diff --git a/kstars/ekos/align/align.cpp b/kstars/ekos/align/align.cpp index 2c236f7ed..b63aa1fa6 100644 --- a/kstars/ekos/align/align.cpp +++ b/kstars/ekos/align/align.cpp @@ -1,6160 +1,6160 @@ /* Ekos Alignment Module Copyright (C) 2013 Jasem Mutlaq This application is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. */ #include "align.h" #include "alignadaptor.h" #include "alignview.h" #include "flagcomponent.h" #include "fov.h" #include "kstars.h" #include "kstarsdata.h" #include "ksuserdb.h" #include "offlineastrometryparser.h" #include "onlineastrometryparser.h" #include "astapastrometryparser.h" #include "opsalign.h" #include "opsastap.h" #include "opsastrometry.h" #include "opsastrometrycfg.h" #include "opsastrometryindexfiles.h" #include "Options.h" #include "remoteastrometryparser.h" #include "skymap.h" #include "skymapcomposite.h" #include "starobject.h" #include "auxiliary/QProgressIndicator.h" #include "auxiliary/ksmessagebox.h" #include "dialogs/finddialog.h" #include "ekos/manager.h" #include "ekos/auxiliary/darklibrary.h" #include "fitsviewer/fitsdata.h" #include "fitsviewer/fitstab.h" #include "indi/clientmanager.h" #include "indi/driverinfo.h" #include "indi/indifilter.h" #include "profileinfo.h" #include "ksnotification.h" #include #include #include #include #include #include #define PAH_CUTOFF_FOV 10 // Minimum FOV width in arcminutes for PAH to work #define MAXIMUM_SOLVER_ITERATIONS 10 #define CAPTURE_RETRY_DELAY 10000 #define AL_FORMAT_VERSION 1.0 namespace Ekos { // 30 arcminutes RA movement const double Align::RAMotion = 0.5; // Sidereal rate, degrees/s const double Align::SIDRATE = 0.004178; const QMap Align::PAHStages = { {PAH_IDLE, I18N_NOOP("Idle")}, {PAH_FIRST_CAPTURE, I18N_NOOP("First Capture"}), {PAH_FIND_CP, I18N_NOOP("Finding CP"}), {PAH_FIRST_ROTATE, I18N_NOOP("First Rotation"}), {PAH_SECOND_CAPTURE, I18N_NOOP("Second Capture"}), {PAH_SECOND_ROTATE, I18N_NOOP("Second Rotation"}), {PAH_THIRD_CAPTURE, I18N_NOOP("Third Capture"}), {PAH_STAR_SELECT, I18N_NOOP("Select Star"}), {PAH_PRE_REFRESH, I18N_NOOP("Select Refresh"}), {PAH_REFRESH, I18N_NOOP("Refreshing"}), {PAH_ERROR, I18N_NOOP("Error")}, }; Align::Align(ProfileInfo *activeProfile) : m_ActiveProfile(activeProfile) { setupUi(this); qRegisterMetaType("Ekos::AlignState"); qDBusRegisterMetaType(); new AlignAdaptor(this); QDBusConnection::sessionBus().registerObject("/KStars/Ekos/Align", this); dirPath = QDir::homePath(); KStarsData::Instance()->clearTransientFOVs(); //loadSlewMode = false; solverFOV.reset(new FOV()); solverFOV->setName(i18n("Solver FOV")); solverFOV->setObjectName("solver_fov"); solverFOV->setLockCelestialPole(true); solverFOV->setColor(KStars::Instance()->data()->colorScheme()->colorNamed("SolverFOVColor").name()); solverFOV->setProperty("visible", false); KStarsData::Instance()->addTransientFOV(solverFOV); sensorFOV.reset(new FOV()); sensorFOV->setObjectName("sensor_fov"); sensorFOV->setLockCelestialPole(true); sensorFOV->setProperty("visible", Options::showSensorFOV()); KStarsData::Instance()->addTransientFOV(sensorFOV); QAction *a = KStars::Instance()->actionCollection()->action("show_sensor_fov"); if (a) a->setEnabled(true); showFITSViewerB->setIcon( QIcon::fromTheme("kstars_fitsviewer")); showFITSViewerB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(showFITSViewerB, &QPushButton::clicked, this, &Ekos::Align::showFITSViewer); toggleFullScreenB->setIcon( QIcon::fromTheme("view-fullscreen")); toggleFullScreenB->setShortcut(Qt::Key_F4); toggleFullScreenB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(toggleFullScreenB, &QPushButton::clicked, this, &Ekos::Align::toggleAlignWidgetFullScreen); alignView = new AlignView(alignWidget, FITS_ALIGN); alignView->setSizePolicy(QSizePolicy::Expanding, QSizePolicy::Expanding); alignView->setBaseSize(alignWidget->size()); alignView->createFloatingToolBar(); QVBoxLayout *vlayout = new QVBoxLayout(); vlayout->addWidget(alignView); alignWidget->setLayout(vlayout); connect(solveB, &QPushButton::clicked, this, &Ekos::Align::captureAndSolve); connect(stopB, &QPushButton::clicked, this, &Ekos::Align::abort); connect(measureAltB, &QPushButton::clicked, this, &Ekos::Align::measureAltError); connect(measureAzB, &QPushButton::clicked, this, &Ekos::Align::measureAzError); // Effective FOV Edit connect(FOVOut, &QLineEdit::editingFinished, this, &Align::syncFOV); connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::setDefaultCCD); connect(CCDCaptureCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::checkCCD); connect(correctAltB, &QPushButton::clicked, this, &Ekos::Align::correctAltError); connect(correctAzB, &QPushButton::clicked, this, &Ekos::Align::correctAzError); connect(loadSlewB, &QPushButton::clicked, [&]() { loadAndSlew(); }); FilterDevicesCombo->addItem("--"); connect(FilterDevicesCombo, static_cast(&QComboBox::activated), [ = ](const QString & text) { syncSettings(); Options::setDefaultAlignFilterWheel(text); }); connect(FilterDevicesCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::checkFilter); connect(FilterPosCombo, static_cast(&QComboBox::activated), [ = ](int index) { syncSettings(); Options::setLockAlignFilterIndex(index); } ); connect(PAHSlewRateCombo, static_cast(&QComboBox::activated), [&](int index) { Options::setPAHMountSpeedIndex(index); }); gotoModeButtonGroup->setId(syncR, GOTO_SYNC); gotoModeButtonGroup->setId(slewR, GOTO_SLEW); gotoModeButtonGroup->setId(nothingR, GOTO_NOTHING); connect(gotoModeButtonGroup, static_cast(&QButtonGroup::buttonClicked), this, [ = ](int id) { this->currentGotoMode = static_cast(id); }); m_CaptureTimer.setSingleShot(true); m_CaptureTimer.setInterval(CAPTURE_RETRY_DELAY); connect(&m_CaptureTimer, &QTimer::timeout, [&]() { if (m_CaptureTimeoutCounter++ > 3) { appendLogText(i18n("Capture timed out.")); abort(); } else { ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (targetChip->isCapturing()) { appendLogText(i18n("Capturing still running, Retrying in %1 seconds...", m_CaptureTimer.interval() / 500)); targetChip->abortExposure(); m_CaptureTimer.start( m_CaptureTimer.interval() * 2); } else captureAndSolve(); } }); m_AlignTimer.setSingleShot(true); m_AlignTimer.setInterval(Options::astrometryTimeout() * 1000); connect(&m_AlignTimer, &QTimer::timeout, this, &Ekos::Align::checkAlignmentTimeout); currentGotoMode = static_cast(Options::solverGotoOption()); gotoModeButtonGroup->button(currentGotoMode)->setChecked(true); editOptionsB->setIcon(QIcon::fromTheme("document-edit")); editOptionsB->setAttribute(Qt::WA_LayoutUsesWidgetRect); KConfigDialog *dialog = new KConfigDialog(this, "alignsettings", Options::self()); #ifdef Q_OS_OSX dialog->setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); #endif opsAlign = new OpsAlign(this); connect(opsAlign, &OpsAlign::settingsUpdated, this, &Ekos::Align::refreshAlignOptions); KPageWidgetItem *page = dialog->addPage(opsAlign, i18n("Astrometry.net")); page->setIcon(QIcon(":/icons/astrometry.svg")); opsAstrometry = new OpsAstrometry(this); page = dialog->addPage(opsAstrometry, i18n("Solver Options")); page->setIcon(QIcon::fromTheme("configure")); #ifndef Q_OS_WIN opsAstrometryCfg = new OpsAstrometryCfg(this); page = dialog->addPage(opsAstrometryCfg, i18n("Astrometry.cfg")); page->setIcon(QIcon::fromTheme("document-edit")); opsAstrometryIndexFiles = new OpsAstrometryIndexFiles(this); page = dialog->addPage(opsAstrometryIndexFiles, i18n("Index Files")); page->setIcon(QIcon::fromTheme("map-flat")); #endif opsASTAP = new OpsASTAP(this); page = dialog->addPage(opsASTAP, i18n("ASTAP")); page->setIcon(QIcon(":/icons/astap.ico")); connect(editOptionsB, &QPushButton::clicked, dialog, &QDialog::show); appendLogText(i18n("Idle.")); pi.reset(new QProgressIndicator(this)); stopLayout->addWidget(pi.get()); exposureIN->setValue(Options::alignExposure()); connect(exposureIN, static_cast(&QDoubleSpinBox::valueChanged), [&]() { syncSettings(); }); altStage = ALT_INIT; azStage = AZ_INIT; rememberSolverWCS = Options::astrometrySolverWCS(); rememberAutoWCS = Options::autoWCS(); solverBackendGroup->setId(astapSolverR, SOLVER_ASTAP); solverBackendGroup->setId(astrometrySolverR, SOLVER_ASTROMETRYNET); // JM 2019-11-10: solver type was 3 in previous version (online, offline, remote) // But they are now two choices (ASTAP and ASTROMETERY.NET) so we need to accommodate that. if (Options::solverBackend() > SOLVER_ASTROMETRYNET) { Options::setSolverBackend(SOLVER_ASTROMETRYNET); } solverBackendGroup->button(Options::solverBackend())->setChecked(true); connect(solverBackendGroup, static_cast(&QButtonGroup::buttonClicked), this, &Align::setSolverBackend); astrometryTypeCombo->addItem(i18n("Online")); #ifndef Q_OS_WIN astrometryTypeCombo->addItem(i18n("Offline")); #endif astrometryTypeCombo->addItem(i18n("Remote")); astrometryTypeCombo->setCurrentIndex(Options::astrometrySolverType()); connect(astrometryTypeCombo, static_cast(&QComboBox::activated), this, &Ekos::Align::setAstrometrySolverType); setSolverBackend(solverBackendGroup->checkedId()); // Which telescope info to use for FOV calculations FOVScopeCombo->setCurrentIndex(Options::solverScopeType()); connect(FOVScopeCombo, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::updateTelescopeType); accuracySpin->setValue(Options::solverAccuracyThreshold()); alignDarkFrameCheck->setChecked(Options::alignDarkFrame()); delaySpin->setValue(Options::settlingTime()); connect(delaySpin, &QSpinBox::editingFinished, this, &Ekos::Align::saveSettleTime); connect(binningCombo, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::setBinningIndex); // PAH Connections connect(this, &Align::PAHEnabled, [&](bool enabled) { PAHStartB->setEnabled(enabled); directionLabel->setEnabled(enabled); PAHDirectionCombo->setEnabled(enabled); PAHRotationSpin->setEnabled(enabled); PAHSlewRateCombo->setEnabled(enabled); PAHManual->setEnabled(enabled); }); connect(PAHStartB, &QPushButton::clicked, this, &Ekos::Align::startPAHProcess); // PAH StopB is just a shortcut