 2) ? - HFRFrames[HFRFrames.size() / 2] : - ((double)HFRFrames[HFRFrames.size() / 2 - 1] + HFRFrames[HFRFrames.size() / 2]) * .5); + HFRFrames[HFRFrames.size() / 2] : + ((double)HFRFrames[HFRFrames.size() / 2 - 1] + HFRFrames[HFRFrames.size() / 2]) * .5); const auto mean = std::accumulate(HFRFrames.begin(), HFRFrames.end(), .0) / HFRFrames.size(); double variance = 0; foreach (auto val, HFRFrames) variance += (val - mean) * (val - mean); const double stddev = sqrt(variance / HFRFrames.size()); // Reject those 2 sigma away from median const double sigmaHigh = median + stddev * 2; const double sigmaLow = median - stddev * 2; QMutableVectorIterator i(HFRFrames); while (i.hasNext()) { auto val = i.next(); if (val > sigmaHigh || val < sigmaLow) i.remove(); } } // Find average HFR currentHFR = std::accumulate(HFRFrames.begin(), HFRFrames.end(), .0) / HFRFrames.size(); HFRFrames.clear(); } } else { // If we need to capture more frames to average the HFR, let's do that now. capture(); return; } // Let signal the current HFR now depending on whether the focuser is absolute or relative if (canAbsMove) emit newHFR(currentHFR, static_cast(currentPosition)); else emit newHFR(currentHFR, -1); // Format the HFR value into a string QString HFRText = QString("%1").arg(currentHFR, 0, 'f', 2); HFROut->setText(HFRText); // Display message in case _last_ HFR was negative if (lastHFR == -1) appendLogText(i18n("FITS received. No stars detected.")); // If we have a valid HFR value if (currentHFR > 0) { // Check if we're done from polynomail fitting algorithm if (focusAlgorithm == FOCUS_POLYNOMIAL && polySolutionFound == MINIMUM_POLY_SOLUTIONS) { polySolutionFound = 0; appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); return; } Edge *maxStarHFR = nullptr; // Center tracking box around selected star (if it valid) either in: // 1. Autofocus // 2. CheckFocus (minimumHFRCheck) // The starCenter _must_ already be defined, otherwise, we proceed until // the latter half of the function searches for a star and define it. if (starCenter.isNull() == false && (inAutoFocus || minimumRequiredHFR >= 0) && - (maxStarHFR = image_data->getMaxHFRStar()) != nullptr) + (maxStarHFR = image_data->getMaxHFRStar()) != nullptr) { // Now we have star selected in the frame starSelected = true; starCenter.setX(qMax(0, static_cast(maxStarHFR->x))); starCenter.setY(qMax(0, static_cast(maxStarHFR->y))); syncTrackingBoxPosition(); // Record the star information (X, Y, currentHFR) QVector3D oneStar = starCenter; oneStar.setZ(currentHFR); starsHFR.append(oneStar); } else { // Record the star information (X, Y, currentHFR) QVector3D oneStar(starCenter.x(), starCenter.y(), currentHFR); starsHFR.append(oneStar); } if (currentHFR > maxHFR) maxHFR = currentHFR; // Append point to the #Iterations vs #HFR chart in case of looping or in case in autofocus with a focus // that does not support position feedback. if (inFocusLoop || (inAutoFocus && canAbsMove == false && canRelMove == false)) { if (hfr_position.empty()) hfr_position.append(1); else hfr_position.append(hfr_position.last() + 1); hfr_value.append(currentHFR); drawHFRPlot(); } } else { // Let's record an invalid star result QVector3D oneStar(starCenter.x(), starCenter.y(), -1); starsHFR.append(oneStar); } // Try to average values and find if we have bogus results if (inAutoFocus && starsHFR.count() > 3) { float mean = 0, sum = 0, stddev = 0, noHFR = 0; for (int i = 0; i < starsHFR.count(); i++) { sum += starsHFR[i].x(); if (starsHFR[i].z() == -1) noHFR++; } mean = sum / starsHFR.count(); // Calculate standard deviation for (int i = 0; i < starsHFR.count(); i++) stddev += pow(starsHFR[i].x() - mean, 2); stddev = sqrt(stddev / starsHFR.count()); if (currentHFR == -1 && (stddev > focusBoxSize->value() / 10.0 || noHFR / starsHFR.count() > 0.75)) { appendLogText(i18n("No reliable star is detected. Aborting...")); abort(); setAutoFocusResult(false); return; } } } // If we are just framing, let's capture again if (inFocusLoop) { capture(); return; } // If star is NOT yet selected in a non-full-frame situation // then let's now try to find the star. This step is skipped for full frames // since there isn't a single star to select as we are only interested in the overall average HFR. // We need to check if we can find the star right away, or if we need to _subframe_ around the // selected star. if (Options::focusUseFullField() == false && starCenter.isNull()) { int x = 0, y = 0, w = 0, h = 0; // Let's get the stored frame settings for this particular chip if (frameSettings.contains(targetChip)) { QVariantMap settings = frameSettings[targetChip]; x = settings["x"].toInt(); y = settings["y"].toInt(); w = settings["w"].toInt(); h = settings["h"].toInt(); } else // Otherwise let's get the target chip frame coordinates. targetChip->getFrame(&x, &y, &w, &h); // In case auto star is selected. if (useAutoStar->isChecked()) { // Do we have a valid star detected? Edge *maxStar = image_data->getMaxHFRStar(); if (maxStar == nullptr) { appendLogText(i18n("Failed to automatically select a star. Please select a star manually.")); // Center the tracking box in the frame and display it focusView->setTrackingBox(QRect(w - focusBoxSize->value() / (subBinX * 2), h - focusBoxSize->value() / (subBinY * 2), focusBoxSize->value() / subBinX, focusBoxSize->value() / subBinY)); focusView->setTrackingBoxEnabled(true); // Use can now move it to select the desired star state = Ekos::FOCUS_WAITING; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); // Start the wait timer so we abort after a timeout if the user does not make a choice waitStarSelectTimer.start(); return; } // Do we need to subframe? if (subFramed == false && useSubFrame->isEnabled() && useSubFrame->isChecked()) { int offset = (static_cast(focusBoxSize->value()) / subBinX) * 1.5; int subX = (maxStar->x - offset) * subBinX; int subY = (maxStar->y - offset) * subBinY; int subW = offset * 2 * subBinX; int subH = offset * 2 * subBinY; int minX, maxX, minY, maxY, minW, maxW, minH, maxH; targetChip->getFrameMinMax(&minX, &maxX, &minY, &maxY, &minW, &maxW, &minH, &maxH); // Try to limit the subframed selection if (subX < minX) subX = minX; if (subY < minY) subY = minY; if ((subW + subX) > maxW) subW = maxW - subX; if ((subH + subY) > maxH) subH = maxH - subY; // Now we store the subframe coordinates in the target chip frame settings so we // reuse it later when we capture again. QVariantMap settings = frameSettings[targetChip]; settings["x"] = subX; settings["y"] = subY; settings["w"] = subW; settings["h"] = subH; settings["binx"] = subBinX; settings["biny"] = subBinY; qCDebug(KSTARS_EKOS_FOCUS) << "Frame is subframed. X:" << subX << "Y:" << subY << "W:" << subW << "H:" << subH << "binX:" << subBinX << "binY:" << subBinY; starsHFR.clear(); frameSettings[targetChip] = settings; // Set the star center in the center of the subframed coordinates starCenter.setX(subW / (2 * subBinX)); starCenter.setY(subH / (2 * subBinY)); starCenter.setZ(subBinX); subFramed = true; focusView->setFirstLoad(true); // Now let's capture again for the actual requested subframed image. capture(); } // If we're subframed or don't need subframe, let's record the max star coordinates else { starCenter.setX(maxStar->x); starCenter.setY(maxStar->y); starCenter.setZ(subBinX); // Let's now capture again if we're autofocusing if (inAutoFocus) capture(); } syncTrackingBoxPosition(); defaultScale = static_cast(filterCombo->currentIndex()); return; } // If manual selection is enabled then let's ask the user to select the focus star else { appendLogText(i18n("Capture complete. Select a star to focus.")); starSelected = false; // Let's now display and set the tracking box in the center of the frame // so that the user moves it around to select the desired star. int subBinX = 1, subBinY = 1; targetChip->getBinning(&subBinX, &subBinY); focusView->setTrackingBox(QRect((w - focusBoxSize->value()) / (subBinX * 2), (h - focusBoxSize->value()) / (2 * subBinY), focusBoxSize->value() / subBinX, focusBoxSize->value() / subBinY)); focusView->setTrackingBoxEnabled(true); // Now we wait state = Ekos::FOCUS_WAITING; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); // If the user does not select for a timeout period, we abort. waitStarSelectTimer.start(); return; } } // Check if the focus module is requested to verify if the minimum HFR value is met. if (minimumRequiredHFR >= 0) { // In case we failed to detected, we capture again. if (currentHFR == -1) { if (noStarCount++ < MAX_RECAPTURE_RETRIES) { appendLogText(i18n("No stars detected, capturing again...")); // On Last Attempt reset focus frame to capture full frame and recapture star if possible if (noStarCount == MAX_RECAPTURE_RETRIES) resetFrame(); capture(); return; } // If we exceeded maximum tries we abort else { noStarCount = 0; setAutoFocusResult(false); } } // If the detect current HFR is more than the minimum required HFR // then we should start the autofocus process now to bring it down. else if (currentHFR > minimumRequiredHFR) { qCDebug(KSTARS_EKOS_FOCUS) << "Current HFR:" << currentHFR << "is above required minimum HFR:" << minimumRequiredHFR << ". Starting AutoFocus..."; inSequenceFocus = true; start(); } // Otherwise, the current HFR is fine and lower than the required minimum HFR so we announce success. else { qCDebug(KSTARS_EKOS_FOCUS) << "Current HFR:" << currentHFR << "is below required minimum HFR:" << minimumRequiredHFR << ". Autofocus successful."; setAutoFocusResult(true); drawProfilePlot(); } // We reset minimum required HFR and call it a day. minimumRequiredHFR = -1; return; } // Let's draw the HFR Plot drawProfilePlot(); // If focus logging is enabled, let's save the frame. if (Options::focusLogging()) { QDir dir; QString path = KSPaths::writableLocation(QStandardPaths::GenericDataLocation) + "autofocus/" + QDateTime::currentDateTime().toString("yyyy-MM-dd"); dir.mkpath(path); // IS8601 contains colons but they are illegal under Windows OS, so replacing them with '-' // The timestamp is no longer ISO8601 but it should solve interoperality issues between different OS hosts QString name = "autofocus_frame_" + QDateTime::currentDateTime().toString("HH-mm-ss") + ".fits"; QString filename = path + QStringLiteral("/") + name; focusView->getImageData()->saveFITS(filename); } // If we are not in autofocus process, we're done. if (inAutoFocus == false) return; // Set state to progress if (state != Ekos::FOCUS_PROGRESS) { state = Ekos::FOCUS_PROGRESS; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } // Now let's kick in the algorithms // Position-based algorithms if (canAbsMove || canRelMove) autoFocusAbs(); else - // Time open-looped algorithms + // Time open-looped algorithms autoFocusRel(); } void Focus::clearDataPoints() { maxHFR = 1; hfr_position.clear(); hfr_value.clear(); drawHFRPlot(); } void Focus::drawHFRPlot() { v_graph->setData(hfr_position, hfr_value); if (inFocusLoop == false && (canAbsMove || canRelMove)) { //HFRPlot->xAxis->setLabel(i18n("Position")); HFRPlot->xAxis->setRange(minPos - pulseDuration, maxPos + pulseDuration); HFRPlot->yAxis->setRange(currentHFR / 1.5, maxHFR); } else { //HFRPlot->xAxis->setLabel(i18n("Iteration")); HFRPlot->xAxis->setRange(1, hfr_value.count() + 1); HFRPlot->yAxis->setRange(currentHFR / 1.5, maxHFR * 1.25); } HFRPlot->replot(); } void Focus::drawProfilePlot() { QVector currentIndexes; QVector currentFrequencies; // HFR = 50% * 1.36 = 68% aka one standard deviation double stdDev = currentHFR * 1.36; float start = -stdDev * 4; float end = stdDev * 4; float step = stdDev * 4 / 20.0; for (double x = start; x < end; x += step) { currentIndexes.append(x); currentFrequencies.append((1 / (stdDev * sqrt(2 * M_PI))) * exp(-1 * (x * x) / (2 * (stdDev * stdDev)))); } currentGaus->setData(currentIndexes, currentFrequencies); if (lastGausIndexes.count() > 0) lastGaus->setData(lastGausIndexes, lastGausFrequencies); if (focusType == FOCUS_AUTO && firstGaus == nullptr) { firstGaus = profilePlot->addGraph(); QPen pen; pen.setStyle(Qt::DashDotLine); pen.setWidth(2); pen.setColor(Qt::darkMagenta); firstGaus->setPen(pen); firstGaus->setData(currentIndexes, currentFrequencies); } else if (firstGaus) { profilePlot->removeGraph(firstGaus); firstGaus = nullptr; } profilePlot->rescaleAxes(); profilePlot->replot(); lastGausIndexes = currentIndexes; lastGausFrequencies = currentFrequencies; profilePixmap = profilePlot->grab(); //.scaled(200, 200, Qt::KeepAspectRatio, Qt::SmoothTransformation); emit newProfilePixmap(profilePixmap); } void Focus::autoFocusAbs() { static int minHFRPos = 0, focusOutLimit = 0, focusInLimit = 0; static double minHFR = 0; double targetPosition = 0, delta = 0; QString deltaTxt = QString("%1").arg(fabs(currentHFR - minHFR) * 100.0, 0, 'g', 3); QString HFRText = QString("%1").arg(currentHFR, 0, 'g', 3); qCDebug(KSTARS_EKOS_FOCUS) << "========================================"; qCDebug(KSTARS_EKOS_FOCUS) << "Current HFR: " << currentHFR << " Current Position: " << currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "Last minHFR: " << minHFR << " Last MinHFR Pos: " << minHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "Delta: " << deltaTxt << "%"; qCDebug(KSTARS_EKOS_FOCUS) << "========================================"; if (minHFR) appendLogText(i18n("FITS received. HFR %1 @ %2. Delta (%3%)", HFRText, currentPosition, deltaTxt)); else appendLogText(i18n("FITS received. HFR %1 @ %2.", HFRText, currentPosition)); if (++absIterations > MAXIMUM_ABS_ITERATIONS) { appendLogText(i18n("Autofocus failed to reach proper