for the regular stop connect(PAHStopB, &QPushButton::clicked, this, &Align::stopPAHProcess); connect(PAHCorrectionsNextB, &QPushButton::clicked, this, &Ekos::Align::setPAHCorrectionSelectionComplete); connect(PAHRefreshB, &QPushButton::clicked, this, &Ekos::Align::startPAHRefreshProcess); connect(PAHDoneB, &QPushButton::clicked, this, &Ekos::Align::setPAHRefreshComplete); // done buttons for manual slewing during polar alignment: connect(PAHfirstDone, &QPushButton::clicked, this, &Ekos::Align::setPAHSlewDone); connect(PAHsecondDone, &QPushButton::clicked, this, &Ekos::Align::setPAHSlewDone); if (solverOptions->text().contains("no-fits2fits")) appendLogText(i18n( "Warning: If using astrometry.net v0.68 or above, remove the --no-fits2fits from the astrometry options.")); hemisphere = KStarsData::Instance()->geo()->lat()->Degrees() > 0 ? NORTH_HEMISPHERE : SOUTH_HEMISPHERE; double accuracyRadius = accuracySpin->value(); alignPlot->setBackground(QBrush(Qt::black)); alignPlot->setSelectionTolerance(10); alignPlot->xAxis->setBasePen(QPen(Qt::white, 1)); alignPlot->yAxis->setBasePen(QPen(Qt::white, 1)); alignPlot->xAxis->setTickPen(QPen(Qt::white, 1)); alignPlot->yAxis->setTickPen(QPen(Qt::white, 1)); alignPlot->xAxis->setSubTickPen(QPen(Qt::white, 1)); alignPlot->yAxis->setSubTickPen(QPen(Qt::white, 1)); alignPlot->xAxis->setTickLabelColor(Qt::white); alignPlot->yAxis->setTickLabelColor(Qt::white); alignPlot->xAxis->setLabelColor(Qt::white); alignPlot->yAxis->setLabelColor(Qt::white); alignPlot->xAxis->setLabelFont(QFont(font().family(), 10)); alignPlot->yAxis->setLabelFont(QFont(font().family(), 10)); alignPlot->xAxis->setLabelPadding(2); alignPlot->yAxis->setLabelPadding(2); alignPlot->xAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); alignPlot->yAxis->grid()->setPen(QPen(QColor(140, 140, 140), 1, Qt::DotLine)); alignPlot->xAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); alignPlot->yAxis->grid()->setSubGridPen(QPen(QColor(80, 80, 80), 1, Qt::DotLine)); alignPlot->xAxis->grid()->setZeroLinePen(QPen(Qt::yellow)); alignPlot->yAxis->grid()->setZeroLinePen(QPen(Qt::yellow)); alignPlot->xAxis->setLabel(i18n("dRA (arcsec)")); alignPlot->yAxis->setLabel(i18n("dDE (arcsec)")); alignPlot->xAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->yAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->setInteractions(QCP::iRangeZoom); alignPlot->setInteraction(QCP::iRangeDrag, true); alignPlot->addGraph(); alignPlot->graph(0)->setLineStyle(QCPGraph::lsNone); alignPlot->graph(0)->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssDisc, Qt::white, 15)); buildTarget(); connect(alignPlot, &QCustomPlot::mouseMove, this, &Ekos::Align::handlePointTooltip); connect(rightLayout, &QSplitter::splitterMoved, this, &Ekos::Align::handleVerticalPlotSizeChange); connect(alignSplitter, &QSplitter::splitterMoved, this, &Ekos::Align::handleHorizontalPlotSizeChange); connect(accuracySpin, static_cast(&QSpinBox::valueChanged), this, &Ekos::Align::buildTarget); alignPlot->resize(190, 190); alignPlot->replot(); solutionTable->horizontalHeader()->setSectionResizeMode(QHeaderView::ResizeToContents); clearAllSolutionsB->setIcon( QIcon::fromTheme("application-exit")); clearAllSolutionsB->setAttribute(Qt::WA_LayoutUsesWidgetRect); removeSolutionB->setIcon(QIcon::fromTheme("list-remove")); removeSolutionB->setAttribute(Qt::WA_LayoutUsesWidgetRect); exportSolutionsCSV->setIcon( QIcon::fromTheme("document-save-as")); exportSolutionsCSV->setAttribute(Qt::WA_LayoutUsesWidgetRect); autoScaleGraphB->setIcon(QIcon::fromTheme("zoom-fit-best")); autoScaleGraphB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.setupUi(&mountModelDialog); mountModelDialog.setWindowTitle("Mount Model Tool"); mountModelDialog.setWindowFlags(Qt::Tool | Qt::WindowStaysOnTopHint); mountModel.alignTable->setColumnWidth(0, 70); mountModel.alignTable->setColumnWidth(1, 75); mountModel.alignTable->setColumnWidth(2, 130); mountModel.alignTable->setColumnWidth(3, 30); mountModel.wizardAlignB->setIcon( QIcon::fromTheme("tools-wizard")); mountModel.wizardAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.clearAllAlignB->setIcon( QIcon::fromTheme("application-exit")); mountModel.clearAllAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.removeAlignB->setIcon(QIcon::fromTheme("list-remove")); mountModel.removeAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.addAlignB->setIcon(QIcon::fromTheme("list-add")); mountModel.addAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.findAlignB->setIcon(QIcon::fromTheme("edit-find")); mountModel.findAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.alignTable->verticalHeader()->setDragDropOverwriteMode(false); mountModel.alignTable->verticalHeader()->setSectionsMovable(true); mountModel.alignTable->verticalHeader()->setDragEnabled(true); mountModel.alignTable->verticalHeader()->setDragDropMode(QAbstractItemView::InternalMove); connect(mountModel.alignTable->verticalHeader(), SIGNAL(sectionMoved(int, int, int)), this, SLOT(moveAlignPoint(int, int, int))); mountModel.loadAlignB->setIcon( QIcon::fromTheme("document-open")); mountModel.loadAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.saveAsAlignB->setIcon( QIcon::fromTheme("document-save-as")); mountModel.saveAsAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.saveAlignB->setIcon( QIcon::fromTheme("document-save")); mountModel.saveAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.previewB->setIcon(QIcon::fromTheme("kstars_grid")); mountModel.previewB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.previewB->setCheckable(true); mountModel.sortAlignB->setIcon(QIcon::fromTheme("svn-update")); mountModel.sortAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.stopAlignB->setIcon( QIcon::fromTheme("media-playback-stop")); mountModel.stopAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); mountModel.startAlignB->setAttribute(Qt::WA_LayoutUsesWidgetRect); connect(clearAllSolutionsB, &QPushButton::clicked, this, &Ekos::Align::slotClearAllSolutionPoints); connect(removeSolutionB, &QPushButton::clicked, this, &Ekos::Align::slotRemoveSolutionPoint); connect(exportSolutionsCSV, &QPushButton::clicked, this, &Ekos::Align::exportSolutionPoints); connect(autoScaleGraphB, &QPushButton::clicked, this, &Ekos::Align::slotAutoScaleGraph); connect(mountModelB, &QPushButton::clicked, this, &Ekos::Align::slotMountModel); connect(solutionTable, &QTableWidget::cellClicked, this, &Ekos::Align::selectSolutionTableRow); connect(mountModel.wizardAlignB, &QPushButton::clicked, this, &Ekos::Align::slotWizardAlignmentPoints); connect(mountModel.alignTypeBox, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::alignTypeChanged); connect(mountModel.starListBox, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::slotStarSelected); connect(mountModel.greekStarListBox, static_cast(&QComboBox::currentIndexChanged), this, &Ekos::Align::slotStarSelected); connect(mountModel.loadAlignB, &QPushButton::clicked, this, &Ekos::Align::slotLoadAlignmentPoints); connect(mountModel.saveAsAlignB, &QPushButton::clicked, this, &Ekos::Align::slotSaveAsAlignmentPoints); connect(mountModel.saveAlignB, &QPushButton::clicked, this, &Ekos::Align::slotSaveAlignmentPoints); connect(mountModel.clearAllAlignB, &QPushButton::clicked, this, &Ekos::Align::slotClearAllAlignPoints); connect(mountModel.removeAlignB, &QPushButton::clicked, this, &Ekos::Align::slotRemoveAlignPoint); connect(mountModel.addAlignB, &QPushButton::clicked, this, &Ekos::Align::slotAddAlignPoint); connect(mountModel.findAlignB, &QPushButton::clicked, this, &Ekos::Align::slotFindAlignObject); connect(mountModel.sortAlignB, &QPushButton::clicked, this, &Ekos::Align::slotSortAlignmentPoints); connect(mountModel.previewB, &QPushButton::clicked, this, &Ekos::Align::togglePreviewAlignPoints); connect(mountModel.stopAlignB, &QPushButton::clicked, this, &Ekos::Align::resetAlignmentProcedure); connect(mountModel.startAlignB, &QPushButton::clicked, this, &Ekos::Align::startStopAlignmentProcedure); //Note: This is to prevent a button from being called the default button //and then executing when the user hits the enter key such as when on a Text Box QList qButtons = findChildren(); for (auto &button : qButtons) button->setAutoDefault(false); } Align::~Align() { if (alignWidget->parent() == nullptr) toggleAlignWidgetFullScreen(); // Remove temporary FITS files left before by the solver QDir dir(QDir::tempPath()); dir.setNameFilters(QStringList() << "fits*" << "tmp.*"); dir.setFilter(QDir::Files); for (auto &dirFile : dir.entryList()) dir.remove(dirFile); } void Align::selectSolutionTableRow(int row, int column) { Q_UNUSED(column) solutionTable->selectRow(row); for (int i = 0; i < alignPlot->itemCount(); i++) { QCPAbstractItem *abstractItem = alignPlot->item(i); if (abstractItem) { QCPItemText *item = qobject_cast(abstractItem); if (item) { if (i == row) { item->setColor(Qt::black); item->setBrush(Qt::yellow); } else { item->setColor(Qt::red); item->setBrush(Qt::white); } } } } alignPlot->replot(); } void Align::handleHorizontalPlotSizeChange() { alignPlot->xAxis->setScaleRatio(alignPlot->yAxis, 1.0); alignPlot->replot(); } void Align::handleVerticalPlotSizeChange() { alignPlot->yAxis->setScaleRatio(alignPlot->xAxis, 1.0); alignPlot->replot(); } void Align::resizeEvent(QResizeEvent *event) { if (event->oldSize().width() != -1) { if (event->oldSize().width() != size().width()) handleHorizontalPlotSizeChange(); else if (event->oldSize().height() != size().height()) handleVerticalPlotSizeChange(); } else { QTimer::singleShot(10, this, &Ekos::Align::handleHorizontalPlotSizeChange); } } void Align::handlePointTooltip(QMouseEvent *event) { QCPAbstractItem *item = alignPlot->itemAt(event->localPos()); if (item) { QCPItemText *label = qobject_cast(item); if (label) { QString labelText = label->text(); int point = labelText.toInt() - 1; if (point < 0) return; QToolTip::showText(event->globalPos(), tr("" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "
Object %L1: %L2
RA:%L3
DE:%L4
dRA:%L5
dDE:%L6
") .arg(point + 1) .arg(solutionTable->item(point, 2)->text(), solutionTable->item(point, 0)->text(), solutionTable->item(point, 1)->text(), solutionTable->item(point, 4)->text(), solutionTable->item(point, 5)->text()), alignPlot, alignPlot->rect()); } } } void Align::buildTarget() { double accuracyRadius = accuracySpin->value(); if (centralTarget) { concentricRings->data()->clear(); redTarget->data()->clear(); yellowTarget->data()->clear(); centralTarget->data()->clear(); } else { concentricRings = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); redTarget = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); yellowTarget = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); centralTarget = new QCPCurve(alignPlot->xAxis, alignPlot->yAxis); } const int pointCount = 200; QVector circleRings( pointCount * (5)); //Have to multiply by the number of rings, Rings at : 25%, 50%, 75%, 125%, 175% QVector circleCentral(pointCount); QVector circleYellow(pointCount); QVector circleRed(pointCount); int circleRingPt = 0; for (int i = 0; i < pointCount; i++) { double theta = i / static_cast(pointCount) * 2 * M_PI; for (double ring = 1; ring < 8; ring++) { if (ring != 4 && ring != 6) { if (i % (9 - static_cast(ring)) == 0) //This causes fewer points to draw on the inner circles. { circleRings[circleRingPt] = QCPCurveData(circleRingPt, accuracyRadius * ring * 0.25 * qCos(theta), accuracyRadius * ring * 0.25 * qSin(theta)); circleRingPt++; } } } circleCentral[i] = QCPCurveData(i, accuracyRadius * qCos(theta), accuracyRadius * qSin(theta)); circleYellow[i] = QCPCurveData(i, accuracyRadius * 1.5 * qCos(theta), accuracyRadius * 1.5 * qSin(theta)); circleRed[i] = QCPCurveData(i, accuracyRadius * 2 * qCos(theta), accuracyRadius * 2 * qSin(theta)); } concentricRings->setLineStyle(QCPCurve::lsNone); concentricRings->setScatterSkip(0); concentricRings->setScatterStyle(QCPScatterStyle(QCPScatterStyle::ssDisc, QColor(255, 255, 255, 150), 1)); concentricRings->data()->set(circleRings, true); redTarget->data()->set(circleRed, true); yellowTarget->data()->set(circleYellow, true); centralTarget->data()->set(circleCentral, true); concentricRings->setPen(QPen(Qt::white)); redTarget->setPen(QPen(Qt::red)); yellowTarget->setPen(QPen(Qt::yellow)); centralTarget->setPen(QPen(Qt::green)); concentricRings->setBrush(Qt::NoBrush); redTarget->setBrush(QBrush(QColor(255, 0, 0, 50))); yellowTarget->setBrush( QBrush(QColor(0, 255, 0, 50))); //Note this is actually yellow. It is green on top of red with equal opacity. centralTarget->setBrush(QBrush(QColor(0, 255, 0, 50))); if (alignPlot->size().width() > 0) alignPlot->replot(); } void Align::slotAutoScaleGraph() { double accuracyRadius = accuracySpin->value(); alignPlot->xAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->yAxis->setRange(-accuracyRadius * 3, accuracyRadius * 3); alignPlot->xAxis->setScaleRatio(alignPlot->yAxis, 1.0); alignPlot->replot(); } void Align::slotWizardAlignmentPoints() { int points = mountModel.alignPtNum->value(); if (points < 2) //The minimum is 2 because the wizard calculations require the calculation of an angle between points. return; //It should not be less than 2 because the minimum in the spin box is 2. int minAlt = mountModel.minAltBox->value(); KStarsData *data = KStarsData::Instance(); GeoLocation *geo = data->geo(); double lat = geo->lat()->Degrees(); if (mountModel.alignTypeBox->currentIndex() == OBJECT_FIXED_DEC) { double decAngle = mountModel.alignDec->value(); //Dec that never rises. if (lat > 0) { if (decAngle < lat - 90 + minAlt) //Min altitude possible at minAlt deg above horizon { KSNotification::sorry(i18n("DEC is below the altitude limit")); return; } } else { if (decAngle > lat + 90 - minAlt) //Max altitude possible at minAlt deg above horizon { KSNotification::sorry(i18n("DEC is below the altitude limit")); return; } } } //If there are less than 6 points, keep them all in the same DEC, //any more, set the num per row to be the sqrt of the points to evenly distribute in RA and DEC int numRAperDEC = 5; if (points > 5) numRAperDEC = qSqrt(points); //These calculations rely on modulus and int division counting beginning at 0, but the #s start at 1. int decPoints = (points - 1) / numRAperDEC + 1; int lastSetRAPoints = (points - 1) % numRAperDEC + 1; double decIncrement = -1; double initDEC = -1; SkyPoint spTest; if (mountModel.alignTypeBox->currentIndex() == OBJECT_FIXED_DEC) { decPoints = 1; initDEC = mountModel.alignDec->value(); decIncrement = 0; } else if (decPoints == 1) { decIncrement = 0; spTest.setAlt( minAlt); //The goal here is to get the point exactly West at the minAlt so that we can use that DEC spTest.setAz(270); spTest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); initDEC = spTest.dec().Degrees(); } else { spTest.setAlt( minAlt + 10); //We don't want to be right at the minAlt because there would be only 1 point on the dec circle above the alt. spTest.setAz(180); spTest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); initDEC = spTest.dec().Degrees(); if (lat > 0) decIncrement = (80 - initDEC) / (decPoints); //Don't quite want to reach NCP else decIncrement = (initDEC - 80) / (decPoints); //Don't quite want to reach SCP } for (int d = 0; d < decPoints; d++) { double initRA = -1; double raPoints = -1; double raIncrement = -1; double dec; if (lat > 0) dec = initDEC + d * decIncrement; else dec = initDEC - d * decIncrement; if (mountModel.alignTypeBox->currentIndex() == OBJECT_FIXED_DEC) { raPoints = points; } else if (d == decPoints - 1) { raPoints = lastSetRAPoints; } else { raPoints = numRAperDEC; } //This computes both the initRA and the raIncrement. calculateAngleForRALine(raIncrement, initRA, dec, lat, raPoints, minAlt); if (raIncrement == -1 || decIncrement == -1) { KSNotification::sorry(i18n("Point calculation error.")); return; } for (int i = 0; i < raPoints; i++) { double ra = initRA + i * raIncrement; const SkyObject *original = getWizardAlignObject(ra, dec); QString ra_report, dec_report, name; if (original) { SkyObject *o = original->clone(); o->updateCoords(data->updateNum(), true, data->geo()->lat(), data->lst(), false); getFormattedCoords(o->ra0().Hours(), o->dec0().Degrees(), ra_report, dec_report); name = o->longname(); } else { getFormattedCoords(dms(ra).Hours(), dec, ra_report, dec_report); name = i18n("Sky Point"); } int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ra_report); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(dec_report); DECReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DECReport); QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(name); ObjNameReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjNameReport); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); } } if (previewShowing) updatePreviewAlignPoints(); } void Align::calculateAngleForRALine(double &raIncrement, double &initRA, double initDEC, double lat, double raPoints, double minAlt) { SkyPoint spEast; SkyPoint spWest; //Circumpolar dec if (fabs(initDEC) > (90 - fabs(lat) + minAlt)) { if (raPoints > 1) raIncrement = 360 / (raPoints - 1); else raIncrement = 0; initRA = 0; } else { dms AZEast, AZWest; calculateAZPointsForDEC(dms(initDEC), dms(minAlt), AZEast, AZWest); spEast.setAlt(minAlt); spEast.setAz(AZEast.Degrees()); spEast.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); spWest.setAlt(minAlt); spWest.setAz(AZWest.Degrees()); spWest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); dms angleSep = spEast.ra().deltaAngle(spWest.ra()); initRA = spWest.ra().Degrees(); if (raPoints > 1) raIncrement = fabs(angleSep.Degrees() / (raPoints - 1)); else raIncrement = 0; } } void Align::calculateAZPointsForDEC(dms dec, dms alt, dms &AZEast, dms &AZWest) { KStarsData *data = KStarsData::Instance(); GeoLocation *geo = data->geo(); double AZRad; double sindec, cosdec, sinlat, coslat; double sinAlt, cosAlt; geo->lat()->SinCos(sinlat, coslat); dec.SinCos(sindec, cosdec); alt.SinCos(sinAlt, cosAlt); double arg = (sindec - sinlat * sinAlt) / (coslat * cosAlt); AZRad = acos(arg); AZEast.setRadians(AZRad); AZWest.setRadians(2.0 * dms::PI - AZRad); } const SkyObject *Align::getWizardAlignObject(double ra, double dec) { double maxSearch = 5.0; switch (mountModel.alignTypeBox->currentIndex()) { case OBJECT_ANY_OBJECT: return KStarsData::Instance()->skyComposite()->objectNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); case OBJECT_FIXED_DEC: case OBJECT_FIXED_GRID: return nullptr; case OBJECT_ANY_STAR: return KStarsData::Instance()->skyComposite()->starNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); } //If they want named stars, then try to search for and return the closest Align Star to the requested location dms bestDiff = dms(360); double index = -1; for (int i = 0; i < alignStars.size(); i++) { const StarObject *star = alignStars.value(i); if (star) { if (star->hasName()) { SkyPoint thisPt(ra / 15.0, dec); dms thisDiff = thisPt.angularDistanceTo(star); if (thisDiff.Degrees() < bestDiff.Degrees()) { index = i; bestDiff = thisDiff; } } } } if (index == -1) return KStarsData::Instance()->skyComposite()->starNearest(new SkyPoint(dms(ra), dms(dec)), maxSearch); return alignStars.value(index); } void Align::alignTypeChanged(int alignType) { if (alignType == OBJECT_FIXED_DEC) mountModel.alignDec->setEnabled(true); else mountModel.alignDec->setEnabled(false); } void Align::slotStarSelected(const QString selectedStar) { for (int i = 0; i < alignStars.size(); i++) { const StarObject *star = alignStars.value(i); if (star) { if (star->name() == selectedStar || star->gname().simplified() == selectedStar) { int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QString