focus. Try increasing tolerance value.")); abort(); setAutoFocusResult(false); return; } // No stars detected, try to capture again if (currentHFR == -1) { if (noStarCount < MAX_RECAPTURE_RETRIES) { appendLogText(i18n("No stars detected, capturing again...")); capture(); noStarCount++; return; } else if (noStarCount == MAX_RECAPTURE_RETRIES) { currentHFR = 20; noStarCount++; } else { appendLogText(i18n("Failed to detect any stars. Reset frame and try again.")); abort(); setAutoFocusResult(false); return; } } else noStarCount = 0; if (hfr_position.empty()) { maxPos = 1; minPos = 1e6; } if (currentPosition > maxPos) maxPos = currentPosition; if (currentPosition < minPos) minPos = currentPosition; hfr_position.append(currentPosition); hfr_value.append(currentHFR); drawHFRPlot(); switch (lastFocusDirection) { case FOCUS_NONE: lastHFR = currentHFR; initialFocuserAbsPosition = currentPosition; minHFR = currentHFR; minHFRPos = currentPosition; HFRDec = 0; HFRInc = 0; focusOutLimit = 0; focusInLimit = 0; if (focusOut(pulseDuration) == false) { abort(); setAutoFocusResult(false); } break; case FOCUS_IN: case FOCUS_OUT: static int lastHFRPos = 0, initSlopePos = 0; static double initSlopeHFR = 0; if (reverseDir && focusInLimit && focusOutLimit && - fabs(currentHFR - minHFR) < (toleranceIN->value() / 100.0) && HFRInc == 0) + fabs(currentHFR - minHFR) < (toleranceIN->value() / 100.0) && HFRInc == 0) { if (absIterations <= 2) { appendLogText( i18n("Change in HFR is too small. Try increasing the step size or decreasing the tolerance.")); abort(); setAutoFocusResult(false); } else if (noStarCount > 0) { appendLogText(i18n("Failed to detect focus star in frame. Capture and select a focus star.")); abort(); setAutoFocusResult(false); } else { appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); } break; } else if (currentHFR < lastHFR) { double slope = 0; // Let's try to calculate slope of the V curve. if (initSlopeHFR == 0 && HFRInc == 0 && HFRDec >= 1) { initSlopeHFR = lastHFR; initSlopePos = lastHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "Setting initial slop to " << initSlopePos << " @ HFR " << initSlopeHFR; } // Let's now limit the travel distance of the focuser if (lastFocusDirection == FOCUS_OUT && lastHFRPos < focusInLimit && fabs(currentHFR - lastHFR) > 0.1) { focusInLimit = lastHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "New FocusInLimit " << focusInLimit; } else if (lastFocusDirection == FOCUS_IN && lastHFRPos > focusOutLimit && fabs(currentHFR - lastHFR) > 0.1) { focusOutLimit = lastHFRPos; qCDebug(KSTARS_EKOS_FOCUS) << "New FocusOutLimit " << focusOutLimit; } // If we have slope, get next target position if (initSlopeHFR && absMotionMax > 50) { double factor = 0.5; slope = (currentHFR - initSlopeHFR) / (currentPosition - initSlopePos); if (fabs(currentHFR - minHFR) * 100.0 < 0.5) factor = 1 - fabs(currentHFR - minHFR) * 10; targetPosition = currentPosition + (currentHFR * factor - currentHFR) / slope; if (targetPosition < 0) { factor = 1; while (targetPosition < 0 && factor > 0) { factor -= 0.005; targetPosition = currentPosition + (currentHFR * factor - currentHFR) / slope; } } qCDebug(KSTARS_EKOS_FOCUS) << "Using slope to calculate target pulse..."; } // Otherwise proceed iteratively else { if (lastFocusDirection == FOCUS_IN) targetPosition = currentPosition - pulseDuration; else targetPosition = currentPosition + pulseDuration; qCDebug(KSTARS_EKOS_FOCUS) << "Proceeding iteratively to next target pulse ..."; } qCDebug(KSTARS_EKOS_FOCUS) << "V-Curve Slope " << slope << " current Position " << currentPosition - << " targetPosition " << targetPosition; + << " targetPosition " << targetPosition; lastHFR = currentHFR; // Let's keep track of the minimum HFR if (lastHFR < minHFR) { minHFR = lastHFR; minHFRPos = currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "new minHFR " << minHFR << " @ positioin " << minHFRPos; } lastHFRPos = currentPosition; // HFR is decreasing, we are on the right direction HFRDec++; HFRInc = 0; } else { // HFR increased, let's deal with it. HFRInc++; HFRDec = 0; // Reality Check: If it's first time, let's capture again and see if it changes. /*if (HFRInc <= 1 && reverseDir == false) { capture(); return; } // Looks like we're going away from optimal HFR else {*/ reverseDir = true; lastHFR = currentHFR; lastHFRPos = currentPosition; initSlopeHFR = 0; HFRInc = 0; qCDebug(KSTARS_EKOS_FOCUS) << "Focus is moving away from optimal HFR."; // Let's set new limits if (lastFocusDirection == FOCUS_IN) { focusInLimit = currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus IN limit to " << focusInLimit; if (hfr_position.count() > 3) { focusOutLimit = hfr_position[hfr_position.count() - 3]; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus OUT limit to " << focusOutLimit; } } else { focusOutLimit = currentPosition; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus OUT limit to " << focusOutLimit; if (hfr_position.count() > 3) { focusInLimit = hfr_position[hfr_position.count() - 3]; qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus IN limit to " << focusInLimit; } } bool polyMinimumFound = false; if (focusAlgorithm == FOCUS_POLYNOMIAL && hfr_position.count() > 5) { double chisq = 0, min_position = 0, min_hfr = 0; coeff = gsl_polynomial_fit(hfr_position.data(), hfr_value.data(), hfr_position.count(), 3, chisq); polyMinimumFound = findMinimum(minHFRPos, &min_position, &min_hfr); qCDebug(KSTARS_EKOS_FOCUS) << "Polynomial Coefficients c0:" << coeff[0] << "c1:" << coeff[1] << "c2:" << coeff[2] - << "c3:" << coeff[3]; - qCDebug(KSTARS_EKOS_FOCUS) << "Found Minimum?" << (polyMinimumFound ? "Yes" : "No"); + << "c3:" << coeff[3]; + qCDebug(KSTARS_EKOS_FOCUS) << "Found Minimum?" << (polyMinimumFound ? "Yes" : "No"); if (polyMinimumFound) { qCDebug(KSTARS_EKOS_FOCUS) << "Minimum Solution:" << min_hfr << "@" << min_position; polySolutionFound++; targetPosition = floor(min_position); appendLogText(i18n("Found polynomial solution @ %1", QString::number(min_position, 'f', 0))); } } if (polyMinimumFound == false) { // Decrease pulse pulseDuration = pulseDuration * 0.75; // Let's get close to the minimum HFR position so far detected if (lastFocusDirection == FOCUS_OUT) targetPosition = minHFRPos - pulseDuration / 2; else targetPosition = minHFRPos + pulseDuration / 2; } qCDebug(KSTARS_EKOS_FOCUS) << "new targetPosition " << targetPosition; } // Limit target Pulse to algorithm limits if (focusInLimit != 0 && lastFocusDirection == FOCUS_IN && targetPosition < focusInLimit) { targetPosition = focusInLimit; qCDebug(KSTARS_EKOS_FOCUS) << "Limiting target pulse to focus in limit " << targetPosition; } else if (focusOutLimit != 0 && lastFocusDirection == FOCUS_OUT && targetPosition > focusOutLimit) { targetPosition = focusOutLimit; qCDebug(KSTARS_EKOS_FOCUS) << "Limiting target pulse to focus out limit " << targetPosition; } // Limit target pulse to focuser limits if (targetPosition < absMotionMin) targetPosition = absMotionMin; else if (targetPosition > absMotionMax) targetPosition = absMotionMax; // Ops, we can't go any further, we're done. if (targetPosition == currentPosition) { appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); return; } // Ops, deadlock if (focusOutLimit && focusOutLimit == focusInLimit) { appendLogText(i18n("Deadlock reached. Please try again with different settings.")); abort(); setAutoFocusResult(false); return; } if (fabs(targetPosition - initialFocuserAbsPosition) > maxTravelIN->value()) { qCDebug(KSTARS_EKOS_FOCUS) << "targetPosition (" << targetPosition << ") - initHFRAbsPos (" - << initialFocuserAbsPosition << ") exceeds maxTravel distance of " << maxTravelIN->value(); + << initialFocuserAbsPosition << ") exceeds maxTravel distance of " << maxTravelIN->value(); appendLogText("Maximum travel limit reached. Autofocus aborted."); abort(); setAutoFocusResult(false); break; } // Get delta for next move delta = (targetPosition - currentPosition); qCDebug(KSTARS_EKOS_FOCUS) << "delta (targetPosition - currentPosition) " << delta; qCDebug(KSTARS_EKOS_FOCUS) << "Focusing " << ((delta < 0) ? "IN" : "OUT"); // Now cross your fingers and wait bool rc = false; if (delta > 0) rc = focusOut(delta); else rc = focusIn(fabs(delta)); if (rc == false) { abort(); setAutoFocusResult(false); } break; } } void Focus::autoFocusRel() { static int noStarCount = 0; static double minHFR = 1e6; QString deltaTxt = QString("%1").arg(fabs(currentHFR - minHFR) * 100.0, 0, 'g', 2); QString minHFRText = QString("%1").arg(minHFR, 0, 'g', 3); QString HFRText = QString("%1").arg(currentHFR, 0, 'g', 3); appendLogText(i18n("FITS received. HFR %1. Delta (%2%) Min HFR (%3)", HFRText, deltaTxt, minHFRText)); if (pulseDuration <= MINIMUM_PULSE_TIMER) { appendLogText(i18n("Autofocus failed to reach proper focus. Try adjusting the tolerance value.")); abort(); setAutoFocusResult(false); return; } // No stars detected, try to capture again if (currentHFR == -1) { if (noStarCount++ < MAX_RECAPTURE_RETRIES) { appendLogText(i18n("No stars detected, capturing again...")); capture(); return; } else currentHFR = 20; } else noStarCount = 0; switch (lastFocusDirection) { case FOCUS_NONE: lastHFR = currentHFR; minHFR = 1e6; focusIn(pulseDuration); break; case FOCUS_IN: case FOCUS_OUT: if (fabs(currentHFR - minHFR) < (toleranceIN->value() / 100.0) && HFRInc == 0) { appendLogText(i18n("Autofocus complete after %1 iterations.", hfr_position.count())); stop(); setAutoFocusResult(true); break; } else if (currentHFR < lastHFR) { if (currentHFR < minHFR) minHFR = currentHFR; lastHFR = currentHFR; if (lastFocusDirection == FOCUS_IN) focusIn(pulseDuration); else focusOut(pulseDuration); HFRInc = 0; } else { HFRInc++; lastHFR = currentHFR; HFRInc = 0; pulseDuration *= 0.75; bool rc = false; if (lastFocusDirection == FOCUS_IN) rc = focusOut(pulseDuration); else rc = focusIn(pulseDuration); if (rc == false) { abort(); setAutoFocusResult(false); } } break; default: break; } } /*void Focus::registerFocusProperty(INDI::Property *prop) { // Return if it is not our current focuser if (strcmp(prop->getDeviceName(), currentFocuser->getDeviceName())) return; // Do not make unnecessary function call // Check if current focuser supports absolute mode if (canAbsMove == false && currentFocuser->canAbsMove()) { canAbsMove = true; getAbsFocusPosition(); absTicksSpin->setEnabled(true); absTicksLabel->setEnabled(true); setAbsTicksB->setEnabled(true); } // Do not make unnecessary function call // Check if current focuser supports relative mode if (canRelMove == false && currentFocuser->canRelMove()) canRelMove = true; if (canTimerMove == false && currentFocuser->canTimerMove()) { canTimerMove = true; resetButtons(); } }*/ void Focus::processFocusNumber(INumberVectorProperty *nvp) { // Return if it is not our current focuser if (strcmp(nvp->device, currentFocuser->getDeviceName())) return; if (!strcmp(nvp->name, "ABS_FOCUS_POSITION")) { INumber *pos = IUFindNumber(nvp, "FOCUS_ABSOLUTE_POSITION"); if (pos) { currentPosition = pos->value; absTicksLabel->setText(QString::number(static_cast(currentPosition))); emit absolutePositionChanged(currentPosition); } if (adjustFocus && nvp->s == IPS_OK) { adjustFocus = false; lastFocusDirection = FOCUS_NONE; emit focusPositionAdjusted(); return; } if (resetFocus && nvp->s == IPS_OK) { resetFocus = false; appendLogText(i18n("Restarting autofocus process...")); start(); } if (canAbsMove && inAutoFocus) { if (nvp->s == IPS_OK && captureInProgress == false) - QTimer::singleShot(FocusSettleTime->value()*1000, this, &Ekos::Focus::capture); - //capture(); + QTimer::singleShot(FocusSettleTime->value() * 1000, this, &Ekos::Focus::capture); + //capture(); else if (nvp->s == IPS_ALERT) { appendLogText(i18n("Focuser error, check INDI panel.")); abort(); setAutoFocusResult(false); } } return; } if (canAbsMove) return; if (!strcmp(nvp->name, "REL_FOCUS_POSITION")) { INumber *pos = IUFindNumber(nvp, "FOCUS_RELATIVE_POSITION"); if (pos && nvp->s == IPS_OK) { currentPosition += pos->value * (lastFocusDirection == FOCUS_IN ? -1 : 1); absTicksLabel->setText(QString::number(static_cast(currentPosition))); emit absolutePositionChanged(currentPosition); } if (adjustFocus && nvp->s == IPS_OK) { adjustFocus = false; lastFocusDirection = FOCUS_NONE; emit focusPositionAdjusted(); return; } if (resetFocus && nvp->s == IPS_OK) { resetFocus = false; appendLogText(i18n("Restarting autofocus process...")); start(); } if (canRelMove && inAutoFocus) { if (nvp->s == IPS_OK && captureInProgress == false) - QTimer::singleShot(FocusSettleTime->value()*1000, this, &Ekos::Focus::capture); + QTimer::singleShot(FocusSettleTime->value() * 1000, this, &Ekos::Focus::capture); else if (nvp->s == IPS_ALERT) { appendLogText(i18n("Focuser error, check INDI panel.")); abort(); setAutoFocusResult(false); } } return; } if (canRelMove) return; if (!strcmp(nvp->name, "FOCUS_TIMER")) { if (resetFocus && nvp->s == IPS_OK) { resetFocus = false; appendLogText(i18n("Restarting autofocus process...")); start(); } if (canAbsMove == false && canRelMove == false && inAutoFocus) { if (nvp->s == IPS_OK && captureInProgress == false) - QTimer::singleShot(FocusSettleTime->value()*1000, this, &Ekos::Focus::capture); + QTimer::singleShot(FocusSettleTime->value() * 1000, this, &Ekos::Focus::capture); else if (nvp->s == IPS_ALERT) { appendLogText(i18n("Focuser error, check INDI panel.")); abort(); setAutoFocusResult(false); } } return; } } void Focus::appendLogText(const QString &text) { m_LogText.insert(0, i18nc("log entry; %1 is the date, %2 is the