ra_report, dec_report; getFormattedCoords(star->ra0().Hours(), star->dec0().Degrees(), ra_report, dec_report); QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ra_report); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(dec_report); DECReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DECReport); QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(star->longname()); ObjNameReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjNameReport); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); mountModel.starListBox->setCurrentIndex(0); mountModel.greekStarListBox->setCurrentIndex(0); return; } } } if (previewShowing) updatePreviewAlignPoints(); } void Align::generateAlignStarList() { alignStars.clear(); mountModel.starListBox->clear(); mountModel.greekStarListBox->clear(); KStarsData *data = KStarsData::Instance(); QVector> listStars; listStars.append(data->skyComposite()->objectLists(SkyObject::STAR)); for (int i = 0; i < listStars.size(); i++) { QPair pair = listStars.value(i); const StarObject *star = dynamic_cast(pair.second); if (star) { StarObject *alignStar = star->clone(); alignStar->updateCoords(data->updateNum(), true, data->geo()->lat(), data->lst(), false); alignStars.append(alignStar); } } QStringList boxNames; QStringList greekBoxNames; for (int i = 0; i < alignStars.size(); i++) { const StarObject *star = alignStars.value(i); if (star) { if (!isVisible(star)) { alignStars.remove(i); i--; } else { if (star->hasLatinName()) boxNames << star->name(); else { if (!star->gname().isEmpty()) greekBoxNames << star->gname().simplified(); } } } } boxNames.sort(Qt::CaseInsensitive); boxNames.removeDuplicates(); greekBoxNames.removeDuplicates(); std::sort(greekBoxNames.begin(), greekBoxNames.end(), [](const QString & a, const QString & b) { QStringList aParts = a.split(' '); QStringList bParts = b.split(' '); if (aParts.length() < 2 || bParts.length() < 2) return a < b; //This should not happen, they should all have 2 words in the string. if (aParts[1] == bParts[1]) { return aParts[0] < bParts[0]; //This compares the greek letter when the constellation is the same } else return aParts[1] < bParts[1]; //This compares the constellation names }); mountModel.starListBox->addItem("Select one:"); mountModel.greekStarListBox->addItem("Select one:"); for (int i = 0; i < boxNames.size(); i++) mountModel.starListBox->addItem(boxNames.at(i)); for (int i = 0; i < greekBoxNames.size(); i++) mountModel.greekStarListBox->addItem(greekBoxNames.at(i)); } bool Align::isVisible(const SkyObject *so) { return (getAltitude(so) > 30); } double Align::getAltitude(const SkyObject *so) { KStarsData *data = KStarsData::Instance(); SkyPoint sp = so->recomputeCoords(data->ut(), data->geo()); //check altitude of object at this time. sp.EquatorialToHorizontal(data->lst(), data->geo()->lat()); return sp.alt().Degrees(); } void Align::togglePreviewAlignPoints() { previewShowing = !previewShowing; mountModel.previewB->setChecked(previewShowing); updatePreviewAlignPoints(); } void Align::updatePreviewAlignPoints() { FlagComponent *flags = KStarsData::Instance()->skyComposite()->flags(); for (int i = 0; i < flags->size(); i++) { if (flags->label(i).startsWith(QLatin1String("Align"))) { flags->remove(i); i--; } } if (previewShowing) { for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); QTableWidgetItem *objNameCell = mountModel.alignTable->item(i, 2); if (raCell && deCell && objNameCell) { QString raString = raCell->text(); QString deString = deCell->text(); dms raDMS = dms::fromString(raString, false); dms decDMS = dms::fromString(deString, true); QString objString = objNameCell->text(); SkyPoint flagPoint(raDMS, decDMS); flags->add(flagPoint, "J2000", "Default", "Align " + QString::number(i + 1) + ' ' + objString, "white"); } } } KStars::Instance()->map()->forceUpdate(true); } void Align::slotLoadAlignmentPoints() { QUrl fileURL = QFileDialog::getOpenFileUrl(&mountModelDialog, i18n("Open Ekos Alignment List"), alignURLPath, "Ekos AlignmentList (*.eal)"); if (fileURL.isEmpty()) return; if (fileURL.isValid() == false) { QString message = i18n("Invalid URL: %1", fileURL.toLocalFile()); KSNotification::sorry(message, i18n("Invalid URL")); return; } alignURLPath = QUrl(fileURL.url(QUrl::RemoveFilename)); loadAlignmentPoints(fileURL.toLocalFile()); if (previewShowing) updatePreviewAlignPoints(); } bool Align::loadAlignmentPoints(const QString &fileURL) { QFile sFile; sFile.setFileName(fileURL); if (!sFile.open(QIODevice::ReadOnly)) { QString message = i18n("Unable to open file %1", fileURL); KSNotification::sorry(message, i18n("Could Not Open File")); return false; } mountModel.alignTable->setRowCount(0); LilXML *xmlParser = newLilXML(); char errmsg[MAXRBUF]; XMLEle *root = nullptr; char c; while (sFile.getChar(&c)) { root = readXMLEle(xmlParser, c, errmsg); if (root) { double sqVersion = atof(findXMLAttValu(root, "version")); if (sqVersion < AL_FORMAT_VERSION) { appendLogText(i18n("Deprecated sequence file format version %1. Please construct a new sequence file.", sqVersion)); return false; } XMLEle *ep = nullptr; XMLEle *subEP = nullptr; int currentRow = 0; for (ep = nextXMLEle(root, 1); ep != nullptr; ep = nextXMLEle(root, 0)) { if (!strcmp(tagXMLEle(ep), "AlignmentPoint")) { mountModel.alignTable->insertRow(currentRow); subEP = findXMLEle(ep, "RA"); if (subEP) { QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(pcdataXMLEle(subEP)); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); } else return false; subEP = findXMLEle(ep, "DE"); if (subEP) { QTableWidgetItem *DEReport = new QTableWidgetItem(); DEReport->setText(pcdataXMLEle(subEP)); DEReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DEReport); } else return false; subEP = findXMLEle(ep, "NAME"); if (subEP) { QTableWidgetItem *ObjReport = new QTableWidgetItem(); ObjReport->setText(pcdataXMLEle(subEP)); ObjReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjReport); } else return false; } currentRow++; } return true; } } return false; } void Align::slotSaveAsAlignmentPoints() { alignURL.clear(); slotSaveAlignmentPoints(); } void Align::slotSaveAlignmentPoints() { QUrl backupCurrent = alignURL; if (alignURL.toLocalFile().startsWith(QLatin1String("/tmp/")) || alignURL.toLocalFile().contains("/Temp")) alignURL.clear(); if (alignURL.isEmpty()) { alignURL = QFileDialog::getSaveFileUrl(&mountModelDialog, i18n("Save Ekos Alignment List"), alignURLPath, "Ekos Alignment List (*.eal)"); // if user presses cancel if (alignURL.isEmpty()) { alignURL = backupCurrent; return; } alignURLPath = QUrl(alignURL.url(QUrl::RemoveFilename)); if (alignURL.toLocalFile().endsWith(QLatin1String(".eal")) == false) alignURL.setPath(alignURL.toLocalFile() + ".eal"); if (QFile::exists(alignURL.toLocalFile())) { int r = KMessageBox::warningContinueCancel(nullptr, i18n("A file named \"%1\" already exists. " "Overwrite it?", alignURL.fileName()), i18n("Overwrite File?"), KStandardGuiItem::overwrite()); if (r == KMessageBox::Cancel) return; } } if (alignURL.isValid()) { if ((saveAlignmentPoints(alignURL.toLocalFile())) == false) { KSNotification::error(i18n("Failed to save alignment list"), i18n("Save")); return; } } else { QString message = i18n("Invalid URL: %1", alignURL.url()); KSNotification::sorry(message, i18n("Invalid URL")); } } bool Align::saveAlignmentPoints(const QString &path) { QFile file; file.setFileName(path); if (!file.open(QIODevice::WriteOnly)) { QString message = i18n("Unable to write to file %1", path); KSNotification::sorry(message, i18n("Could Not Open File")); return false; } QTextStream outstream(&file); outstream << "" << endl; outstream << "" << endl; for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); QTableWidgetItem *objNameCell = mountModel.alignTable->item(i, 2); if (!raCell || !deCell || !objNameCell) return false; QString raString = raCell->text(); QString deString = deCell->text(); QString objString = objNameCell->text(); outstream << "" << endl; outstream << "" << raString << "" << endl; outstream << "" << deString << "" << endl; outstream << "" << objString << "" << endl; outstream << "" << endl; } outstream << "" << endl; appendLogText(i18n("Alignment List saved to %1", path)); file.close(); return true; } void Align::slotSortAlignmentPoints() { int firstAlignmentPt = findClosestAlignmentPointToTelescope(); if (firstAlignmentPt != -1) { swapAlignPoints(firstAlignmentPt, 0); } for (int i = 0; i < mountModel.alignTable->rowCount() - 1; i++) { int nextAlignmentPoint = findNextAlignmentPointAfter(i); if (nextAlignmentPoint != -1) { swapAlignPoints(nextAlignmentPoint, i + 1); } } if (previewShowing) updatePreviewAlignPoints(); } int Align::findClosestAlignmentPointToTelescope() { dms bestDiff = dms(360); double index = -1; for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); if (raCell && deCell) { dms raDMS = dms::fromString(raCell->text(), false); dms deDMS = dms::fromString(deCell->text(), true); dms thisDiff = telescopeCoord.angularDistanceTo(new SkyPoint(raDMS, deDMS)); if (thisDiff.Degrees() < bestDiff.Degrees()) { index = i; bestDiff = thisDiff; } } } return index; } int Align::findNextAlignmentPointAfter(int currentSpot) { QTableWidgetItem *currentRACell = mountModel.alignTable->item(currentSpot, 0); QTableWidgetItem *currentDECell = mountModel.alignTable->item(currentSpot, 1); if (currentRACell && currentDECell) { dms thisRADMS = dms::fromString(currentRACell->text(), false); dms thisDEDMS = dms::fromString(currentDECell->text(), true); SkyPoint thisPt(thisRADMS, thisDEDMS); dms bestDiff = dms(360); double index = -1; for (int i = currentSpot + 1; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); QTableWidgetItem *deCell = mountModel.alignTable->item(i, 1); if (raCell && deCell) { dms raDMS = dms::fromString(raCell->text(), false); dms deDMS = dms::fromString(deCell->text(), true); SkyPoint point(raDMS, deDMS); dms thisDiff = thisPt.angularDistanceTo(&point); if (thisDiff.Degrees() < bestDiff.Degrees()) { index = i; bestDiff = thisDiff; } } } return index; } else return -1; } void Align::exportSolutionPoints() { if (solutionTable->rowCount() == 0) return; QUrl exportFile = QFileDialog::getSaveFileUrl(KStars::Instance(), i18n("Export Solution Points"), alignURLPath, "CSV