text", "%1 %2", - QDateTime::currentDateTime().toString("yyyy-MM-ddThh:mm:ss"), text)); + QDateTime::currentDateTime().toString("yyyy-MM-ddThh:mm:ss"), text)); qCInfo(KSTARS_EKOS_FOCUS) << text; emit newLog(text); } void Focus::clearLog() { m_LogText.clear(); emit newLog(QString()); } void Focus::startFraming() { if (currentCCD == nullptr) { appendLogText(i18n("No CCD connected.")); return; } waitStarSelectTimer.stop(); inFocusLoop = true; HFRFrames.clear(); clearDataPoints(); //emit statusUpdated(true); state = Ekos::FOCUS_FRAMING; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); resetButtons(); appendLogText(i18n("Starting continuous exposure...")); capture(); } void Focus::resetButtons() { if (inFocusLoop) { startFocusB->setEnabled(false); startLoopB->setEnabled(false); stopFocusB->setEnabled(true); captureB->setEnabled(false); return; } if (inAutoFocus) { stopFocusB->setEnabled(true); startFocusB->setEnabled(false); startLoopB->setEnabled(false); captureB->setEnabled(false); focusOutB->setEnabled(false); focusInB->setEnabled(false); setAbsTicksB->setEnabled(false); resetFrameB->setEnabled(false); return; } if (currentFocuser) { focusOutB->setEnabled(true); focusInB->setEnabled(true); startFocusB->setEnabled(focusType == FOCUS_AUTO); setAbsTicksB->setEnabled(canAbsMove); } else { focusOutB->setEnabled(false); focusInB->setEnabled(false); startFocusB->setEnabled(false); setAbsTicksB->setEnabled(false); } stopFocusB->setEnabled(false); startLoopB->setEnabled(true); if (captureInProgress == false) { captureB->setEnabled(true); resetFrameB->setEnabled(true); } } void Focus::updateBoxSize(int value) { if (currentCCD == nullptr) return; ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip == nullptr) return; int subBinX, subBinY; targetChip->getBinning(&subBinX, &subBinY); QRect trackBox = focusView->getTrackingBox(); QPoint center(trackBox.x() + (trackBox.width() / 2), trackBox.y() + (trackBox.height() / 2)); trackBox = QRect(center.x() - value / (2 * subBinX), center.y() - value / (2 * subBinY), value / subBinX, value / subBinY); focusView->setTrackingBox(trackBox); } void Focus::focusStarSelected(int x, int y) { if (state == Ekos::FOCUS_PROGRESS) return; if (subFramed == false) { rememberStarCenter.setX(x); rememberStarCenter.setY(y); } ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); int subBinX, subBinY; targetChip->getBinning(&subBinX, &subBinY); // If binning was changed outside of the focus module, recapture if (subBinX != activeBin) { capture(); return; } int offset = (static_cast(focusBoxSize->value()) / subBinX) * 1.5; QRect starRect; bool squareMovedOutside = false; if (subFramed == false && useSubFrame->isChecked() && targetChip->canSubframe()) { int minX, maxX, minY, maxY, minW, maxW, minH, maxH; //, fx,fy,fw,fh; targetChip->getFrameMinMax(&minX, &maxX, &minY, &maxY, &minW, &maxW, &minH, &maxH); //targetChip->getFrame(&fx, &fy, &fw, &fy); x = (x - offset) * subBinX; y = (y - offset) * subBinY; int w = offset * 2 * subBinX; int h = offset * 2 * subBinY; if (x < minX) x = minX; if (y < minY) y = minY; if ((x + w) > maxW) w = maxW - x; if ((y + h) > maxH) h = maxH - y; //fx += x; //fy += y; //fw = w; //fh = h; //targetChip->setFocusFrame(fx, fy, fw, fh); //frameModified=true; QVariantMap settings = frameSettings[targetChip]; settings["x"] = x; settings["y"] = y; settings["w"] = w; settings["h"] = h; settings["binx"] = subBinX; settings["biny"] = subBinY; frameSettings[targetChip] = settings; subFramed = true; qCDebug(KSTARS_EKOS_FOCUS) << "Frame is subframed. X:" << x << "Y:" << y << "W:" << w << "H:" << h << "binX:" << subBinX << "binY:" << subBinY; focusView->setFirstLoad(true); capture(); //starRect = QRect((w-focusBoxSize->value())/(subBinX*2), (h-focusBoxSize->value())/(subBinY*2), focusBoxSize->value()/subBinX, focusBoxSize->value()/subBinY); starCenter.setX(w / (2 * subBinX)); starCenter.setY(h / (2 * subBinY)); } else { //starRect = QRect(x-focusBoxSize->value()/(subBinX*2), y-focusBoxSize->value()/(subBinY*2), focusBoxSize->value()/subBinX, focusBoxSize->value()/subBinY); double dist = sqrt((starCenter.x() - x) * (starCenter.x() - x) + (starCenter.y() - y) * (starCenter.y() - y)); squareMovedOutside = (dist > ((double)focusBoxSize->value() / subBinX)); starCenter.setX(x); starCenter.setY(y); //starRect = QRect( starCenter.x()-focusBoxSize->value()/(2*subBinX), starCenter.y()-focusBoxSize->value()/(2*subBinY), focusBoxSize->value()/subBinX, focusBoxSize->value()/subBinY); starRect = QRect(starCenter.x() - focusBoxSize->value() / (2 * subBinX), starCenter.y() - focusBoxSize->value() / (2 * subBinY), focusBoxSize->value() / subBinX, focusBoxSize->value() / subBinY); focusView->setTrackingBox(starRect); } starsHFR.clear(); starCenter.setZ(subBinX); //starSelected=true; defaultScale = static_cast(filterCombo->currentIndex()); - if (starSelected == false) - { - appendLogText(i18n("Focus star is selected.")); - starSelected = true; - } - if (squareMovedOutside && inAutoFocus == false && useAutoStar->isChecked()) { useAutoStar->blockSignals(true); useAutoStar->setChecked(false); useAutoStar->blockSignals(false); appendLogText(i18n("Disabling Auto Star Selection as star selection box was moved manually.")); starSelected = false; } + else if (starSelected == false) + { + appendLogText(i18n("Focus star is selected.")); + starSelected = true; + capture(); + } waitStarSelectTimer.stop(); state = inAutoFocus ? FOCUS_PROGRESS : FOCUS_IDLE; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } void Focus::checkFocus(double requiredHFR) { qCDebug(KSTARS_EKOS_FOCUS) << "Check Focus requested with minimum required HFR" << requiredHFR; minimumRequiredHFR = requiredHFR; capture(); } void Focus::toggleSubframe(bool enable) { if (enable == false) resetFrame(); starSelected = false; starCenter = QVector3D(); if (useFullField->isChecked()) useFullField->setChecked(!enable); } void Focus::filterChangeWarning(int index) { // index = 4 is MEDIAN filter which helps reduce noise if (index != 0 && index != FITS_MEDIAN) appendLogText(i18n("Warning: Only use filters for preview as they may interface with autofocus operation.")); Options::setFocusEffect(index); defaultScale = static_cast(index); } void Focus::setExposure(double value) { exposureIN->setValue(value); } void Focus::setBinning(int subBinX, int subBinY) { INDI_UNUSED(subBinY); binningCombo->setCurrentIndex(subBinX - 1); } void Focus::setImageFilter(const QString &value) { for (int i = 0; i < filterCombo->count(); i++) if (filterCombo->itemText(i) == value) { filterCombo->setCurrentIndex(i); break; } } void Focus::setAutoStarEnabled(bool enable) { useAutoStar->setChecked(enable); Options::setFocusAutoStarEnabled(enable); } void Focus::setAutoSubFrameEnabled(bool enable) { useSubFrame->setChecked(enable); Options::setFocusSubFrame(enable); } void Focus::setAutoFocusParameters(int boxSize, int stepSize, int maxTravel, double tolerance) { focusBoxSize->setValue(boxSize); stepIN->setValue(stepSize); maxTravelIN->setValue(maxTravel); toleranceIN->setValue(tolerance); } void Focus::setAutoFocusResult(bool status) { qCDebug(KSTARS_EKOS_FOCUS) << "AutoFocus result:" << status; // In case of failure, go back to last position if the focuser is absolute if (status == false && canAbsMove && currentFocuser && currentFocuser->isConnected() && - initialFocuserAbsPosition >= 0) + initialFocuserAbsPosition >= 0) { currentFocuser->moveAbs(initialFocuserAbsPosition); appendLogText(i18n("Autofocus failed, moving back to initial focus position %1.", initialFocuserAbsPosition)); // If we're doing in sequence focusing using an absolute focuser, let's retry focusing starting from last known good position before we give up if (inSequenceFocus && resetFocusIteration++ < MAXIMUM_RESET_ITERATIONS && resetFocus == false) { resetFocus = true; // Reset focus frame in case the star in subframe was lost resetFrame(); return; } } int settleTime = m_GuidingSuspended ? GuideSettleTime->value() : 0; // Always resume guiding if we suspended it before if (m_GuidingSuspended) { emit resumeGuiding(); m_GuidingSuspended = false; } resetFocusIteration = 0; if (settleTime > 0) appendLogText(i18n("Settling...")); - QTimer::singleShot(settleTime*1000, this, [&,status,settleTime]() { + QTimer::singleShot(settleTime * 1000, this, [ &, status, settleTime]() + { if (settleTime > 0) appendLogText(i18n("Settling complete.")); if (status) { KSNotification::event(QLatin1String("FocusSuccessful"), i18n("Autofocus operation completed successfully")); state = Ekos::FOCUS_COMPLETE; } else { KSNotification::event(QLatin1String("FocusFailed"), i18n("Autofocus operation failed with errors"), KSNotification::EVENT_ALERT); state = Ekos::FOCUS_FAILED; } qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); // Do not emit result back yet if we have a locked filter pending return to original filter if (fallbackFilterPending) { - filterManager->setFilterPosition(fallbackFilterPosition, static_cast(FilterManager::CHANGE_POLICY|FilterManager::OFFSET_POLICY)); + filterManager->setFilterPosition(fallbackFilterPosition, static_cast(FilterManager::CHANGE_POLICY | FilterManager::OFFSET_POLICY)); return; } emit newStatus(state); }); } void Focus::checkAutoStarTimeout() { //if (starSelected == false && inAutoFocus) if (starCenter.isNull() && (inAutoFocus || minimumRequiredHFR > 0)) { - if (inAutoFocus) - { - if (rememberStarCenter.isNull() == false) - { - focusStarSelected(rememberStarCenter.x(), rememberStarCenter.y()); - appendLogText(i18n("No star was selected. Using last known position...")); - return; - } - } + if (inAutoFocus) + { + if (rememberStarCenter.isNull() == false) + { + focusStarSelected(rememberStarCenter.x(), rememberStarCenter.y()); + appendLogText(i18n("No star was selected. Using last known position...")); + return; + } + } appendLogText(i18n("No star was selected. Aborting...")); initialFocuserAbsPosition = -1; abort(); setAutoFocusResult(false); } else if (state == FOCUS_WAITING) { state = FOCUS_IDLE; qCDebug(KSTARS_EKOS_FOCUS) << "State:" << Ekos::getFocusStatusString(state); emit newStatus(state); } } void Focus::setAbsoluteFocusTicks() { if (currentFocuser == nullptr) return; if (currentFocuser->isConnected() == false) { appendLogText(i18n("Error: Lost connection to Focuser.")); return; } qCDebug(KSTARS_EKOS_FOCUS) << "Setting focus ticks to " << absTicksSpin->value(); currentFocuser->moveAbs(absTicksSpin->value()); } void Focus::setActiveBinning(int bin) { activeBin = bin + 1; Options::setFocusXBin(activeBin); } void Focus::setThreshold(double value) { Options::setFocusThreshold(value); } // TODO remove from kstars.kcfg /*void Focus::setFrames(int value) { Options::setFocusFrames(value); }*/ void Focus::syncTrackingBoxPosition() { ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); Q_ASSERT(targetChip); int subBinX = 1, subBinY = 1; targetChip->getBinning(&subBinX, &subBinY); if (starCenter.isNull() == false) { double boxSize = focusBoxSize->value(); int x, y, w, h; targetChip->getFrame(&x, &y, &w, &h); // If box size is larger than image size, set it to lower index if (boxSize / subBinX >= w || boxSize / subBinY >= h) { focusBoxSize->setValue((boxSize / subBinX >= w) ? w : h); return; } // If binning changed, update coords accordingly if (subBinX != starCenter.z()) { if (starCenter.z() > 0) { starCenter.setX(starCenter.x() * (starCenter.z() / subBinX)); starCenter.setY(starCenter.y() * (starCenter.z() / subBinY)); } starCenter.setZ(subBinX); } QRect starRect = QRect(starCenter.x() - boxSize / (2 * subBinX), starCenter.y() - boxSize / (2 * subBinY), boxSize / subBinX, boxSize / subBinY); focusView->setTrackingBoxEnabled(true); focusView->setTrackingBox(starRect); } } void Focus::showFITSViewer() { FITSData *data = focusView->getImageData(); if (data) { QUrl url = QUrl::fromLocalFile(data->filename()); if (fv.isNull()) { if (Options::singleWindowCapturedFITS()) fv = KStars::Instance()->genericFITSViewer(); else { fv = new FITSViewer(Options::independentWindowFITS() ? nullptr : KStars::Instance()); KStars::Instance()->addFITSViewer(fv); } fv->addFITS(url); FITSView *currentView = fv->getCurrentView(); if (currentView) currentView->getImageData()->setAutoRemoveTemporaryFITS(false); } else fv->updateFITS(url, 0); fv->show(); } } void Focus::adjustFocusOffset(int value, bool useAbsoluteOffset) { adjustFocus = true; int relativeOffset = 0; if (useAbsoluteOffset == false) relativeOffset = value; else relativeOffset = value - currentPosition; if (relativeOffset > 0) focusOut(relativeOffset); else focusIn(abs(relativeOffset)); } void Focus::toggleFocusingWidgetFullScreen() { if (focusingWidget->parent() == nullptr) { focusingWidget->setParent(this); rightLayout->insertWidget(0, focusingWidget); focusingWidget->showNormal(); } else { focusingWidget->setParent(nullptr); focusingWidget->setWindowTitle(i18n("Focus Frame")); focusingWidget->setWindowFlags(Qt::Window | Qt::WindowTitleHint | Qt::CustomizeWindowHint); focusingWidget->showMaximized(); focusingWidget->show(); } } void Focus::setMountStatus(ISD::Telescope::Status newState) { switch (newState) { case ISD::Telescope::MOUNT_PARKING: case ISD::Telescope::MOUNT_SLEWING: case ISD::Telescope::MOUNT_MOVING: captureB->setEnabled(false); startFocusB->setEnabled(false); startLoopB->setEnabled(false); break; default: resetButtons(); break; } } double Focus::fn1(double x, void *params) { Focus *module = static_cast(params); return (module->coeff[0] + module->coeff[1] * x + module->coeff[2] * pow(x, 2) + module->coeff[3] * pow(x, 3)); } bool Focus::findMinimum(double