File (*.csv)"); if (exportFile.isEmpty()) // if user presses cancel return; if (exportFile.toLocalFile().endsWith(QLatin1String(".csv")) == false) exportFile.setPath(exportFile.toLocalFile() + ".csv"); QString path = exportFile.toLocalFile(); if (QFile::exists(path)) { int r = KMessageBox::warningContinueCancel(nullptr, i18n("A file named \"%1\" already exists. " "Overwrite it?", exportFile.fileName()), i18n("Overwrite File?"), KStandardGuiItem::overwrite()); if (r == KMessageBox::Cancel) return; } if (!exportFile.isValid()) { QString message = i18n("Invalid URL: %1", exportFile.url()); KSNotification::sorry(message, i18n("Invalid URL")); return; } QFile file; file.setFileName(path); if (!file.open(QIODevice::WriteOnly)) { QString message = i18n("Unable to write to file %1", path); KSNotification::sorry(message, i18n("Could Not Open File")); return; } QTextStream outstream(&file); QString epoch = QString::number(KStarsDateTime::currentDateTime().epoch()); outstream << "RA (J" << epoch << "),DE (J" << epoch << "),RA (degrees),DE (degrees),Name,RA Error (arcsec),DE Error (arcsec)" << endl; for (int i = 0; i < solutionTable->rowCount(); i++) { QTableWidgetItem *raCell = solutionTable->item(i, 0); QTableWidgetItem *deCell = solutionTable->item(i, 1); QTableWidgetItem *objNameCell = solutionTable->item(i, 2); QTableWidgetItem *raErrorCell = solutionTable->item(i, 4); QTableWidgetItem *deErrorCell = solutionTable->item(i, 5); if (!raCell || !deCell || !objNameCell || !raErrorCell || !deErrorCell) { KSNotification::sorry(i18n("Error in table structure.")); return; } dms raDMS = dms::fromString(raCell->text(), false); dms deDMS = dms::fromString(deCell->text(), true); outstream << raDMS.toHMSString() << ',' << deDMS.toDMSString() << ',' << raDMS.Degrees() << ',' << deDMS.Degrees() << ',' << objNameCell->text() << ',' << raErrorCell->text().remove('\"') << ',' << deErrorCell->text().remove('\"') << endl; } appendLogText(i18n("Solution Points Saved as: %1", path)); file.close(); } void Align::slotClearAllSolutionPoints() { if (solutionTable->rowCount() == 0) return; connect(KSMessageBox::Instance(), &KSMessageBox::accepted, this, [this]() { //QObject::disconnect(KSMessageBox::Instance(), &KSMessageBox::accepted, this, nullptr); KSMessageBox::Instance()->disconnect(this); solutionTable->setRowCount(0); alignPlot->graph(0)->data()->clear(); alignPlot->clearItems(); buildTarget(); slotAutoScaleGraph(); }); KSMessageBox::Instance()->questionYesNo(i18n("Are you sure you want to clear all of the solution points?"), i18n("Clear Solution Points"), 60); } void Align::slotClearAllAlignPoints() { if (mountModel.alignTable->rowCount() == 0) return; if (KMessageBox::questionYesNo(&mountModelDialog, i18n("Are you sure you want to clear all the alignment points?"), i18n("Clear Align Points")) == KMessageBox::Yes) mountModel.alignTable->setRowCount(0); if (previewShowing) updatePreviewAlignPoints(); } void Align::slotRemoveSolutionPoint() { QCPAbstractItem *abstractItem = alignPlot->item(solutionTable->currentRow()); if (abstractItem) { QCPItemText *item = qobject_cast(abstractItem); if (item) { double point = item->position->key(); alignPlot->graph(0)->data()->remove(point); } } alignPlot->removeItem(solutionTable->currentRow()); for (int i = 0; i < alignPlot->itemCount(); i++) { QCPAbstractItem *abstractItem = alignPlot->item(i); if (abstractItem) { QCPItemText *item = qobject_cast(abstractItem); if (item) item->setText(QString::number(i + 1)); } } solutionTable->removeRow(solutionTable->currentRow()); alignPlot->replot(); } void Align::slotRemoveAlignPoint() { mountModel.alignTable->removeRow(mountModel.alignTable->currentRow()); if (previewShowing) updatePreviewAlignPoints(); } void Align::moveAlignPoint(int logicalIndex, int oldVisualIndex, int newVisualIndex) { Q_UNUSED(logicalIndex) for (int i = 0; i < mountModel.alignTable->columnCount(); i++) { QTableWidgetItem *oldItem = mountModel.alignTable->takeItem(oldVisualIndex, i); QTableWidgetItem *newItem = mountModel.alignTable->takeItem(newVisualIndex, i); mountModel.alignTable->setItem(newVisualIndex, i, oldItem); mountModel.alignTable->setItem(oldVisualIndex, i, newItem); } mountModel.alignTable->verticalHeader()->blockSignals(true); mountModel.alignTable->verticalHeader()->moveSection(newVisualIndex, oldVisualIndex); mountModel.alignTable->verticalHeader()->blockSignals(false); if (previewShowing) updatePreviewAlignPoints(); } void Align::swapAlignPoints(int firstPt, int secondPt) { for (int i = 0; i < mountModel.alignTable->columnCount(); i++) { QTableWidgetItem *firstPtItem = mountModel.alignTable->takeItem(firstPt, i); QTableWidgetItem *secondPtItem = mountModel.alignTable->takeItem(secondPt, i); mountModel.alignTable->setItem(firstPt, i, secondPtItem); mountModel.alignTable->setItem(secondPt, i, firstPtItem); } } void Align::slotMountModel() { generateAlignStarList(); SkyPoint spWest; spWest.setAlt(30); spWest.setAz(270); spWest.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); mountModel.alignDec->setValue(static_cast(spWest.dec().Degrees())); mountModelDialog.show(); } void Align::slotAddAlignPoint() { int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); } void Align::slotFindAlignObject() { KStarsData *data = KStarsData::Instance(); if (FindDialog::Instance()->exec() == QDialog::Accepted) { SkyObject *object = FindDialog::Instance()->targetObject(); if (object != nullptr) { SkyObject *o = object->clone(); o->updateCoords(data->updateNum(), true, data->geo()->lat(), data->lst(), false); int currentRow = mountModel.alignTable->rowCount(); mountModel.alignTable->insertRow(currentRow); QString ra_report, dec_report; getFormattedCoords(o->ra0().Hours(), o->dec0().Degrees(), ra_report, dec_report); QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ra_report); RAReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(dec_report); DECReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 1, DECReport); QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(o->longname()); ObjNameReport->setTextAlignment(Qt::AlignHCenter); mountModel.alignTable->setItem(currentRow, 2, ObjNameReport); QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); mountModel.alignTable->setItem(currentRow, 3, disabledBox); } } if (previewShowing) updatePreviewAlignPoints(); } void Align::resetAlignmentProcedure() { mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setFlags(Qt::ItemIsSelectable); statusReport->setIcon(QIcon(":/icons/AlignWarning.svg")); mountModel.alignTable->setItem(currentAlignmentPoint, 3, statusReport); appendLogText(i18n("The Mount Model Tool is Reset.")); mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); mountModelRunning = false; currentAlignmentPoint = 0; abort(); } bool Align::alignmentPointsAreBad() { for (int i = 0; i < mountModel.alignTable->rowCount(); i++) { QTableWidgetItem *raCell = mountModel.alignTable->item(i, 0); if (!raCell) return true; QString raString = raCell->text(); if (dms().setFromString(raString, false) == false) return true; QTableWidgetItem *decCell = mountModel.alignTable->item(i, 1); if (!decCell) return true; QString decString = decCell->text(); if (dms().setFromString(decString, true) == false) return true; } return false; } void Align::startStopAlignmentProcedure() { if (!mountModelRunning) { if (mountModel.alignTable->rowCount() > 0) { if (alignmentPointsAreBad()) { KSNotification::error(i18n("Please Check the Alignment Points.")); return; } if (currentGotoMode == GOTO_NOTHING) { int r = KMessageBox::warningContinueCancel( nullptr, i18n("In the Align Module, \"Nothing\" is Selected for the Solver Action. This means that the " "mount model tool will not sync/align your mount but will only report the pointing model " "errors. Do you wish to continue?"), i18n("Pointing Model Report Only?"), KStandardGuiItem::cont(), KStandardGuiItem::cancel(), "nothing_selected_warning"); if (r == KMessageBox::Cancel) return; } if (currentAlignmentPoint == 0) { for (int row = 0; row < mountModel.alignTable->rowCount(); row++) { QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon()); mountModel.alignTable->setItem(row, 3, statusReport); } } mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-pause")); mountModelRunning = true; appendLogText(i18n("The Mount Model Tool is Starting.")); startAlignmentPoint(); } } else { mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, new QWidget()); appendLogText(i18n("The Mount Model Tool is Paused.")); abort(); mountModelRunning = false; QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setFlags(Qt::ItemIsSelectable); statusReport->setIcon(QIcon(":/icons/AlignWarning.svg")); mountModel.alignTable->setItem(currentAlignmentPoint, 3, statusReport); } } void Align::startAlignmentPoint() { if (mountModelRunning && currentAlignmentPoint >= 0 && currentAlignmentPoint < mountModel.alignTable->rowCount()) { QTableWidgetItem *raCell = mountModel.alignTable->item(currentAlignmentPoint, 0); QString raString = raCell->text(); dms raDMS = dms::fromString(raString, false); double ra = raDMS.Hours(); QTableWidgetItem *decCell = mountModel.alignTable->item(currentAlignmentPoint, 1); QString decString = decCell->text(); dms decDMS = dms::fromString(decString, true); double dec = decDMS.Degrees(); QProgressIndicator *alignIndicator = new QProgressIndicator(this); mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, alignIndicator); alignIndicator->startAnimation(); targetCoord.setRA0(ra); targetCoord.setDec0(dec); targetCoord.updateCoordsNow(KStarsData::Instance()->updateNum()); Slew(); } } void Align::finishAlignmentPoint(bool solverSucceeded) { if (mountModelRunning && currentAlignmentPoint >= 0 && currentAlignmentPoint < mountModel.alignTable->rowCount()) { mountModel.alignTable->setCellWidget(currentAlignmentPoint, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setFlags(Qt::ItemIsSelectable); if (solverSucceeded) statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); else statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); mountModel.alignTable->setItem(currentAlignmentPoint, 3, statusReport); currentAlignmentPoint++; if (currentAlignmentPoint < mountModel.alignTable->rowCount()) { startAlignmentPoint(); } else { mountModelRunning = false; mountModel.startAlignB->setIcon( QIcon::fromTheme("media-playback-start")); appendLogText(i18n("The Mount Model Tool is Finished.")); currentAlignmentPoint = 0; } } } bool Align::isParserOK() { Q_ASSERT_X(parser, __FUNCTION__, "Astrometry parser is not valid."); bool rc = parser->init(); if (rc) { connect(parser, &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(parser, &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } return rc; } void Align::checkAlignmentTimeout() { if (loadSlewState != IPS_IDLE || ++solverIterations == MAXIMUM_SOLVER_ITERATIONS) abort(); else if (loadSlewState == IPS_IDLE) { appendLogText(i18n("Solver timed out.")); parser->stopSolver(); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/timedout.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); captureAndSolve(); } // TODO must also account for loadAndSlew. Retain file name } void Align::setSolverBackend(int type) { if (sender() == nullptr && type >= 0 && type <= 1) { solverBackendGroup->button(type)->setChecked(true); } // Astrometry solver if (type == SOLVER_ASTROMETRYNET) { astrometryTypeCombo->setEnabled(true); setAstrometrySolverType(Options::astrometrySolverType()); } // ASTAP solver else { if (!QFile::exists(Options::aSTAPExecutable())) { KSMessageBox::Instance()->error(i18n("No valid ASTAP installation found. Install ASTAP and select the path to ASTAP executable in options.")); KConfigDialog::showDialog("alignsettings"); return; } if (astapParser.get() != nullptr) parser = astapParser.get(); else { astapParser.reset(new Ekos::ASTAPAstrometryParser()); parser = astapParser.get(); } parser->setAlign(this); if (parser->init()) { connect(parser, &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(parser, &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } else parser->disconnect(); astrometryTypeCombo->setEnabled(false); } Options::setSolverBackend(type); generateArgs(); } void Align::setAstrometrySolverType(int type) { if (sender() == nullptr && type >= 0 && type <= 2) { astrometryTypeCombo->setCurrentIndex(type); } // For Windows, we only have two items in the combo box (Online & Remote) // When Remote is clicked, type = 1 is sent which is SOLVER_OFFLINE // We need to change that to SOLVER_REMOTE. #ifdef Q_OS_WIN if (type == SOLVER_OFFLINE) type = SOLVER_REMOTE; #endif syncSettings(); Options::setAstrometrySolverType(type); switch (type) { case SOLVER_ONLINE: loadSlewB->setEnabled(true); if (onlineParser.get() != nullptr) { parser = onlineParser.get(); return; } onlineParser.reset(new Ekos::OnlineAstrometryParser()); parser = onlineParser.get(); break; case SOLVER_OFFLINE: loadSlewB->setEnabled(true); if (offlineParser.get() != nullptr) { parser = offlineParser.get(); return; } offlineParser.reset(new Ekos::OfflineAstrometryParser()); parser = offlineParser.get(); break; case SOLVER_REMOTE: loadSlewB->setEnabled(true); if (remoteParser.get() != nullptr && remoteParserDevice != nullptr) { parser = remoteParser.get(); (dynamic_cast(parser))->setAstrometryDevice(remoteParserDevice); return; } remoteParser.reset(new Ekos::RemoteAstrometryParser()); parser = remoteParser.get(); (dynamic_cast(parser))->setAstrometryDevice(remoteParserDevice); if (currentCCD) (dynamic_cast(parser))->setCCD(currentCCD->getDeviceName()); break; } parser->setAlign(this); if (parser->init()) { connect(parser, &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(parser, &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } else parser->disconnect(); } bool Align::setCamera(const QString &device) { for (int i = 0; i < CCDCaptureCombo->count(); i++) if (device == CCDCaptureCombo->itemText(i)) { CCDCaptureCombo->setCurrentIndex(i); checkCCD(i); return true; } return false; } QString Align::camera() { if (currentCCD) return currentCCD->getDeviceName(); return QString(); } void Align::setDefaultCCD(QString ccd) { syncSettings(); Options::setDefaultAlignCCD(ccd); } void Align::checkCCD(int ccdNum) { if (ccdNum == -1 || ccdNum >= CCDs.count()) { ccdNum = CCDCaptureCombo->currentIndex(); if (ccdNum == -1) return; } currentCCD = CCDs.at(ccdNum); ISD::CCDChip *targetChip = currentCCD->getChip(ISD::CCDChip::PRIMARY_CCD); if (targetChip && targetChip->isCapturing()) return; if (solverBackendGroup->checkedId() == SOLVER_REMOTE && remoteParser.get() != nullptr) (dynamic_cast(remoteParser.get()))->setCCD(currentCCD->getDeviceName()); syncCCDInfo(); syncTelescopeInfo(); } void Align::addCCD(ISD::GDInterface *newCCD) { if (CCDs.contains(static_cast(newCCD))) { syncCCDInfo(); return; } CCDs.append(static_cast(newCCD)); CCDCaptureCombo->addItem(newCCD->getDeviceName()); checkCCD(); syncSettings(); } void Align::setTelescope(ISD::GDInterface *newTelescope) { currentTelescope = static_cast(newTelescope); currentTelescope->disconnect(this); connect(currentTelescope, &ISD::GDInterface::numberUpdated, this, &Ekos::Align::processNumber, Qt::UniqueConnection); connect(currentTelescope, &ISD::GDInterface::switchUpdated, this, &Ekos::Align::processSwitch, Qt::UniqueConnection); connect(currentTelescope, &ISD::GDInterface::Disconnected, this, [this]() { m_isRateSynced = false; }); if (m_isRateSynced == false) { PAHSlewRateCombo->blockSignals(true); PAHSlewRateCombo->clear(); PAHSlewRateCombo->addItems(currentTelescope->slewRates()); if (Options::pAHMountSpeedIndex() >= 0) PAHSlewRateCombo->setCurrentIndex(Options::pAHMountSpeedIndex()); else PAHSlewRateCombo->setCurrentIndex(currentTelescope->getSlewRate()); PAHSlewRateCombo->blockSignals(false); m_isRateSynced = !currentTelescope->slewRates().empty(); } syncTelescopeInfo(); } void Align::setDome(ISD::GDInterface *newDome) { currentDome = static_cast(newDome); connect(currentDome, &ISD::GDInterface::switchUpdated, this, &Ekos::Align::processSwitch, Qt::UniqueConnection); } void Align::removeDevice(ISD::GDInterface *device) { device->disconnect(this); if (currentTelescope && !strcmp(currentTelescope->getDeviceName(), device->getDeviceName())) { currentTelescope = nullptr; m_isRateSynced = false; } else if (currentDome && !strcmp(currentDome->getDeviceName(), device->getDeviceName())) { currentDome = nullptr; } else if (currentRotator && !strcmp(currentRotator->getDeviceName(), device->getDeviceName())) { currentRotator = nullptr; } if (CCDs.contains(static_cast(device))) { CCDs.removeAll(static_cast(device)); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(device->getDeviceName())); CCDCaptureCombo->removeItem(CCDCaptureCombo->findText(device->getDeviceName() + QString(" Guider"))); if (CCDs.empty()) currentCCD = nullptr; checkCCD(); } if (Filters.contains(static_cast(device))) { Filters.removeAll(static_cast(device)); filterManager->removeDevice(device); FilterDevicesCombo->removeItem(FilterDevicesCombo->findText(device->getDeviceName())); if (Filters.empty()) currentFilter = nullptr; checkFilter(); } } bool Align::syncTelescopeInfo() { if (currentTelescope == nullptr || currentTelescope->isConnected() == false) return false; canSync = currentTelescope->canSync(); if (canSync == false && syncR->isEnabled()) { slewR->setChecked(true); appendLogText(i18n("Mount does not support syncing.")); } syncR->setEnabled(canSync); INumberVectorProperty *nvp = currentTelescope->getBaseDevice()->getNumber("TELESCOPE_INFO"); if (nvp) { INumber *np = IUFindNumber(nvp, "TELESCOPE_APERTURE"); if (np && np->value > 0) primaryAperture = np->value; np = IUFindNumber(nvp, "GUIDER_APERTURE"); if (np && np->value > 0) guideAperture = np->value; aperture = primaryAperture; //if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) if (FOVScopeCombo->currentIndex() == ISD::CCD::TELESCOPE_GUIDE) aperture = guideAperture; np = IUFindNumber(nvp, "TELESCOPE_FOCAL_LENGTH"); if (np && np->value > 0) primaryFL = np->value; np = IUFindNumber(nvp, "GUIDER_FOCAL_LENGTH"); if (np && np->value > 0) guideFL = np->value; focal_length = primaryFL; //if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) if (FOVScopeCombo->currentIndex() == ISD::CCD::TELESCOPE_GUIDE) focal_length = guideFL; } if (focal_length == -1 || aperture == -1) return false; if (ccd_hor_pixel != -1 && ccd_ver_pixel != -1 && focal_length != -1 && aperture != -1) { FOVScopeCombo->setItemData( ISD::CCD::TELESCOPE_PRIMARY, i18nc("F-Number, Focal Length, Aperture", "F%1 Focal Length: %2 mm Aperture: %3 mm2", QString::number(primaryFL / primaryAperture, 'f', 1), QString::number(primaryFL, 'f', 2), QString::number(primaryAperture, 'f', 2)), Qt::ToolTipRole); FOVScopeCombo->setItemData( ISD::CCD::TELESCOPE_GUIDE, i18nc("F-Number, Focal Length, Aperture", "F%1 Focal Length: %2 mm Aperture: %3 mm2", QString::number(guideFL / guideAperture, 'f', 1), QString::number(guideFL, 'f', 2), QString::number(guideAperture, 'f', 2)), Qt::ToolTipRole); calculateFOV(); generateArgs(); return true; } return false; } void Align::setTelescopeInfo(double primaryFocalLength, double primaryAperture, double guideFocalLength, double guideAperture) { if (primaryFocalLength > 0) primaryFL = primaryFocalLength; if (guideFocalLength > 0) guideFL = guideFocalLength; if (primaryAperture > 0) this->primaryAperture = primaryAperture; if (guideAperture > 0) this->guideAperture = guideAperture; focal_length = primaryFL; if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) focal_length = guideFL; aperture = primaryAperture; if (currentCCD && currentCCD->getTelescopeType() == ISD::CCD::TELESCOPE_GUIDE) aperture = guideAperture; syncTelescopeInfo(); } void Align::syncCCDInfo() { INumberVectorProperty *nvp = nullptr; if (currentCCD == nullptr) return; if (useGuideHead) nvp = currentCCD->getBaseDevice()->getNumber("GUIDER_INFO"); else nvp = currentCCD->getBaseDevice()->getNumber("CCD_INFO"); if (nvp) { INumber *np = IUFindNumber(nvp, "CCD_PIXEL_SIZE_X"); if (np && np->value > 0) ccd_hor_pixel = ccd_ver_pixel = np->value; np = IUFindNumber(nvp, "CCD_PIXEL_SIZE_Y"); if (np && np->value > 0) ccd_ver_pixel = np->value; np = IUFindNumber(nvp, "CCD_PIXEL_SIZE_Y"); if (np && np->value > 0) ccd_ver_pixel = np->value; } ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); ISwitchVectorProperty *svp = currentCCD->getBaseDevice()->getSwitch("WCS_CONTROL"); if (svp) setWCSEnabled(Options::astrometrySolverWCS()); targetChip->setImageView(alignView, FITS_ALIGN); targetChip->getFrameMinMax(nullptr, nullptr, nullptr, nullptr, nullptr, &ccd_width, nullptr, &ccd_height); binningCombo->setEnabled(targetChip->canBin()); if (targetChip->canBin()) { binningCombo->blockSignals(true); int binx = 1, biny = 1; targetChip->getMaxBin(&binx, &biny); binningCombo->clear(); for (int i = 0; i < binx; i++) binningCombo->addItem(QString("%1x%2").arg(i + 1).arg(i + 1)); // By default, set to maximum binning since the solver behaves better this way // solverBinningIndex is set by default to 4, but as soon as the user changes the binning, it changes // to whatever value the user selected. if (Options::solverBinningIndex() == 4 && binningCombo->count() <= 4) { binningCombo->setCurrentIndex(binningCombo->count() - 1); Options::setSolverBinningIndex(binningCombo->count() - 1); } else binningCombo->setCurrentIndex(Options::solverBinningIndex()); binningCombo->blockSignals(false); } if (ccd_hor_pixel == -1 || ccd_ver_pixel == -1) return; if (ccd_hor_pixel != -1 && ccd_ver_pixel != -1 && focal_length != -1 && aperture != -1) { calculateFOV(); generateArgs(); } } void Align::getFOVScale(double &fov_w, double &fov_h, double &fov_scale) { fov_w = fov_x; fov_h = fov_y; fov_scale = fov_pixscale; } QList Align::fov() { QList result; result << fov_x << fov_y << fov_pixscale; return result; } QList Align::cameraInfo() { QList result; result << ccd_width << ccd_height << ccd_hor_pixel << ccd_ver_pixel; return result; } QList Align::telescopeInfo() { QList result; result << focal_length << aperture; return result; } void Align::getCalculatedFOVScale(double &fov_w, double &fov_h, double &fov_scale) { // FOV in arcsecs fov_w = 206264.8062470963552 * ccd_width * ccd_hor_pixel / 1000.0 / focal_length; fov_h = 206264.8062470963552 * ccd_height * ccd_ver_pixel / 1000.0 / focal_length; // Pix Scale fov_scale = (fov_w * (Options::solverBinningIndex() + 1)) / ccd_width; // FOV in arcmins fov_w /= 60.0; fov_h /= 60.0; } void Align::calculateFOV() { // Calculate FOV // FOV in arcsecs fov_x = 206264.8062470963552 * ccd_width * ccd_hor_pixel / 1000.0 / focal_length; fov_y = 206264.8062470963552 * ccd_height * ccd_ver_pixel / 1000.0 / focal_length; // Pix Scale fov_pixscale = (fov_x * (Options::solverBinningIndex() + 1)) / ccd_width; // FOV in arcmins fov_x /= 60.0; fov_y /= 60.0; // Put FOV upper limit as 180 degrees if (fov_x < 1 || fov_x > 60 * 180 || fov_y < 1 || fov_y > 60 * 180) { appendLogText(i18n("Warning! The calculated field of view is out of bounds. Ensure the telescope focal length and camera pixel size are correct.")); return; } double calculated_fov_x = fov_x; double calculated_fov_y = fov_y; - QString calculatedFOV = (QString("%1' x %2'").arg(fov_x, 0, 'g', 3).arg(fov_y, 0, 'g', 3)); + QString calculatedFOV = (QString("%1' x %2'").arg(fov_x, 0, 'f', 1).arg(fov_y, 0, 'f', 1)); // JM 2018-04-20 Above calculations are for RAW FOV. Starting from 2.9.5, we are using EFFECTIVE FOV // Which is the real FOV as measured from the plate solution. The effective FOVs are stored in the database and are unique // per profile/pixel_size/focal_length combinations. It defaults to 0' x 0' and gets updated after the first successful solver is complete. getEffectiveFOV(); if (fov_x == 0) { //FOVOut->setReadOnly(false); FOVOut->setToolTip(i18n("

Effective field of view size in arcminutes.

Please capture and solve once to measure the effective FOV or enter the values manually.

Calculated FOV: %1

", calculatedFOV)); fov_x = calculated_fov_x; fov_y = calculated_fov_y; m_EffectiveFOVPending = true; } else { m_EffectiveFOVPending = false; FOVOut->setToolTip(i18n("

Effective field of view size in arcminutes.

")); } solverFOV->setSize(fov_x, fov_y); sensorFOV->setSize(fov_x, fov_y); if (currentCCD) sensorFOV->setName(currentCCD->getDeviceName()); - FOVOut->setText(QString("%1' x %2'").arg(fov_x, 0, 'g', 3).arg(fov_y, 0, 'g', 3)); + FOVOut->setText(QString("%1' x %2'").arg(fov_x, 0, 'f', 1).arg(fov_y, 0, 'f', 1)); if (((fov_x + fov_y) / 2.0) > PAH_CUTOFF_FOV) { if (isPAHReady == false) { PAHWidgets->setEnabled(true); isPAHReady = true; emit PAHEnabled(true); PAHWidgets->setToolTip(QString()); FOVDisabledLabel->hide(); } } else if (PAHWidgets->isEnabled()) { PAHWidgets->setEnabled(false); isPAHReady = false; emit PAHEnabled(false); PAHWidgets->setToolTip(i18n( "

Polar Alignment Helper tool requires the following:

1. German Equatorial Mount

2. FOV >" " 0.5 degrees

For small FOVs, use the Legacy Polar Alignment Tool.

")); FOVDisabledLabel->show(); } if (opsAstrometry->kcfg_AstrometryUseImageScale->isChecked()) { int unitType = opsAstrometry->kcfg_AstrometryImageScaleUnits->currentIndex(); // Degrees if (unitType == 0) { double fov_low = qMin(fov_x / 60, fov_y / 60); double fov_high = qMax(fov_x / 60, fov_y / 60); opsAstrometry->kcfg_AstrometryImageScaleLow->setValue(fov_low); opsAstrometry->kcfg_AstrometryImageScaleHigh->setValue(fov_high); Options::setAstrometryImageScaleLow(fov_low); Options::setAstrometryImageScaleHigh(fov_high); } // Arcmins else if (unitType == 1) { double fov_low = qMin(fov_x, fov_y); double fov_high = qMax(fov_x, fov_y); opsAstrometry->kcfg_AstrometryImageScaleLow->setValue(fov_low); opsAstrometry->kcfg_AstrometryImageScaleHigh->setValue(fov_high); Options::setAstrometryImageScaleLow(fov_low); Options::setAstrometryImageScaleHigh(fov_high); } // Arcsec per pixel else { opsAstrometry->kcfg_AstrometryImageScaleLow->setValue(fov_pixscale * 0.9); opsAstrometry->kcfg_AstrometryImageScaleHigh->setValue(fov_pixscale * 1.1); // 10% boundary Options::setAstrometryImageScaleLow(fov_pixscale * 0.9); Options::setAstrometryImageScaleHigh(fov_pixscale * 1.1); } } } QStringList Align::generateOptions(const QVariantMap &optionsMap, uint8_t solverType) { QStringList solver_args; // -O overwrite // -3 Expected RA // -4 Expected DEC // -5 Radius (deg) // -L lower scale of image in arcminutes // -H upper scale of image in arcminutes // -u aw set scale to be in arcminutes // -W solution.wcs name of solution file // apog1.jpg name of target file to analyze //solve-field -O -3 06:40:51 -4 +09:49:53 -5 1 -L 40 -H 100 -u aw -W solution.wcs apod1.jpg if (solverType == SOLVER_ASTROMETRYNET) { // Start with always-used arguments solver_args << "-O" << "--no-plots"; // Now go over boolean options // noverify if (optionsMap.contains("noverify")) solver_args << "--no-verify"; // noresort if (optionsMap.contains("resort")) solver_args << "--resort"; // fits2fits if (optionsMap.contains("nofits2fits")) solver_args << "--no-fits2fits"; // downsample if (optionsMap.contains("downsample")) solver_args << "--downsample" << QString::number(optionsMap.value("downsample", 2).toInt()); // image scale low if (optionsMap.contains("scaleL")) solver_args << "-L" << QString::number(optionsMap.value("scaleL").toDouble()); // image scale high if (optionsMap.contains("scaleH")) solver_args << "-H" << QString::number(optionsMap.value("scaleH").toDouble()); // image scale units if (optionsMap.contains("scaleUnits")) solver_args << "-u" << optionsMap.value("scaleUnits").toString(); // RA if (optionsMap.contains("ra")) solver_args << "-3" << QString::number(optionsMap.value("ra").toDouble()); // DE if (optionsMap.contains("de")) solver_args << "-4" << QString::number(optionsMap.value("de").toDouble()); // Radius if (optionsMap.contains("radius")) solver_args << "-5" << QString::number(optionsMap.value("radius").toDouble()); // Custom if (optionsMap.contains("custom")) solver_args << optionsMap.value("custom").toString(); } else { // Radius if (optionsMap.contains("radius")) solver_args << "-r" << QString::number(optionsMap.value("radius").toDouble()); // downsample if (optionsMap.contains("downsample")) solver_args << "-z" << QString::number(optionsMap.value("downsample", 0).toInt()); // Speed if (optionsMap.contains("speed")) solver_args << "-speed" << optionsMap.value("speed").toString(); if (optionsMap.contains("update")) solver_args << "-update"; } return solver_args; } //This will generate the high and low scale of the imager field size based on the stated units. void Align::generateFOVBounds(double fov_h, QString &fov_low, QString &fov_high, double tolerance) { // This sets the percentage we search outside the lower and upper boundary limits // by default, we stretch the limits by 5% (tolerance = 0.05) double lower_boundary = 1.0 - tolerance; double upper_boundary = 1.0 + tolerance; // let's stretch the boundaries by 5% // fov_lower = ((fov_h < fov_v) ? (fov_h * lower_boundary) : (fov_v * lower_boundary)); // fov_upper = ((fov_h > fov_v) ? (fov_h * upper_boundary) : (fov_v * upper_boundary)); // JM 2019-10-20: The bounds consider image width only, not height. double fov_lower = fov_h * lower_boundary; double fov_upper = fov_h * upper_boundary; //No need to do anything if they are aw, since that is the default fov_low = QString::number(fov_lower); fov_high = QString::number(fov_upper); } void Align::generateArgs() { QVariantMap optionsMap; if (solverBackendGroup->checkedId() == SOLVER_ASTROMETRYNET) { // -O overwrite // -3 Expected RA // -4 Expected DEC // -5 Radius (deg) // -L lower scale of image in arcminutes // -H upper scale of image in arcminutes // -u aw set scale to be in arcminutes // -W solution.wcs name of solution file // apog1.jpg name of target file to analyze //solve-field -O -3 06:40:51 -4 +09:49:53 -5 1 -L 40 -H 100 -u aw -W solution.wcs apod1.jpg if (Options::astrometryUseNoVerify()) optionsMap["noverify"] = true; if (Options::astrometryUseResort()) optionsMap["resort"] = true; if (Options::astrometryUseNoFITS2FITS()) optionsMap["nofits2fits"] = true; if (Options::astrometryUseDownsample()) { if (Options::astrometryAutoDownsample() && ccd_width && ccd_height) { uint8_t bin = qMax(Options::solverBinningIndex() + 1, 1u); uint16_t w = ccd_width / bin; optionsMap["downsample"] = getSolverDownsample(w); } else optionsMap["downsample"] = Options::astrometryDownsample(); } if (Options::astrometryUseImageScale() && fov_x > 0 && fov_y > 0) { QString units = ImageScales[Options::astrometryImageScaleUnits()]; if (Options::astrometryAutoUpdateImageScale()) { QString fov_low, fov_high; double fov_w = fov_x; double fov_h = fov_y; if (units == "dw") { fov_w /= 60; fov_h /= 60; } else if (units == "app") { fov_w = fov_pixscale; fov_h = fov_pixscale; } // If effective FOV is pending, let's set a wider tolerance range generateFOVBounds(fov_w, fov_low, fov_high, m_EffectiveFOVPending ? 