expected, double *position, double *hfr) { int status; int iter = 0, max_iter = 100; const gsl_min_fminimizer_type *T; gsl_min_fminimizer *s; double m = expected; double a = *std::min_element(hfr_position.constBegin(), hfr_position.constEnd()); double b = *std::max_element(hfr_position.constBegin(), hfr_position.constEnd()); ; gsl_function F; F.function = &Focus::fn1; F.params = this; // Must turn off error handler or it aborts on error gsl_set_error_handler_off(); T = gsl_min_fminimizer_brent; s = gsl_min_fminimizer_alloc(T); status = gsl_min_fminimizer_set(s, &F, m, a, b); if (status != GSL_SUCCESS) { qCWarning(KSTARS_EKOS_FOCUS) << "Focus GSL error:" << gsl_strerror(status); return false; } do { iter++; status = gsl_min_fminimizer_iterate(s); m = gsl_min_fminimizer_x_minimum(s); a = gsl_min_fminimizer_x_lower(s); b = gsl_min_fminimizer_x_upper(s); status = gsl_min_test_interval(a, b, 0.01, 0.0); if (status == GSL_SUCCESS) { *position = m; *hfr = fn1(m, this); } - } while (status == GSL_CONTINUE && iter < max_iter); + } + while (status == GSL_CONTINUE && iter < max_iter); gsl_min_fminimizer_free(s); return (status == GSL_SUCCESS); } void Focus::removeDevice(ISD::GDInterface *deviceRemoved) { // Check in Focusers for (ISD::GDInterface *focuser : Focusers) { if (focuser == deviceRemoved) { Focusers.removeOne(dynamic_cast(focuser)); focuserCombo->removeItem(focuserCombo->findText(focuser->getDeviceName())); checkFocuser(); resetButtons(); return; } } // Check in CCDs for (ISD::GDInterface *ccd : CCDs) { if (ccd == deviceRemoved) { CCDs.removeOne(dynamic_cast(ccd)); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(ccd->getDeviceName())); checkCCD(); resetButtons(); return; } } // Check in Filters for (ISD::GDInterface *filter : Filters) { if (filter == deviceRemoved) { Filters.removeOne(filter); filterCombo->removeItem(filterCombo->findText(filter->getDeviceName())); checkFilter(); resetButtons(); return; } } } void Focus::setFilterManager(const QSharedPointer &manager) { filterManager = manager; connect(filterManagerB, &QPushButton::clicked, [this]() { filterManager->show(); filterManager->raise(); }); connect(filterManager.data(), &FilterManager::ready, [this]() { if (filterPositionPending) { filterPositionPending = false; capture(); } else if (fallbackFilterPending) { fallbackFilterPending = false; emit newStatus(state); } } - ); + ); connect(filterManager.data(), &FilterManager::failed, [this]() { - appendLogText(i18n("Filter operation failed.")); - abort(); + appendLogText(i18n("Filter operation failed.")); + abort(); } - ); + ); connect(this, &Focus::newStatus, [this](Ekos::FocusState state) { if (FilterPosCombo->currentIndex() != -1 && canAbsMove && state == Ekos::FOCUS_COMPLETE) { filterManager->setFilterAbsoluteFocusPosition(FilterPosCombo->currentIndex(), currentPosition); } }); connect(exposureIN, &QDoubleSpinBox::editingFinished, [this]() { if (currentFilter) filterManager->setFilterExposure(FilterPosCombo->currentIndex(), exposureIN->value()); else Options::setFocusExposure(exposureIN->value()); }); connect(filterManager.data(), &FilterManager::labelsChanged, this, [this]() { FilterPosCombo->clear(); FilterPosCombo->addItems(filterManager->getFilterLabels()); currentFilterPosition = filterManager->getFilterPosition(); - FilterPosCombo->setCurrentIndex(currentFilterPosition-1); + FilterPosCombo->setCurrentIndex(currentFilterPosition - 1); }); connect(filterManager.data(), &FilterManager::positionChanged, this, [this]() { currentFilterPosition = filterManager->getFilterPosition(); - FilterPosCombo->setCurrentIndex(currentFilterPosition-1); + FilterPosCombo->setCurrentIndex(currentFilterPosition - 1); }); connect(filterManager.data(), &FilterManager::exposureChanged, this, [this]() { exposureIN->setValue(filterManager->getFilterExposure()); - ;}); + ; + }); connect(FilterPosCombo, static_cast(&QComboBox::currentIndexChanged), - [=](const QString &text) + [ = ](const QString & text) { exposureIN->setValue(filterManager->getFilterExposure(text)); } - ); + ); } void Focus::toggleVideo(bool enabled) { if (currentCCD == nullptr) return; if (currentCCD->isBLOBEnabled() == false) { if (Options::guiderType() != Ekos::Guide::GUIDE_INTERNAL || KMessageBox::questionYesNo(nullptr, i18n("Image transfer is disabled for this camera. Would you like to enable it?")) == KMessageBox::Yes) currentCCD->setBLOBEnabled(true); else return; } currentCCD->setVideoStreamEnabled(enabled); } void Focus::setVideoStreamEnabled(bool enabled) { if (enabled) { liveVideoB->setChecked(true); liveVideoB->setIcon(QIcon::fromTheme("camera-on")); } else { liveVideoB->setChecked(false); liveVideoB->setIcon(QIcon::fromTheme("camera-ready")); } } void Focus::processCaptureTimeout() { captureTimeoutCounter++; if (captureTimeoutCounter >= 3) { captureTimeoutCounter = 0; appendLogText(i18n("Exposure timeout. Aborting...")); abort(); if (inAutoFocus) setAutoFocusResult(false); else if (m_GuidingSuspended) { emit resumeGuiding(); m_GuidingSuspended = false; } return; } appendLogText(i18n("Exposure timeout. Restarting exposure...")); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); targetChip->abortExposure(); targetChip->capture(exposureIN->value()); captureTimeout.start(exposureIN->value() * 1000 + FOCUS_TIMEOUT_THRESHOLD); } } diff --git a/kstars/ekos/focus/focus.ui b/kstars/ekos/focus/focus.ui index de5f2686e..be29dc246 100644 --- a/kstars/ekos/focus/focus.ui +++ b/kstars/ekos/focus/focus.ui @@ -1,1094 +1,1093 @@ Focus 0 0 - 698 - 465 + 674 + 488 3 3 3 3 3 Qt::Horizontal 1 Focuser Focuser: false Focus In false Focus Out Ticks: false Current absolute focuser position QLineEdit[readOnly="true"] { color: gray } true false 0 0 Desired absolute focus position false Set desired absolute focus position Set Start: false Auto Focus true true false Framing false Capture Settle: Wait for this many seconds after moving the focuser before capturing the next image during AutoFocus. 3 30.000000000000000 false Stop CCD && Filter Wheel 3 3 3 3 3 CCD: false 22 22 22 22 Live Video .. 22 22 true Exposure time in seconds Exp: 1 3 0.001000000000000 300.000000000000000 0.100000000000000 0.500000000000000 22 22 22 22 Toggle Full Screen 22 22 22 22 Show in FITS Viewer Bin: 1 false Exposure time in seconds Gain: false ISO: false false Filter Wheel FW: false false Number of images to capture Filter: 1 false false 22 22 Filter Settings .. Apply filter to image after capture to enhance it Effect: -- Frame: Reset focus subframe to full capture Reset Settings 1 3 3 3 3 3 Subframe around the focus star during the autofocus procedure Sub Frame true Automatically select the best focus star from the image Auto Select Star - - - - Suspend Guiding while autofocus in progress - - - Suspend Guiding - - - - - - - Wait this many seconds before resuming guiding. - - - 60.000000000000000 - - - <html><head/><body><p>Measure average HFR from all stars combined in a full frame. This method defaults to the Centroid detection, but can use SEP detection too. Its performance decreases as the number of stars increases.</p></body></html> Full Field <html><body><p>During full field focusing, stars which are inside this percentage of the frame are filtered out of HFR calculation (default 0%). Detection algorithms may also have an inherent filter.</p></body></html> % 1 10.000000000000000 <html><body><p>During full field focusing, stars which are outside this percentage of the frame are filtered out of HFR calculation (default 100%). Detection algorithms may also have an inherent filter.</p></body></html> % 1 10.000000000000000 100.000000000000000 - + Dark Frame + + + + Suspend Guiding while autofocus in progress + + + Suspend Guiding + + + + + + + Wait this many seconds before resuming guiding. + + + 60.000000000000000 + + + Qt::Horizontal 10.000000000000000 50000.000000000000000 100.000000000000000 10000.000000000000000 Maximum travel in ticks before the autofocus process aborts Max Travel: 0.010000000000000 20.000000000000000 0.100000000000000 1.000000000000000 Increase to restrict the centroid to bright cores. Decrease to enclose fuzzy stars. Threshold (%): <b>Initial</b> step size in ticks to cause a noticeable change in HFR value. For timer based focuser, it is the initial time in milliseconds to move the focuser inward or outward Step: false 90.000000000000000 500.000000000000000 10.000000000000000 150.000000000000000 Delay between two consequent focus images Box Size: Decrease value to narrow optimal focus point solution radius. Increase to expand solution radius Tolerance (%): 16 256 16 32 1 10000 10 250 Number of frames to average Frames: Number of frames to average 1 Gradient Centroid Threshold SEP <html><head/><body><p>Select focus process algorithm:</p> <ul> <li><b>Iterative</b>: Moves focuser by discreet steps initially decided by the step size. Once a curve slope is calculated, further step sizes are calculated to reach optimal solution. The algorithm stops when the measured HFR is within percentage tolerance of the minimum HFR recorded in the procedure.</li> <li><b>Polynomial</b>: Starts with iterative method. Upon crossing to the other side of the V-Curve, polynomial fitting coefficients along with possible minimum solution are calculated. This algorithm can be faster than purely iterative approach given a good data set.</li> </ul> </body></html> Algorithm: <html><head/><body><p>Select star detection algorithm</p></body></html> Detection: Iterative Polynomial Qt::Vertical 20 40 0 0 Qt::Vertical 0 0 320 240 40 30 0 0 0 200 V-Curve 5 3 3 3 3 0 0 200 100 1 HFR: true pixels Qt::Horizontal QSizePolicy::Expanding 40 13 Relative Profile... Clear Data QCustomPlot QWidget
auxiliary/qcustomplot.h
1
focuserCombo focusInB focusOutB absTicksLabel absTicksSpin setAbsTicksB startFocusB startLoopB captureB FocusSettleTime stopFocusB CCDCaptureCombo exposureIN toggleFullScreenB showFITSViewerB binningCombo gainIN ISOCombo FilterDevicesCombo FilterPosCombo filterManagerB filterCombo resetFrameB useAutoStar useSubFrame - suspendGuideCheck focusBoxSize maxTravelIN stepIN toleranceIN thresholdSpin focusAlgorithmCombo focusFramesSpin focusDetectionCombo HFROut relativeProfileB clearDataB
diff --git a/kstars/fitsviewer/fitsview.cpp b/kstars/fitsviewer/fitsview.cpp index b9f7512ab..f5507eccd 100644 --- a/kstars/fitsviewer/fitsview.cpp +++ b/kstars/fitsviewer/fitsview.cpp @@ -1,1890 +1,1894 @@ /* FITS View Copyright (C) 2003-2017 Jasem Mutlaq Copyright (C) 2016-2017 Robert Lancaster This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "config-kstars.h" #include "fitsview.h" #include "fitsdata.h" #include "fitslabel.h" #include "kspopupmenu.h" #include "kstarsdata.h" #include "ksutils.h" #include "Options.h" #include "skymap.h" #include "fits_debug.h" #ifdef HAVE_INDI #include "basedevice.h" #include "indi/indilistener.h" #endif #include #include #include #include #include #include #include #define BASE_OFFSET 50 #define ZOOM_DEFAULT 100.0 #define ZOOM_MIN 10 #define ZOOM_MAX 400 #define ZOOM_LOW_INCR 10 #define ZOOM_HIGH_INCR 50 FITSView::FITSView(QWidget * parent, FITSMode fitsMode, FITSScale filterType) : QScrollArea(parent), zoomFactor(1.2) { grabGesture(Qt::PinchGesture); image_frame.reset(new FITSLabel(this)); filter = filterType; mode = fitsMode; setBackgroundRole(QPalette::Dark); markerCrosshair.setX(0); markerCrosshair.setY(0); setBaseSize(740, 530); - connect(image_frame.get(), SIGNAL(newStatus(QString,FITSBar)), this, SIGNAL(newStatus(QString,FITSBar))); - connect(image_frame.get(), SIGNAL(pointSelected(int,int)), this, SLOT(processPointSelection(int,int))); - connect(image_frame.get(), SIGNAL(markerSelected(int,int)), this, SLOT(processMarkerSelection(int,int))); + connect(image_frame.get(), SIGNAL(newStatus(QString, FITSBar)), this, SIGNAL(newStatus(QString, FITSBar))); + connect(image_frame.get(), SIGNAL(pointSelected(int, int)), this, SLOT(processPointSelection(int, int))); + connect(image_frame.get(), SIGNAL(markerSelected(int, int)), this, SLOT(processMarkerSelection(int, int))); connect(&wcsWatcher, SIGNAL(finished()), this, SLOT(syncWCSState())); connect(&fitsWatcher, &QFutureWatcher::finished, this, &FITSView::loadInFrame); image_frame->setMouseTracking(true); setCursorMode( selectCursor); //This is the default mode because the Focus and Align FitsViews should not be in dragMouse mode noImageLabel = new QLabel(); noImage.load(":/images/noimage.png"); noImageLabel->setPixmap(noImage); noImageLabel->setAlignment(Qt::AlignCenter); this->setWidget(noImageLabel); redScopePixmap = QPixmap(":/icons/center_telescope_red.svg").scaled(32, 32, Qt::KeepAspectRatio, Qt::FastTransformation); magentaScopePixmap = QPixmap(":/icons/center_telescope_magenta.svg").scaled(32, 32, Qt::KeepAspectRatio, Qt::FastTransformation); //if (fitsMode == FITS_GUIDE) //connect(image_frame.get(), SIGNAL(pointSelected(int,int)), this, SLOT(processPointSelection(int,int))); // Default size //resize(INITIAL_W, INITIAL_H); } FITSView::~FITSView() { fitsWatcher.waitForFinished(); wcsWatcher.waitForFinished(); delete (imageData); } /** This method looks at what mouse mode is currently selected and updates the cursor to match. */ void FITSView::updateMouseCursor() { if (cursorMode == dragCursor) { if (horizontalScrollBar()->maximum() > 0 || verticalScrollBar()->maximum() > 0) { if (!image_frame->getMouseButtonDown()) viewport()->setCursor(Qt::PointingHandCursor); else viewport()->setCursor(Qt::ClosedHandCursor); } else viewport()->setCursor(Qt::CrossCursor); } else if (cursorMode == selectCursor) { viewport()->setCursor(Qt::CrossCursor); } else if (cursorMode == scopeCursor) { viewport()->setCursor(QCursor(redScopePixmap, 10, 10)); } else if (cursorMode == crosshairCursor) { viewport()->setCursor(QCursor(magentaScopePixmap, 10, 10)); } } /** This is how the mouse mode gets set. The default for a FITSView in a FITSViewer should be the dragMouse The default for a FITSView in the Focus or Align module should be the selectMouse The different defaults are accomplished by putting making the actual default mouseMode the selectMouse, but when a FITSViewer loads an image, it immediately makes it the dragMouse. */ void FITSView::setCursorMode(CursorMode mode) { cursorMode = mode; updateMouseCursor(); if (mode == scopeCursor && imageHasWCS()) { if (!imageData->isWCSLoaded() && !wcsWatcher.isRunning()) { QFuture future = QtConcurrent::run(imageData, &FITSData::loadWCS); wcsWatcher.setFuture(future); } } } void FITSView::resizeEvent(QResizeEvent * event) { if ((imageData == nullptr) && noImageLabel != nullptr) { noImageLabel->setPixmap( noImage.scaled(width() - 20, height() - 20, Qt::KeepAspectRatio, Qt::FastTransformation)); noImageLabel->setFixedSize(width() - 5, height() - 5); } QScrollArea::resizeEvent(event); } #if 0 bool FITSView::loadFITS(const QString &inFilename, bool silent) { if (floatingToolBar != nullptr) { floatingToolBar->setVisible(true); } QProgressDialog fitsProg(this); bool setBayerParams = false; BayerParams param; if ((imageData != nullptr) && imageData->hasDebayer()) { setBayerParams = true; imageData->getBayerParams(¶m); } // In case loadWCS is still running for previous image data, let's wait until it's over wcsWatcher.waitForFinished(); delete imageData; imageData = nullptr; filterStack.clear(); filterStack.push(FITS_NONE); if (filter != FITS_NONE) filterStack.push(filter); imageData = new FITSData(mode); if (setBayerParams) imageData->setBayerParams(¶m); if (mode == FITS_NORMAL) { fitsProg.setWindowModality(Qt::WindowModal); fitsProg.setLabelText(i18n("Please hold while loading FITS file...")); fitsProg.setWindowTitle(i18n("Loading FITS")); fitsProg.setValue(10); qApp->processEvents(); } if (!imageData->loadFITS(inFilename, silent)) return false; if (mode == FITS_NORMAL) { if (fitsProg.wasCanceled()) return false; else { fitsProg.setValue(65); qApp->processEvents(); } } emit debayerToggled(imageData->hasDebayer()); currentWidth = imageData->width(); currentHeight = imageData->height(); image_width = currentWidth; image_height = currentHeight; image_frame->setSize(image_width, image_height); initDisplayImage(); // Rescale to fits window if (firstLoad) { currentZoom = 100; if (rescale(ZOOM_FIT_WINDOW) != 0) return false; firstLoad = false; } else { if (rescale(ZOOM_KEEP_LEVEL) != 0) return false; } if (mode == FITS_NORMAL) { if (fitsProg.wasCanceled()) return false; else { fitsProg.setValue(100); qApp->processEvents(); } } setAlignment(Qt::AlignCenter); // Load WCS data now if selected and image contains valid WCS header if (imageData->hasWCS() && Options::autoWCS() && (mode == FITS_NORMAL || mode == FITS_ALIGN) && !wcsWatcher.isRunning()) { QFuture future = QtConcurrent::run(imageData, &FITSData::loadWCS); wcsWatcher.setFuture(future); } else syncWCSState(); if (isVisible()) emit newStatus(QString("%1x%2").arg(image_width).arg(image_height), FITS_RESOLUTION); if (showStarProfile) { if(floatingToolBar != nullptr) toggleProfileAction->setChecked(true); QTimer::singleShot(100, this, SLOT(viewStarProfile())); //Need to wait till the Focus module finds stars, if its the Focus module. } updateFrame(); emit imageLoaded(); return true; } #endif void FITSView::loadFITS(const QString &inFilename, bool silent) { if (floatingToolBar != nullptr) { floatingToolBar->setVisible(true); } bool setBayerParams = false; BayerParams param; if ((imageData != nullptr) && imageData->hasDebayer()) { setBayerParams = true; imageData->getBayerParams(¶m); } // In case loadWCS is still running for previous image data, let's wait until it's over wcsWatcher.waitForFinished(); delete imageData; imageData = nullptr; filterStack.clear(); filterStack.push(FITS_NONE); if (filter != FITS_NONE) filterStack.push(filter); imageData = new FITSData(mode); if (setBayerParams) imageData->setBayerParams(¶m); fitsWatcher.setFuture(imageData->loadFITS(inFilename, silent)); } void FITSView::loadInFrame() { // Check if the loading was OK if (fitsWatcher.result() == false) { m_LastError = imageData->getLastError(); emit failed(); return; } // Notify if there is debayer data. emit debayerToggled(imageData->hasDebayer()); // Set current width and height currentWidth = imageData->width(); currentHeight = imageData->height(); image_width = currentWidth; image_height = currentHeight; image_frame->setSize(image_width, image_height); // Init the display image initDisplayImage(); uint8_t * ASImageBuffer = nullptr; -// if (Options::autoStretch() && (filter == FITS_NONE || (filter >= FITS_ROTATE_CW && filter <= FITS_FLIP_V))) -// { -// // If we perform autostretch, we need to create a buffer to save the raw image data before -// // autostretch filter operation changes the data. -// // After rescaling is done, we -// uint32_t totalBytes = image_width * image_height *imageData->channels() * imageData->getBytesPerPixel(); -// ASImageBuffer = new uint8_t[totalBytes]; -// memcpy(ASImageBuffer, imageData->getImageBuffer(), totalBytes); -// imageData->applyFilter(FITS_AUTO_STRETCH); -// } -// else -// imageData->applyFilter(filter); + // if (Options::autoStretch() && (filter == FITS_NONE || (filter >= FITS_ROTATE_CW && filter <= FITS_FLIP_V))) + // { + // // If we perform autostretch, we need to create a buffer to save the raw image data before + // // autostretch filter operation changes the data. + // // After rescaling is done, we + // uint32_t totalBytes = image_width * image_height *imageData->channels() * imageData->getBytesPerPixel(); + // ASImageBuffer = new uint8_t[totalBytes]; + // memcpy(ASImageBuffer, imageData->getImageBuffer(), totalBytes); + // imageData->applyFilter(FITS_AUTO_STRETCH); + // } + // else + // imageData->applyFilter(filter); imageData->applyFilter(filter); if (Options::autoStretch()) imageData->applyFilter(FITS_AUTO_STRETCH); // Rescale to fits window on first load if (firstLoad) { currentZoom = 100; if (rescale(ZOOM_FIT_WINDOW) == false) { m_LastError = i18n("Rescaling image failed."); delete [] ASImageBuffer; emit failed(); return; } firstLoad = false; } else { if (rescale(ZOOM_KEEP_LEVEL) == false) { m_LastError = i18n("Rescaling image failed."); delete [] ASImageBuffer; emit failed(); return; } } // Restore original raw buffer after Autostretch if applicable if (ASImageBuffer) { imageData->setImageBuffer(ASImageBuffer); } setAlignment(Qt::AlignCenter); // Load WCS data now if selected and image contains valid WCS header if (imageData->hasWCS() && Options::autoWCS() && (mode == FITS_NORMAL || mode == FITS_ALIGN) && !wcsWatcher.isRunning()) { QFuture future = QtConcurrent::run(imageData, &FITSData::loadWCS); wcsWatcher.setFuture(future); } else syncWCSState(); if (isVisible()) emit newStatus(QString("%1x%2").arg(image_width).arg(image_height), FITS_RESOLUTION); if (showStarProfile) { if(floatingToolBar != nullptr) toggleProfileAction->setChecked(true); //Need to wait till the Focus module finds stars, if its the Focus module. QTimer::singleShot(100, this, SLOT(viewStarProfile())); } scaledImage = QImage(); updateFrame(); emit loaded(); } int FITSView::saveFITS(const QString &newFilename) { return imageData->saveFITS(newFilename); } bool FITSView::rescale(FITSZoom type) { switch (imageData->property("dataType").toInt()) { case TBYTE: return rescale(type); case TSHORT: return rescale(type); case TUSHORT: return rescale(type); case TLONG: return rescale(type); case TULONG: return rescale(type); case TFLOAT: return rescale(type); case TLONGLONG: return rescale(type); case TDOUBLE: return rescale(type); default: break; } return false; } FITSView::CursorMode FITSView::getCursorMode() { return cursorMode; } void FITSView::enterEvent(QEvent * event) { Q_UNUSED(event) if ((floatingToolBar != nullptr) && (imageData != nullptr)) { QPointer eff = new QGraphicsOpacityEffect(this); floatingToolBar->setGraphicsEffect(eff); QPointer a = new QPropertyAnimation(eff, "opacity"); a->setDuration(500); a->setStartValue(0.2); a->setEndValue(1); a->setEasingCurve(QEasingCurve::InBack); a->start(QPropertyAnimation::DeleteWhenStopped); } } void FITSView::leaveEvent(QEvent * event) { Q_UNUSED(event) if ((floatingToolBar != nullptr) && (imageData != nullptr)) { QPointer eff = new QGraphicsOpacityEffect(this); floatingToolBar->setGraphicsEffect(eff); QPointer a = new QPropertyAnimation(eff, "opacity"); a->setDuration(500); a->setStartValue(1); a->setEndValue(0.2); a->setEasingCurve(QEasingCurve::OutBack); a->start(QPropertyAnimation::DeleteWhenStopped); } } template bool FITSView::rescale(FITSZoom type) { if (rawImage.isNull()) return false; uint8_t * image_buffer = imageData->getImageBuffer(); uint32_t size = imageData->width() * imageData->height(); #if 0 - int BBP= imageData->getBytesPerPixel(); + int BBP = imageData->getBytesPerPixel(); filter = filterStack.last(); if (Options::autoStretch() && (filter == FITS_NONE || (filter >= FITS_ROTATE_CW && filter <= FITS_FLIP_V))) { image_buffer = new uint8_t[size * imageData->channels() * BBP]; memcpy(image_buffer, imageData->getImageBuffer(), size * imageData->channels() * BBP); displayBuffer = true; double data_min = -1; double data_max = -1; imageData->applyFilter(FITS_AUTO_STRETCH, image_buffer, &data_min, &data_max); min = data_min; max = data_max; } else { imageData->applyFilter(filter); imageData->getMinMax(&min, &max); } #endif scaledImage = QImage(); auto * buffer = reinterpret_cast(image_buffer); if (imageData->getMin(0) == imageData->getMax(0)) { rawImage.fill(Qt::white); emit newStatus(i18n("Image is saturated."), FITS_MESSAGE); } else { if (image_height != imageData->height() || image_width != imageData->width()) { image_width = imageData->width(); image_height = imageData->height(); initDisplayImage(); if (isVisible()) emit newStatus(QString("%1x%2").arg(image_width).arg(image_height), FITS_RESOLUTION); } image_frame->setScaledContents(true); currentWidth = rawImage.width(); currentHeight = rawImage.height(); if (imageData->channels() == 1) { double range = imageData->getMax(0) - imageData->getMin(0); double bscale = 255. / range; double bzero = (-imageData->getMin(0)) * (255. / range); QVector> futures; /* Fill in pixel values using indexed map, linear scale */ for (uint32_t j = 0; j < image_height; j++) { - futures.append(QtConcurrent::run([=]() + futures.append(QtConcurrent::run([ = ]() { - T * runningBuffer = buffer +j*image_width; + T * runningBuffer = buffer + j * image_width; uint8_t * scanLine = rawImage.scanLine(j); for (uint32_t i = 0; i < image_width; i++) { //scanLine[i] = qBound(0, static_cast(runningBuffer[i] * bscale + bzero), 255); scanLine[i] = qBound(0.0, runningBuffer[i] * bscale + bzero, 255.0); } })); } for(QFuture future : futures) future.waitForFinished(); } else { QVector> futures; double bscaleR = 255. / (imageData->getMax(0) - imageData->getMin(0)); double bzeroR = (-imageData->getMin(0)) * (255. / (imageData->getMax(0) - imageData->getMin(0))); double bscaleG = 255. / (imageData->getMax(1) - imageData->getMin(1)); double bzeroG = (-imageData->getMin(1)) * (255. / (imageData->getMax(1) - imageData->getMin(1))); double bscaleB = 255. / (imageData->getMax(2) - imageData->getMin(2)); double bzeroB = (-imageData->getMin(2)) * (255. / (imageData->getMax(2) - imageData->getMin(2))); /* Fill in pixel values using indexed map, linear scale */ for (uint32_t j = 0; j < image_height; j++) { - futures.append(QtConcurrent::run([=]() + futures.append(QtConcurrent::run([ = ]() { auto * scanLine = reinterpret_cast((rawImage.scanLine(j))); - T * runningBufferR = buffer + j*image_width; - T * runningBufferG = buffer + j*image_width + size; - T * runningBufferB = buffer + j*image_width + size*2; + T * runningBufferR = buffer + j * image_width; + T * runningBufferG = buffer + j * image_width + size; + T * runningBufferB = buffer + j * image_width + size * 2; for (uint32_t i = 0; i < image_width; i++) { scanLine[i] = qRgb(runningBufferR[i] * bscaleR + bzeroR, runningBufferG[i] * bscaleG + bzeroG, runningBufferB[i] * bscaleB + bzeroB); } })); } for(QFuture future : futures) future.waitForFinished(); } #if 0 if (imageData->getNumOfChannels() == 1) { /* Fill in pixel values using indexed map, linear scale */ for (int j = 0; j < image_height; j++) { unsigned char * scanLine = display_image->scanLine(j); for (int i = 0; i < image_width; i++) { val = buffer[j * image_width + i] * bscale + bzero; scanLine[i] = qBound(0.0, val, 255.0); } } } else { double rval = 0, gval = 0, bval = 0; QRgb value; /* Fill in pixel values using indexed map, linear scale */ for (int j = 0; j < image_height; j++) { QRgb * scanLine = reinterpret_cast((display_image->scanLine(j))); for (int i = 0; i < image_width; i++) { rval = buffer[j * image_width + i]; gval = buffer[j * image_width + i + size]; bval = buffer[j * image_width + i + size * 2]; value = qRgb(rval * bscale + bzero, gval * bscale + bzero, bval * bscale + bzero); scanLine[i] = value; } } } #endif } switch (type) { case ZOOM_FIT_WINDOW: if ((rawImage.width() > width() || rawImage.height() > height())) { double w = baseSize().width() - BASE_OFFSET; double h = baseSize().height() - BASE_OFFSET; if (!firstLoad) { w = viewport()->rect().width() - BASE_OFFSET; h = viewport()->rect().height() - BASE_OFFSET; } // Find the zoom level which will enclose the current FITS in the current window size double zoomX = floor((w / static_cast(currentWidth)) * 100.); double zoomY = floor((h / static_cast(currentHeight)) * 100.); (zoomX < zoomY) ? currentZoom = zoomX : currentZoom = zoomY; currentWidth = image_width * (currentZoom / ZOOM_DEFAULT); currentHeight = image_height * (currentZoom / ZOOM_DEFAULT); if (currentZoom <= ZOOM_MIN) emit actionUpdated("view_zoom_out", false); } else { currentZoom = 100; currentWidth = image_width; currentHeight = image_height; } break; case ZOOM_KEEP_LEVEL: { currentWidth = image_width * (currentZoom / ZOOM_DEFAULT); currentHeight = image_height * (currentZoom / ZOOM_DEFAULT); } break; default: currentZoom = 100; break; } setWidget(image_frame.get()); if (type != ZOOM_KEEP_LEVEL) emit newStatus(QString("%1%").arg(currentZoom), FITS_ZOOM); return true; } void FITSView::ZoomIn() { if (currentZoom >= ZOOM_DEFAULT && Options::limitedResourcesMode()) { emit newStatus(i18n("Cannot zoom in further due to active limited resources mode."), FITS_MESSAGE); return; } if (currentZoom < ZOOM_DEFAULT) currentZoom += ZOOM_LOW_INCR; else currentZoom += ZOOM_HIGH_INCR; emit actionUpdated("view_zoom_out", true); if (currentZoom >= ZOOM_MAX) { currentZoom = ZOOM_MAX; emit actionUpdated("view_zoom_in", false); } currentWidth = image_width * (currentZoom / ZOOM_DEFAULT); currentHeight = image_height * (currentZoom / ZOOM_DEFAULT); updateFrame(); emit newStatus(QString("%1%").arg(currentZoom), FITS_ZOOM); } void FITSView::ZoomOut() { if (currentZoom <= ZOOM_DEFAULT) currentZoom -= ZOOM_LOW_INCR; else currentZoom -= ZOOM_HIGH_INCR; if (currentZoom <= ZOOM_MIN) { currentZoom = ZOOM_MIN; emit actionUpdated("view_zoom_out", false); } emit actionUpdated("view_zoom_in", true); currentWidth = image_width * (currentZoom / ZOOM_DEFAULT); currentHeight = image_height * (currentZoom / ZOOM_DEFAULT); updateFrame(); emit newStatus(QString("%1%").arg(currentZoom), FITS_ZOOM); } void FITSView::ZoomToFit() { if (rawImage.isNull() == false) { rescale(ZOOM_FIT_WINDOW); updateFrame(); } } -int FITSView::filterStars(float const innerRadius, float const outerRadius) +void FITSView::setStarFilterRange(float const innerRadius, float const outerRadius) { starFilter.innerRadius = innerRadius; starFilter.outerRadius = outerRadius; - return starFilter.used()? imageData->filterStars(innerRadius, outerRadius) : imageData->getStarCenters().count(); +} + +int FITSView::filterStars() +{ + return starFilter.used() ? imageData->filterStars(starFilter.innerRadius, starFilter.outerRadius) : imageData->getStarCenters().count(); } void FITSView::updateFrame() { bool ok = false; if (currentZoom != ZOOM_DEFAULT) { // Only scale when necessary if (scaledImage.isNull() || currentWidth != lastWidth || currentHeight != lastHeight) { scaledImage = rawImage.scaled(currentWidth, currentHeight, Qt::KeepAspectRatio, Qt::SmoothTransformation); lastWidth = currentWidth; lastHeight = currentHeight; } ok = displayPixmap.convertFromImage(scaledImage); } else ok = displayPixmap.convertFromImage(rawImage); if (!ok) return; QPainter painter(&displayPixmap); drawOverlay(&painter); if (starFilter.used()) { - double const diagonal = std::sqrt(currentWidth*currentWidth + currentHeight*currentHeight)/2; - int const innerRadius = std::lround(diagonal*starFilter.innerRadius); - int const outerRadius = std::lround(diagonal*starFilter.outerRadius); - QPoint const center(currentWidth/2, currentHeight/2); + double const diagonal = std::sqrt(currentWidth * currentWidth + currentHeight * currentHeight) / 2; + int const innerRadius = std::lround(diagonal * starFilter.innerRadius); + int const outerRadius = std::lround(diagonal * starFilter.outerRadius); + QPoint const center(currentWidth / 2, currentHeight / 2); painter.save(); painter.setPen(QPen(Qt::blue, 1, Qt::DashLine)); painter.setOpacity(0.7); painter.setBrush(QBrush(Qt::transparent)); painter.drawEllipse(center, outerRadius, outerRadius); painter.setBrush(QBrush(Qt::blue, Qt::FDiagPattern)); painter.drawEllipse(center, innerRadius, innerRadius); painter.restore(); } image_frame->setPixmap(displayPixmap); image_frame->resize(currentWidth, currentHeight); } void FITSView::ZoomDefault() { if (image_frame != nullptr) { emit actionUpdated("view_zoom_out", true); emit actionUpdated("view_zoom_in", true); currentZoom = ZOOM_DEFAULT; currentWidth = image_width; currentHeight = image_height; updateFrame(); emit newStatus(QString("%1%").arg(currentZoom), FITS_ZOOM); update(); } } void FITSView::drawOverlay(QPainter * painter) { painter->setRenderHint(QPainter::Antialiasing, Options::useAntialias()); if (markStars) drawStarCentroid(painter); if (trackingBoxEnabled && getCursorMode() != FITSView::scopeCursor) drawTrackingBox(painter); if (!markerCrosshair.isNull()) drawMarker(painter); if (showCrosshair) drawCrosshair(painter); if (showObjects) drawObjectNames(painter); if (showEQGrid) drawEQGrid(painter); if (showPixelGrid) drawPixelGrid(painter); } void FITSView::updateMode(FITSMode fmode) { mode = fmode; } void FITSView::drawMarker(QPainter * painter) { painter->setPen(QPen(QColor(KStarsData::Instance()->colorScheme()->colorNamed("TargetColor")), 2)); painter->setBrush(Qt::NoBrush); float pxperdegree = (currentZoom / ZOOM_DEFAULT) * (57.3 / 1.8); float s1 = 0.5 * pxperdegree; float s2 = pxperdegree; float s3 = 2.0 * pxperdegree; float x0 = markerCrosshair.x() * (currentZoom / ZOOM_DEFAULT); float y0 = markerCrosshair.y() * (currentZoom / ZOOM_DEFAULT); float x1 = x0 - 0.5 * s1; float y1 = y0 - 0.5 * s1; float x2 = x0 - 0.5 * s2; float y2 = y0 - 0.5 * s2; float x3 = x0 - 0.5 * s3; float y3 = y0 - 0.5 * s3; //Draw radial lines painter->drawLine(QPointF(x1, y0), QPointF(x3, y0)); painter->drawLine(QPointF(x0 + s2, y0), QPointF(x0 + 0.5 * s1, y0)); painter->drawLine(QPointF(x0, y1), QPointF(x0, y3)); painter->drawLine(QPointF(x0, y0 + 0.5 * s1), QPointF(x0, y0 + s2)); //Draw circles at 0.5 & 1 degrees painter->drawEllipse(QRectF(x1, y1, s1, s1)); painter->drawEllipse(QRectF(x2, y2, s2, s2)); } void FITSView::drawStarCentroid(QPainter * painter) { painter->setPen(QPen(Qt::red, 2)); // image_data->getStarCenter(); QList starCenters = imageData->getStarCenters(); for (int i = 0; i < starCenters.count(); i++) { int x1 = (starCenters[i]->x - starCenters[i]->width / 2) * (currentZoom / ZOOM_DEFAULT); int y1 = (starCenters[i]->y - starCenters[i]->width / 2) * (currentZoom / ZOOM_DEFAULT); int w = (starCenters[i]->width) * (currentZoom / ZOOM_DEFAULT); painter->drawEllipse(x1, y1, w, w); } } void FITSView::drawTrackingBox(QPainter * painter) { painter->setPen(QPen(Qt::green, 2)); if (trackingBox.isNull()) return; int x1 = trackingBox.x() * (currentZoom / ZOOM_DEFAULT); int y1 = trackingBox.y() * (currentZoom / ZOOM_DEFAULT); int w = trackingBox.width() * (currentZoom / ZOOM_DEFAULT); int h = trackingBox.height() * (currentZoom / ZOOM_DEFAULT); painter->drawRect(x1, y1, w, h); } /** This Method draws a large Crosshair in the center of the image, it is like a set of axes. */ void FITSView::drawCrosshair(QPainter * painter) { float scale = (currentZoom / ZOOM_DEFAULT); QPointF c = QPointF((qreal)image_width / 2 * scale, (qreal)image_height / 2 * scale); float midX = (float)image_width / 2 * scale; float midY = (float)image_height / 2 * scale; float maxX = (float)image_width * scale; float maxY = (float)image_height * scale; float r = 50 * scale; painter->setPen(QPen(QColor(KStarsData::Instance()->colorScheme()->colorNamed("TargetColor")))); //Horizontal Line to Circle painter->drawLine(0, midY, midX - r, midY); //Horizontal Line past Circle painter->drawLine(midX + r, midY, maxX, midY); //Vertical Line to Circle painter->drawLine(midX, 0, midX, midY - r); //Vertical Line past Circle painter->drawLine(midX, midY + r, midX, maxY); //Circles painter->drawEllipse(c, r, r); painter->drawEllipse(c, r / 2, r / 2); } /** This method is intended to draw a pixel grid onto the image. It first determines useful information from the image. Then it draws the axes on the image if the crosshairs are not displayed. Finally it draws the gridlines so that there will be 4 Gridlines on either side of the axes. Note: This has to start drawing at the center not at the edges because the center axes must be in the center of the image. */ void FITSView::drawPixelGrid(QPainter * painter) { float scale = (currentZoom / ZOOM_DEFAULT); double width = image_width * scale; double height = image_height * scale; double cX = width / 2; double cY = height / 2; double deltaX = width / 10; double deltaY = height / 10; //draw the Axes painter->setPen(QPen(Qt::red)); painter->drawText(cX - 30, height - 5, QString::number((int)((cX) / scale))); painter->drawText(width - 30, cY - 5, QString::number((int)((cY) / scale))); if (!showCrosshair) { painter->drawLine(cX, 0, cX, height); painter->drawLine(0, cY, width, cY); } painter->setPen(QPen(Qt::gray)); //Start one iteration past the Center and draw 4 lines on either side of 0 for (int x = deltaX; x < cX - deltaX; x += deltaX) { painter->drawText(cX + x - 30, height - 5, QString::number((int)((cX + x) / scale))); painter->drawText(cX - x - 30, height - 5, QString::number((int)((cX - x) / scale))); painter->drawLine(cX - x, 0, cX - x, height); painter->drawLine(cX + x, 0, cX + x, height); } //Start one iteration past the Center and draw 4 lines on either side of 0 for (int y = deltaY; y < cY - deltaY; y += deltaY) { painter->drawText(width - 30, cY + y - 5, QString::number((int)((cY + y) / scale))); painter->drawText(width - 30, cY - y - 5, QString::number((int)((cY - y) / scale))); painter->drawLine(0, cY + y, width, cY + y); painter->drawLine(0, cY - y, width, cY - y); } } bool FITSView::imageHasWCS() { if (imageData != nullptr) return imageData->hasWCS(); return false; } void FITSView::drawObjectNames(QPainter * painter) { painter->setPen(QPen(QColor(KStarsData::Instance()->colorScheme()->colorNamed("FITSObjectLabelColor")))); float scale = (currentZoom / ZOOM_DEFAULT); foreach (FITSSkyObject * listObject, imageData->getSkyObjects()) { painter->drawRect(listObject->x() * scale - 5, listObject->y() * scale - 5, 10, 10); painter->drawText(listObject->x() * scale + 10, listObject->y() * scale + 10, listObject->skyObject()->name()); } } /** This method will paint EQ Gridlines in an overlay if there is WCS data present. It determines the minimum and maximum RA and DEC, then it uses that information to judge which gridLines to draw. Then it calls the drawEQGridlines methods below to draw gridlines at those specific RA and Dec values. */ void FITSView::drawEQGrid(QPainter * painter) { float scale = (currentZoom / ZOOM_DEFAULT); if (imageData->hasWCS()) { wcs_point * wcs_coord = imageData->getWCSCoord(); if (wcs_coord != nullptr) { int size = image_width * image_height; double maxRA = -1000; double minRA = 1000; double maxDec = -1000; double minDec = 1000; for (int i = 0; i < (size); i++) { double ra = wcs_coord[i].ra; double dec = wcs_coord[i].dec; if (ra > maxRA) maxRA = ra; if (ra < minRA) minRA = ra; if (dec > maxDec) maxDec = dec; if (dec < minDec) minDec = dec; } auto minDecMinutes = (int)(minDec * 12); //This will force the Dec Scale to 5 arc minutes in the loop auto maxDecMinutes = (int)(maxDec * 12); auto minRAMinutes = (int)(minRA / 15.0 * 120.0); //This will force the scale to 1/2 minutes of RA in the loop from 0 to 50 degrees auto maxRAMinutes = (int)(maxRA / 15.0 * 120.0); double raConvert = 15 / 120.0; //This will undo the calculation above to retrieve the actual RA. double decConvert = 1.0 / 12.0; //This will undo the calculation above to retrieve the actual DEC. if (maxDec > 50 || minDec < -50) { minRAMinutes = (int)(minRA / 15.0 * 60.0); //This will force the scale to 1 min of RA from 50 to 80 degrees maxRAMinutes = (int)(maxRA / 15.0 * 60.0); raConvert = 15 / 60.0; } if (maxDec > 80 || minDec < -80) { minRAMinutes = (int)(minRA / 15.0 * 30); //This will force the scale to 2 min of RA from 80 to 85 degrees maxRAMinutes = (int)(maxRA / 15.0 * 30); raConvert = 15 / 30.0; } if (maxDec > 85 || minDec < -85) { minRAMinutes = (int)(minRA / 15.0 * 6); //This will force the scale to 10 min of RA from 85 to 89 degrees maxRAMinutes = (int)(maxRA / 15.0 * 6); raConvert = 15 / 6.0; } if (maxDec >= 89.25 || minDec <= -89.25) { minRAMinutes = (int)(minRA / 15); //This will force the scale to whole hours of RA in the loop really close to the poles maxRAMinutes = (int)(maxRA / 15); raConvert = 15; } painter->setPen(QPen(Qt::yellow)); QPointF pixelPoint, imagePoint, pPoint; //This section draws the RA Gridlines for (int targetRA = minRAMinutes; targetRA <= maxRAMinutes; targetRA++) { painter->setPen(QPen(Qt::yellow)); double target = targetRA * raConvert; if (eqGridPoints.count() != 0) eqGridPoints.clear(); double increment = std::abs((maxDec - minDec) / 100.0); //This will determine how many points to use to create the RA Line for (double targetDec = minDec; targetDec <= maxDec; targetDec += increment) { SkyPoint pointToGet(target / 15.0, targetDec); bool inImage = imageData->wcsToPixel(pointToGet, pixelPoint, imagePoint); if (inImage) { QPointF pt(pixelPoint.x() * scale, pixelPoint.y() * scale); eqGridPoints.append(pt); } } if (eqGridPoints.count() > 1) { for (int i = 1; i < eqGridPoints.count(); i++) painter->drawLine(eqGridPoints.value(i - 1), eqGridPoints.value(i)); QPointF pt = getPointForGridLabel(); if (pt.x() != -100) { if (maxDec > 50 || maxDec < -50) painter->drawText(pt.x(), pt.y(), QString::number(dms(target).hour()) + "h " + QString::number(dms(target).minute()) + '\''); else painter->drawText(pt.x() - 20, pt.y(), QString::number(dms(target).hour()) + "h " + QString::number(dms(target).minute()) + "' " + QString::number(dms(target).second()) + "''"); } } } //This section draws the DEC Gridlines for (int targetDec = minDecMinutes; targetDec <= maxDecMinutes; targetDec++) { if (eqGridPoints.count() != 0) eqGridPoints.clear(); double increment = std::abs((maxRA - minRA) / 100.0); //This will determine how many points to use to create the Dec Line double target = targetDec * decConvert; for (double targetRA = minRA; targetRA <= maxRA; targetRA += increment) { SkyPoint pointToGet(targetRA / 15, targetDec * decConvert); bool inImage = imageData->wcsToPixel(pointToGet, pixelPoint, imagePoint); if (inImage) { QPointF pt(pixelPoint.x() * scale, pixelPoint.y() * scale); eqGridPoints.append(pt); } } if (eqGridPoints.count() > 1) { for (int i = 1; i < eqGridPoints.count(); i++) painter->drawLine(eqGridPoints.value(i - 1), eqGridPoints.value(i)); QPointF pt = getPointForGridLabel(); if (pt.x() != -100) painter->drawText(pt.x(), pt.y(), QString::number(dms(target).degree()) + "° " + QString::number(dms(target).arcmin()) + '\''); } } //This Section Draws the North Celestial Pole if present SkyPoint NCP(0, 90); bool NCPtest = imageData->wcsToPixel(NCP, pPoint, imagePoint); if (NCPtest) { bool NCPinImage = (pPoint.x() > 0 && pPoint.x() < image_width) && (pPoint.y() > 0 && pPoint.y() < image_height); if (NCPinImage) { painter->fillRect(pPoint.x() * scale - 2, pPoint.y() * scale - 2, 4, 4, KStarsData::Instance()->colorScheme()->colorNamed("TargetColor")); painter->drawText(pPoint.x() * scale + 15, pPoint.y() * scale + 15, i18nc("North Celestial Pole", "NCP")); } } //This Section Draws the South Celestial Pole if present SkyPoint SCP(0, -90); bool SCPtest = imageData->wcsToPixel(SCP, pPoint, imagePoint); if (SCPtest) { bool SCPinImage = (pPoint.x() > 0 && pPoint.x() < image_width) && (pPoint.y() > 0 && pPoint.y() < image_height); if (SCPinImage) { painter->fillRect(pPoint.x() * scale - 2, pPoint.y() * scale - 2, 4, 4, KStarsData::Instance()->colorScheme()->colorNamed("TargetColor")); painter->drawText(pPoint.x() * scale + 15, pPoint.y() * scale + 15, i18nc("South Celestial Pole", "SCP")); } } } } } bool FITSView::pointIsInImage(QPointF pt, bool scaled) { float scale = (currentZoom / ZOOM_DEFAULT); if (scaled) return pt.x() < image_width * scale && pt.y() < image_height * scale && pt.x() > 0 && pt.y() > 0; else return pt.x() < image_width && pt.y() < image_height && pt.x() > 0 && pt.y() > 0; } QPointF FITSView::getPointForGridLabel() { float scale = (currentZoom / ZOOM_DEFAULT); //These get the maximum X and Y points in the list that are in the image QPointF maxXPt(image_width * scale / 2, image_height * scale / 2); for (auto &p : eqGridPoints) { if (p.x() > maxXPt.x() && pointIsInImage(p, true)) maxXPt = p; } QPointF maxYPt(image_width * scale / 2, image_height * scale / 2); for (auto &p : eqGridPoints) { if (p.y() > maxYPt.y() && pointIsInImage(p, true)) maxYPt = p; } QPointF minXPt(image_width * scale / 2, image_height * scale / 2); for (auto &p : eqGridPoints) { if (p.x() < minXPt.x() && pointIsInImage(p, true)) minXPt = p; } QPointF minYPt(image_width * scale / 2, image_height * scale / 2); for (auto &p : eqGridPoints) { if (p.y() < minYPt.y() && pointIsInImage(p, true)) minYPt = p; } //This gives preference to points that are on the right hand side and bottom. //But if the line doesn't intersect the right or bottom, it then tries for the top and left. //If no points are found in the image, it returns a point off the screen //If all else fails, like in the case of a circle on the image, it returns the far right point. if (image_width * scale - maxXPt.x() < 10) { return QPointF( image_width * scale - 50, maxXPt.y() - 10); //This will draw the text on the right hand side, up and to the left of the point where the line intersects } if (image_height * scale - maxYPt.y() < 10) return QPointF( maxYPt.x() - 40, image_height * scale - 10); //This will draw the text on the bottom side, up and to the left of the point where the line intersects if (minYPt.y() * scale < 30) return QPointF( minYPt.x() + 10, 20); //This will draw the text on the top side, down and to the right of the point where the line intersects if (minXPt.x() * scale < 30) return QPointF( 10, minXPt.y() + 20); //This will draw the text on the left hand side, down and to the right of the point where the line intersects if (maxXPt.x() == image_width * scale / 2 && maxXPt.y() == image_height * scale / 2) return QPointF(-100, -100); //All of the points were off the screen return QPoint(maxXPt.x() - 40, maxXPt.y() - 10); } void FITSView::setFirstLoad(bool value) { firstLoad = value; } QPixmap &FITSView::getTrackingBoxPixmap(uint8_t margin) { if (trackingBox.isNull()) return trackingBoxPixmap; int x1 = (trackingBox.x() - margin) * (currentZoom / ZOOM_DEFAULT); int y1 = (trackingBox.y() - margin) * (currentZoom / ZOOM_DEFAULT); - int w = (trackingBox.width() + margin*2) * (currentZoom / ZOOM_DEFAULT); - int h = (trackingBox.height() + margin*2) * (currentZoom / ZOOM_DEFAULT); + int w = (trackingBox.width() + margin * 2) * (currentZoom / ZOOM_DEFAULT); + int h = (trackingBox.height() + margin * 2) * (currentZoom / ZOOM_DEFAULT); trackingBoxPixmap = image_frame->grab(QRect(x1, y1, w, h)); return trackingBoxPixmap; } void FITSView::setTrackingBox(const QRect &rect) { if (rect != trackingBox) { trackingBox = rect; updateFrame(); if(showStarProfile) viewStarProfile(); } } void FITSView::resizeTrackingBox(int newSize) { - int x = trackingBox.x() + trackingBox.width()/2; - int y = trackingBox.y() + trackingBox.height()/2; + int x = trackingBox.x() + trackingBox.width() / 2; + int y = trackingBox.y() + trackingBox.height() / 2; int delta = newSize / 2; setTrackingBox(QRect( x - delta, y - delta, newSize, newSize)); } bool FITSView::isCrosshairShown() { return showCrosshair; } bool FITSView::isEQGridShown() { return showEQGrid; } bool FITSView::areObjectsShown() { return showObjects; } bool FITSView::isPixelGridShown() { return showPixelGrid; } void FITSView::toggleCrosshair() { showCrosshair = !showCrosshair; updateFrame(); } void FITSView::toggleEQGrid() { showEQGrid = !showEQGrid; if (!imageData->isWCSLoaded() && !wcsWatcher.isRunning()) { QFuture future = QtConcurrent::run(imageData, &FITSData::loadWCS); wcsWatcher.setFuture(future); return; } if (image_frame != nullptr) updateFrame(); } void FITSView::toggleObjects() { showObjects = !showObjects; if (!imageData->isWCSLoaded() && !wcsWatcher.isRunning()) { QFuture future = QtConcurrent::run(imageData, &FITSData::loadWCS); wcsWatcher.setFuture(future); return; } if (image_frame != nullptr) updateFrame(); } void FITSView::toggleStars() { toggleStars(!markStars); if (image_frame != nullptr) updateFrame(); } void FITSView::toggleStarProfile() { #ifdef HAVE_DATAVISUALIZATION showStarProfile = !showStarProfile; if(showStarProfile && trackingBoxEnabled) viewStarProfile(); if(toggleProfileAction) toggleProfileAction->setChecked(showStarProfile); if(mode == FITS_NORMAL || mode == FITS_ALIGN) { if(showStarProfile) { setCursorMode(selectCursor); - connect(this, SIGNAL(trackingStarSelected(int,int)), this, SLOT(move3DTrackingBox(int,int))); + connect(this, SIGNAL(trackingStarSelected(int, int)), this, SLOT(move3DTrackingBox(int, int))); if(starProfileWidget) connect(starProfileWidget, SIGNAL(rejected()), this, SLOT(toggleStarProfile())); if(starProfileWidget) connect(starProfileWidget, SIGNAL(sampleSizeUpdated(int)), this, SLOT(resizeTrackingBox(int))); trackingBox = QRect(0, 0, 128, 128); setTrackingBoxEnabled(true); } else { if(getCursorMode() == selectCursor) setCursorMode(dragCursor); - disconnect(this, SIGNAL(trackingStarSelected(int,int)), this, SLOT(move3DTrackingBox(int,int))); + disconnect(this, SIGNAL(trackingStarSelected(int, int)), this, SLOT(move3DTrackingBox(int, int))); disconnect(starProfileWidget, SIGNAL(sampleSizeUpdated(int)), this, SLOT(resizeTrackingBox(int))); disconnect(starProfileWidget, SIGNAL(rejected()), this, SLOT(toggleStarProfile())); setTrackingBoxEnabled(false); if(starProfileWidget) starProfileWidget->close(); starProfileWidget = nullptr; emit starProfileWindowClosed(); } updateFrame(); } #endif } void FITSView::move3DTrackingBox(int x, int y) { int boxSize = trackingBox.width(); QRect starRect = QRect(x - boxSize / 2, y - boxSize / 2, boxSize, boxSize); setTrackingBox(starRect); } void FITSView::viewStarProfile() { #ifdef HAVE_DATAVISUALIZATION if(!trackingBoxEnabled) { setTrackingBoxEnabled(true); setTrackingBox(QRect(0, 0, 128, 128)); } if(!starProfileWidget) { starProfileWidget = new StarProfileViewer(this); //This is a band-aid to fix a QT bug with createWindowContainer //It will set the cursor of the Window containing the view that called the Star Profile method to the Arrow Cursor //Note that Ekos Manager is a QDialog and FitsViewer is a KXmlGuiWindow QWidget * superParent = this->parentWidget(); - while(superParent->parentWidget()!=0 && !superParent->inherits("QDialog") && !superParent->inherits("KXmlGuiWindow")) - superParent=superParent->parentWidget(); + while(superParent->parentWidget() != 0 && !superParent->inherits("QDialog") && !superParent->inherits("KXmlGuiWindow")) + superParent = superParent->parentWidget(); superParent->setCursor(Qt::ArrowCursor); //This is the end of the band-aid connect(starProfileWidget, SIGNAL(rejected()), this, SLOT(toggleStarProfile())); if(mode == FITS_ALIGN || mode == FITS_NORMAL) { starProfileWidget->enableTrackingBox(true); imageData->setStarAlgorithm(ALGORITHM_CENTROID); connect(starProfileWidget, SIGNAL(sampleSizeUpdated(int)), this, SLOT(resizeTrackingBox(int))); } } QList starCenters = imageData->getStarCentersInSubFrame(trackingBox); if(starCenters.size() == 0) { // FIXME, the following does not work anymore. //imageData->findStars(&trackingBox, true); // FIXME replacing it with this imageData->findStars(ALGORITHM_CENTROID, trackingBox); starCenters = imageData->getStarCentersInSubFrame(trackingBox); } starProfileWidget->loadData(imageData, trackingBox, starCenters); starProfileWidget->show(); starProfileWidget->raise(); if(markStars) updateFrame(); //this is to update for the marked stars #endif } void FITSView::togglePixelGrid() { showPixelGrid = !showPixelGrid; updateFrame(); } int FITSView::findStars(StarAlgorithm algorithm, const QRect &searchBox) { int count = 0; if(trackingBoxEnabled) count = imageData->findStars(algorithm, trackingBox); else count = imageData->findStars(algorithm, searchBox); return count; } void FITSView::toggleStars(bool enable) { markStars = enable; if (markStars && !imageData->areStarsSearched()) { QApplication::setOverrideCursor(Qt::WaitCursor); emit newStatus(i18n("Finding stars..."), FITS_MESSAGE); qApp->processEvents(); int count = findStars(); if (count >= 0 && isVisible()) emit newStatus(i18np("1 star detected.", "%1 stars detected.", count), FITS_MESSAGE); QApplication::restoreOverrideCursor(); } } void FITSView::processPointSelection(int x, int y) { //if (mode != FITS_GUIDE) //return; //image_data->getCenterSelection(&x, &y); //setGuideSquare(x,y); emit trackingStarSelected(x, y); } void FITSView::processMarkerSelection(int x, int y) { markerCrosshair.setX(x); markerCrosshair.setY(y); updateFrame(); } void FITSView::setTrackingBoxEnabled(bool enable) { if (enable != trackingBoxEnabled) { trackingBoxEnabled = enable; //updateFrame(); } } void FITSView::wheelEvent(QWheelEvent * event) { //This attempts to send the wheel event back to the Scroll Area if it was taken from a trackpad //It should still do the zoom if it is a mouse wheel if (event->source() == Qt::MouseEventSynthesizedBySystem) { QScrollArea::wheelEvent(event); } else { QPoint mouseCenter = getImagePoint(event->pos()); if (event->angleDelta().y() > 0) ZoomIn(); else ZoomOut(); event->accept(); cleanUpZoom(mouseCenter); } } /** This method is intended to keep key locations in an image centered on the screen while zooming. If there is a marker or tracking box, it centers on those. If not, it uses the point called viewCenter that was passed as a parameter. */ void FITSView::cleanUpZoom(QPoint viewCenter) { int x0 = 0; int y0 = 0; double scale = (currentZoom / ZOOM_DEFAULT); if (!markerCrosshair.isNull()) { x0 = markerCrosshair.x() * scale; y0 = markerCrosshair.y() * scale; } else if (trackingBoxEnabled) { x0 = trackingBox.center().x() * scale; y0 = trackingBox.center().y() * scale; } else { x0 = viewCenter.x() * scale; y0 = viewCenter.y() * scale; } ensureVisible(x0, y0, width() / 2, height() / 2); updateMouseCursor(); } /** This method converts a point from the ViewPort Coordinate System to the Image Coordinate System. */ QPoint FITSView::getImagePoint(QPoint viewPortPoint) { QWidget * w = widget(); if (w == nullptr) return QPoint(0, 0); double scale = (currentZoom / ZOOM_DEFAULT); QPoint widgetPoint = w->mapFromParent(viewPortPoint); QPoint imagePoint = QPoint(widgetPoint.x() / scale, widgetPoint.y() / scale); return imagePoint; } void FITSView::initDisplayImage() { if (imageData->channels() == 1) { rawImage = QImage(image_width, image_height, QImage::Format_Indexed8); rawImage.setColorCount(256); for (int i = 0; i < 256; i++) rawImage.setColor(i, qRgb(i, i, i)); } else { rawImage = QImage(image_width, image_height, QImage::Format_RGB32); } } /** The Following two methods allow gestures to work with trackpads. Specifically, we are targeting the pinch events, so that if one is generated, Then the pinchTriggered method will be called. If the event is not a pinch gesture, then the event is passed back to the other event handlers. */ bool FITSView::event(QEvent * event) { if (event->type() == QEvent::Gesture) return gestureEvent(dynamic_cast(event)); return QScrollArea::event(event); } bool FITSView::gestureEvent(QGestureEvent * event) { if (QGesture * pinch = event->gesture(Qt::PinchGesture)) pinchTriggered(dynamic_cast(pinch)); return true; } /** This Method works with Trackpads to use the pinch gesture to scroll in and out It stores a point to keep track of the location where the gesture started so that while you are zooming, it tries to keep that initial point centered in the view. **/ void FITSView::pinchTriggered(QPinchGesture * gesture) { if (!zooming) { zoomLocation = getImagePoint(mapFromGlobal(QCursor::pos())); zooming = true; } if (gesture->state() == Qt::GestureFinished) { zooming = false; } zoomTime++; //zoomTime is meant to slow down the zooming with a pinch gesture. if (zoomTime > 10000) //This ensures zoomtime never gets too big. zoomTime = 0; if (zooming && (zoomTime % 10 == 0)) //zoomTime is set to slow it by a factor of 10. { if (gesture->totalScaleFactor() > 1) ZoomIn(); else ZoomOut(); } cleanUpZoom(zoomLocation); } /*void FITSView::handleWCSCompletion() { //bool hasWCS = wcsWatcher.result(); if(imageData->hasWCS()) this->updateFrame(); emit wcsToggled(imageData->hasWCS()); }*/ void FITSView::syncWCSState() { bool hasWCS = imageData->hasWCS(); bool wcsLoaded = imageData->isWCSLoaded(); if (hasWCS && wcsLoaded) this->updateFrame(); emit wcsToggled(hasWCS); if (toggleEQGridAction != nullptr) toggleEQGridAction->setEnabled(hasWCS); if (toggleObjectsAction != nullptr) toggleObjectsAction->setEnabled(hasWCS); if (centerTelescopeAction != nullptr) centerTelescopeAction->setEnabled(hasWCS); } void FITSView::createFloatingToolBar() { if (floatingToolBar != nullptr) return; floatingToolBar = new QToolBar(this); auto * eff = new QGraphicsOpacityEffect(this); floatingToolBar->setGraphicsEffect(eff); eff->setOpacity(0.2); floatingToolBar->setVisible(false); floatingToolBar->setStyleSheet( "QToolBar{background: rgba(150, 150, 150, 210); border:none; color: yellow}" "QToolButton{background: transparent; border:none; color: yellow}" "QToolButton:hover{background: rgba(200, 200, 200, 255);border:solid; color: yellow}" "QToolButton:checked{background: rgba(110, 110, 110, 255);border:solid; color: yellow}"); floatingToolBar->setFloatable(true); floatingToolBar->setIconSize(QSize(25, 25)); //floatingToolBar->setMovable(true); QAction * action = nullptr; floatingToolBar->addAction(QIcon::fromTheme("zoom-in"), i18n("Zoom In"), this, SLOT(ZoomIn())); floatingToolBar->addAction(QIcon::fromTheme("zoom-out"), i18n("Zoom Out"), this, SLOT(ZoomOut())); floatingToolBar->addAction(QIcon::fromTheme("zoom-fit-best"), i18n("Default Zoom"), this, SLOT(ZoomDefault())); floatingToolBar->addAction(QIcon::fromTheme("zoom-fit-width"), i18n("Zoom to Fit"), this, SLOT(ZoomToFit())); floatingToolBar->addSeparator(); action = floatingToolBar->addAction(QIcon::fromTheme("crosshairs"), i18n("Show Cross Hairs"), this, SLOT(toggleCrosshair())); action->setCheckable(true); action = floatingToolBar->addAction(QIcon::fromTheme("map-flat"), i18n("Show Pixel Gridlines"), this, SLOT(togglePixelGrid())); action->setCheckable(true); toggleStarsAction = floatingToolBar->addAction(QIcon::fromTheme("kstars_stars"), i18n("Detect Stars in Image"), this, SLOT(toggleStars())); toggleStarsAction->setCheckable(true); #ifdef HAVE_DATAVISUALIZATION toggleProfileAction = floatingToolBar->addAction(QIcon::fromTheme("star-profile", QIcon(":/icons/star_profile.svg")), i18n("View Star Profile"), this, SLOT(toggleStarProfile())); toggleProfileAction->setCheckable(true); #endif if (mode == FITS_NORMAL || mode == FITS_ALIGN) { floatingToolBar->addSeparator(); toggleEQGridAction = floatingToolBar->addAction(QIcon::fromTheme("kstars_grid"), i18n("Show Equatorial Gridlines"), this, SLOT(toggleEQGrid())); toggleEQGridAction->setCheckable(true); toggleEQGridAction->setEnabled(false); toggleObjectsAction = floatingToolBar->addAction(QIcon::fromTheme("help-hint"), i18n("Show Objects in Image"), this, SLOT(toggleObjects())); toggleObjectsAction->setCheckable(true); toggleEQGridAction->setEnabled(false); centerTelescopeAction = floatingToolBar->addAction(QIcon::fromTheme("center_telescope", QIcon(":/icons/center_telescope.svg")), i18n("Center Telescope"), this, SLOT(centerTelescope())); centerTelescopeAction->setCheckable(true); centerTelescopeAction->setEnabled(false); } } /** This methood either enables or disables the scope mouse mode so you can slew your scope to coordinates just by clicking the mouse on a spot in the image. */ void FITSView::centerTelescope() { if (imageHasWCS()) { if (getCursorMode() == FITSView::scopeCursor) { setCursorMode(lastMouseMode); } else { lastMouseMode = getCursorMode(); setCursorMode(FITSView::scopeCursor); } updateFrame(); } updateScopeButton(); } void FITSView::updateScopeButton() { if (centerTelescopeAction != nullptr) { if (getCursorMode() == FITSView::scopeCursor) { centerTelescopeAction->setChecked(true); } else { centerTelescopeAction->setChecked(false); } } } /** This method just verifies if INDI is online, a telescope present, and is connected */ bool FITSView::isTelescopeActive() { #ifdef HAVE_INDI if (INDIListener::Instance()->size() == 0) { return false; } foreach (ISD::GDInterface * gd, INDIListener::Instance()->getDevices()) { INDI::BaseDevice * bd = gd->getBaseDevice(); if (gd->getType() != KSTARS_TELESCOPE) continue; if (bd == nullptr) continue; return bd->isConnected(); } return false; #else return false; #endif } void FITSView::setStarsEnabled(bool enable) { markStars = enable; if (floatingToolBar != nullptr) { foreach (QAction * action, floatingToolBar->actions()) { if (action->text() == i18n("Detect Stars in Image")) { action->setChecked(markStars); break; } } } } diff --git a/kstars/fitsviewer/fitsview.h b/kstars/fitsviewer/fitsview.h index b90554c05..9eeec3720 100644 --- a/kstars/fitsviewer/fitsview.h +++ b/kstars/fitsviewer/fitsview.h @@ -1,346 +1,348 @@ /* FITS Label Copyright (C) 2003-2017 Jasem Mutlaq Copyright (C) 2016-2017 Robert Lancaster This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #pragma once #include "fitscommon.h" #include #ifdef HAVE_DATAVISUALIZATION #include "starprofileviewer.h" #endif #include #include #include #include #include #ifdef WIN32 // avoid compiler warning when windows.h is included after fitsio.h #include #endif #include #include #define MINIMUM_PIXEL_RANGE 5 #define MINIMUM_STDVAR 5 class QAction; class QEvent; class QGestureEvent; class QImage; class QLabel; class QPinchGesture; class QResizeEvent; class QToolBar; class FITSData; class FITSLabel; class FITSView : public QScrollArea { Q_OBJECT public: explicit FITSView(QWidget *parent = nullptr, FITSMode fitsMode = FITS_NORMAL, FITSScale filterType = FITS_NONE); - ~FITSView(); + virtual ~FITSView() override; typedef enum {dragCursor, selectCursor, scopeCursor, crosshairCursor } CursorMode; /** * @brief loadFITS Loads FITS data and display it in FITSView frame * @param inFilename FITS File name * @param silent if set, error popups are suppressed. * @note If image is successfully, loaded() signal is emitted, otherwise failed() signal is emitted. * Obtain error by calling lastError() */ void loadFITS(const QString &inFilename, bool silent = true); // Save FITS int saveFITS(const QString &newFilename); // Rescale image lineary from image_buffer, fit to window if desired bool rescale(FITSZoom type); // Access functions FITSData *getImageData() const { return imageData; } double getCurrentZoom() const { return currentZoom; } QImage getDisplayImage() const { return rawImage; } const QPixmap &getDisplayPixmap() const { return displayPixmap; } // Tracking square void setTrackingBoxEnabled(bool enable); bool isTrackingBoxEnabled() const { return trackingBoxEnabled; } QPixmap &getTrackingBoxPixmap(uint8_t margin = 0); void setTrackingBox(const QRect &rect); const QRect &getTrackingBox() const { return trackingBox; } // last error const QString &lastError() const { return m_LastError; } // Overlay virtual void drawOverlay(QPainter *); // Overlay objects void drawStarCentroid(QPainter *); void drawTrackingBox(QPainter *); void drawMarker(QPainter *); void drawCrosshair(QPainter *); void drawEQGrid(QPainter *); void drawObjectNames(QPainter *painter); void drawPixelGrid(QPainter *painter); bool isCrosshairShown(); bool areObjectsShown(); bool isEQGridShown(); bool isPixelGridShown(); bool imageHasWCS(); void updateFrame(); bool isTelescopeActive(); void enterEvent(QEvent *event) override; void leaveEvent(QEvent *event) override; CursorMode getCursorMode(); void setCursorMode(CursorMode mode); void updateMouseCursor(); void updateScopeButton(); void setScopeButton(QAction *action) { centerTelescopeAction = action; } // Zoom related void cleanUpZoom(QPoint viewCenter); QPoint getImagePoint(QPoint viewPortPoint); uint16_t zoomedWidth() { return currentWidth; } uint16_t zoomedHeight() { return currentHeight; } // Star Detection int findStars(StarAlgorithm algorithm = ALGORITHM_CENTROID, const QRect &searchBox = QRect()); void toggleStars(bool enable); void setStarsEnabled(bool enable); - int filterStars(const float innerRadius, const float outerRadius); + void setStarFilterRange(float const innerRadius, float const outerRadius); + int filterStars(); // FITS Mode void updateMode(FITSMode fmode); FITSMode getMode() { return mode; } void setFilter(FITSScale newFilter) { filter = newFilter; } void setFirstLoad(bool value); void pushFilter(FITSScale value) { filterStack.push(value); } FITSScale popFilter() { return filterStack.pop(); } + CursorMode lastMouseMode { selectCursor }; + bool isStarProfileShown() + { + return showStarProfile; + } // Floating toolbar void createFloatingToolBar(); //void setLoadWCSEnabled(bool value); public slots: void wheelEvent(QWheelEvent *event) override; void resizeEvent(QResizeEvent *event) override; void ZoomIn(); void ZoomOut(); void ZoomDefault(); void ZoomToFit(); // Grids void toggleEQGrid(); void toggleObjects(); void togglePixelGrid(); void toggleCrosshair(); // Stars void toggleStars(); void toggleStarProfile(); void viewStarProfile(); void centerTelescope(); void processPointSelection(int x, int y); void processMarkerSelection(int x, int y); void move3DTrackingBox(int x, int y); void resizeTrackingBox(int newSize); protected slots: /** * @brief syncWCSState Update toolbar and actions depending on whether WCS is available or not */ void syncWCSState(); - private: bool event(QEvent *event) override; bool gestureEvent(QGestureEvent *event); void pinchTriggered(QPinchGesture *gesture); + protected: template bool rescale(FITSZoom type); double average(); double stddev(); void calculateMaxPixel(double min, double max); void initDisplayImage(); QPointF getPointForGridLabel(); bool pointIsInImage(QPointF pt, bool scaled); void loadInFrame(); - public: - CursorMode lastMouseMode { selectCursor }; - bool isStarProfileShown() - { - return showStarProfile; - } - - protected: /// WCS Future Watcher QFutureWatcher wcsWatcher; /// FITS Future Watcher QFutureWatcher fitsWatcher; /// Cross hair QPointF markerCrosshair; /// Pointer to FITSData object FITSData *imageData { nullptr }; /// Current zoom level double currentZoom { 0 }; private: QLabel *noImageLabel { nullptr }; QPixmap noImage; QVector eqGridPoints; std::unique_ptr image_frame; uint32_t image_width { 0 }; uint32_t image_height { 0 }; /// Current width due to zoom uint16_t currentWidth { 0 }; uint16_t lastWidth { 0 }; /// Current height due to zoom uint16_t currentHeight { 0 }; uint16_t lastHeight { 0 }; /// Image zoom factor const double zoomFactor; // Original full-size image QImage rawImage; // Scaled images QImage scaledImage; // Actual pixmap after all the overlays QPixmap displayPixmap; bool firstLoad { true }; bool markStars { false }; bool showStarProfile { false }; bool showCrosshair { false }; bool showObjects { false }; bool showEQGrid { false }; bool showPixelGrid { false }; - struct { - bool used() const { return innerRadius != 0.0f || outerRadius != 1.0f; } - float innerRadius { 0.0f }; - float outerRadius { 1.0f }; - } starFilter; + struct + { + bool used() const + { + return innerRadius != 0.0f || outerRadius != 1.0f; + } + float innerRadius { 0.0f }; + float outerRadius { 1.0f }; + } starFilter; CursorMode cursorMode { selectCursor }; bool zooming { false }; int zoomTime { 0 }; QPoint zoomLocation; QString filename; FITSMode mode; FITSScale filter; QString m_LastError; QStack filterStack; // Tracking box bool trackingBoxEnabled { false }; QRect trackingBox; QPixmap trackingBoxPixmap; // Scope pixmap QPixmap redScopePixmap; // Magenta Scope Pixmap QPixmap magentaScopePixmap; // Floating toolbar QToolBar *floatingToolBar { nullptr }; QAction *centerTelescopeAction { nullptr }; QAction *toggleEQGridAction { nullptr }; QAction *toggleObjectsAction { nullptr }; QAction *toggleStarsAction { nullptr }; QAction *toggleProfileAction { nullptr }; //Star Profile Viewer #ifdef HAVE_DATAVISUALIZATION QPointer starProfileWidget; #endif signals: void newStatus(const QString &msg, FITSBar id); void debayerToggled(bool); void wcsToggled(bool); void actionUpdated(const QString &name, bool enable); void trackingStarSelected(int x, int y); void loaded(); void failed(); void starProfileWindowClosed(); friend class FITSLabel; };