0.3 : 0.05); optionsMap["scaleL"] = fov_low; optionsMap["scaleH"] = fov_high; optionsMap["scaleUnits"] = units; } else { optionsMap["scaleL"] = Options::astrometryImageScaleLow(); optionsMap["scaleH"] = Options::astrometryImageScaleHigh(); optionsMap["scaleUnits"] = units; } } if (Options::astrometryUsePosition() && currentTelescope != nullptr) { double ra = 0, dec = 0; currentTelescope->getEqCoords(&ra, &dec); optionsMap["ra"] = ra * 15.0; optionsMap["de"] = dec; optionsMap["radius"] = Options::astrometryRadius(); } if (Options::astrometryCustomOptions().isEmpty() == false) optionsMap["custom"] = Options::astrometryCustomOptions(); } // ASTAP else { if (Options::aSTAPSearchRadius()) optionsMap["radius"] = Options::aSTAPSearchRadiusValue(); if (Options::aSTAPDownSample() && Options::aSTAPDownSampleValue() > 0) optionsMap["downsample"] = Options::aSTAPDownSampleValue(); optionsMap["speed"] = Options::aSTAPLargeSearchWindow() ? "slow" : "auto"; if (Options::aSTAPUpdateFITS()) optionsMap["update"] = true; } QStringList solverArgs = generateOptions(optionsMap, solverBackendGroup->checkedId()); QString options = solverArgs.join(" "); solverOptions->setText(options); solverOptions->setToolTip(options); } bool Align::captureAndSolve() { m_AlignTimer.stop(); m_CaptureTimer.stop(); #ifdef Q_OS_OSX if(solverBackendGroup->checkedId() == SOLVER_OFFLINE) { if(Options::useDefaultPython()) { if( !opsAlign->astropyInstalled() || !opsAlign->pythonInstalled() ) { KSNotification::error(i18n("Astrometry.net uses python3 and the astropy package for plate solving images offline. These were not detected on your system. Please go into the Align Options and either click the setup button to install them or uncheck the default button and enter the path to python3 on your system and manually install astropy.")); return false; } } } #endif if (currentCCD == nullptr) return false; if (currentCCD->isConnected() == false) { appendLogText(i18n("Error: lost connection to CCD.")); KSNotification::event(QLatin1String("AlignFailed"), i18n("Astrometry alignment failed"), KSNotification::EVENT_ALERT); return false; } if (currentCCD->isBLOBEnabled() == false) { currentCCD->setBLOBEnabled(true); } // If CCD Telescope Type does not match desired scope type, change it // but remember current value so that it can be reset once capture is complete or is aborted. if (currentCCD->getTelescopeType() != FOVScopeCombo->currentIndex()) { rememberTelescopeType = currentCCD->getTelescopeType(); currentCCD->setTelescopeType(static_cast(FOVScopeCombo->currentIndex())); } if (parser->init() == false) return false; if (focal_length == -1 || aperture == -1) { KSNotification::error(i18n("Telescope aperture and focal length are missing. Please check your driver settings and try again.")); return false; } if (ccd_hor_pixel == -1 || ccd_ver_pixel == -1) { KSNotification::error(i18n("CCD pixel size is missing. Please check your driver settings and try again.")); return false; } if (currentFilter != nullptr) { if (currentFilter->isConnected() == false) { appendLogText(i18n("Error: lost connection to filter wheel.")); return false; } int targetPosition = FilterPosCombo->currentIndex() + 1; if (targetPosition > 0 && targetPosition != currentFilterPosition) { filterPositionPending = true; // Disabling the autofocus policy for align. filterManager->setFilterPosition( targetPosition, FilterManager::NO_AUTOFOCUS_POLICY); state = ALIGN_PROGRESS; return true; } } if (currentCCD->getDriverInfo()->getClientManager()->getBLOBMode(currentCCD->getDeviceName(), "CCD1") == B_NEVER) { if (KMessageBox::questionYesNo( nullptr, i18n("Image transfer is disabled for this camera. Would you like to enable it?")) == KMessageBox::Yes) { currentCCD->getDriverInfo()->getClientManager()->setBLOBMode(B_ONLY, currentCCD->getDeviceName(), "CCD1"); currentCCD->getDriverInfo()->getClientManager()->setBLOBMode(B_ONLY, currentCCD->getDeviceName(), "CCD2"); } else { return false; } } double seqExpose = exposureIN->value(); ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (focusState >= FOCUS_PROGRESS) { appendLogText(i18n("Cannot capture while focus module is busy. Retrying in %1 seconds...", CAPTURE_RETRY_DELAY / 1000)); m_CaptureTimer.start(CAPTURE_RETRY_DELAY); return false; } if (targetChip->isCapturing()) { appendLogText(i18n("Cannot capture while CCD exposure is in progress. Retrying in %1 seconds...", CAPTURE_RETRY_DELAY / 1000)); m_CaptureTimer.start(CAPTURE_RETRY_DELAY); return false; } alignView->setBaseSize(alignWidget->size()); connect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Align::newFITS); connect(currentCCD, &ISD::CCD::newExposureValue, this, &Ekos::Align::checkCCDExposureProgress); // In case of remote solver, check if we need to update active CCD if (solverBackendGroup->checkedId() == SOLVER_REMOTE && remoteParser.get() != nullptr) { // Update ACTIVE_CCD of the remote astrometry driver so it listens to BLOB emitted by the CCD ITextVectorProperty *activeDevices = remoteParserDevice->getBaseDevice()->getText("ACTIVE_DEVICES"); if (activeDevices) { IText *activeCCD = IUFindText(activeDevices, "ACTIVE_CCD"); if (QString(activeCCD->text) != CCDCaptureCombo->currentText()) { IUSaveText(activeCCD, CCDCaptureCombo->currentText().toLatin1().data()); remoteParserDevice->getDriverInfo()->getClientManager()->sendNewText(activeDevices); } } // Enable remote parse dynamic_cast(remoteParser.get())->setEnabled(true); QString options = solverOptions->text().simplified(); QStringList solverArgs = options.split(' '); dynamic_cast(remoteParser.get())->sendArgs(solverArgs); // If mount model was reset, we do not update targetCoord // since the RA/DE is now different immediately after the reset // so we still try to lock for the coordinates before the reset. if (solverIterations == 0 && mountModelReset == false) { double ra, dec; currentTelescope->getEqCoords(&ra, &dec); targetCoord.setRA(ra); targetCoord.setDec(dec); } mountModelReset = false; solverTimer.start(); } if (currentCCD->getUploadMode() == ISD::CCD::UPLOAD_LOCAL) { rememberUploadMode = ISD::CCD::UPLOAD_LOCAL; currentCCD->setUploadMode(ISD::CCD::UPLOAD_CLIENT); } rememberCCDExposureLooping = currentCCD->isLooping(); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(false); // Remove temporary FITS files left before by the solver QDir dir(QDir::tempPath()); dir.setNameFilters(QStringList() << "fits*" << "tmp.*"); dir.setFilter(QDir::Files); for (auto &dirFile : dir.entryList()) dir.remove(dirFile); currentCCD->setTransformFormat(ISD::CCD::FORMAT_FITS); targetChip->resetFrame(); targetChip->setBatchMode(false); targetChip->setCaptureMode(FITS_ALIGN); targetChip->setFrameType(FRAME_LIGHT); int bin = Options::solverBinningIndex() + 1; targetChip->setBinning(bin, bin); // In case we're in refresh phase of the polar alignment helper then we use capture value from there if (pahStage == PAH_REFRESH) targetChip->capture(PAHExposure->value()); else targetChip->capture(seqExpose); Options::setAlignExposure(seqExpose); solveB->setEnabled(false); stopB->setEnabled(true); pi->startAnimation(); differentialSlewingActivated = false; state = ALIGN_PROGRESS; emit newStatus(state); solverFOV->setProperty("visible", true); // If we're just refreshing, then we're done if (pahStage == PAH_REFRESH) return true; appendLogText(i18n("Capturing image...")); //This block of code will create the row in the solution table and populate RA, DE, and object name. //It also starts the progress indicator. double ra, dec; currentTelescope->getEqCoords(&ra, &dec); if (loadSlewState == IPS_IDLE) { int currentRow = solutionTable->rowCount(); solutionTable->insertRow(currentRow); for (int i = 4; i < 6; i++) { QTableWidgetItem *disabledBox = new QTableWidgetItem(); disabledBox->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, i, disabledBox); } QTableWidgetItem *RAReport = new QTableWidgetItem(); RAReport->setText(ScopeRAOut->text()); RAReport->setTextAlignment(Qt::AlignHCenter); RAReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 0, RAReport); QTableWidgetItem *DECReport = new QTableWidgetItem(); DECReport->setText(ScopeDecOut->text()); DECReport->setTextAlignment(Qt::AlignHCenter); DECReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 1, DECReport); double maxrad = 1.0; SkyObject *so = KStarsData::Instance()->skyComposite()->objectNearest(new SkyPoint(dms(ra * 15), dms(dec)), maxrad); QString name; if (so) { name = so->longname(); } else { name = "None"; } QTableWidgetItem *ObjNameReport = new QTableWidgetItem(); ObjNameReport->setText(name); ObjNameReport->setTextAlignment(Qt::AlignHCenter); ObjNameReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 2, ObjNameReport); #ifdef Q_OS_OSX repaint(); //This is a band-aid for a bug in QT 5.10.0 #endif QProgressIndicator *alignIndicator = new QProgressIndicator(this); solutionTable->setCellWidget(currentRow, 3, alignIndicator); alignIndicator->startAnimation(); #ifdef Q_OS_OSX repaint(); //This is a band-aid for a bug in QT 5.10.0 #endif } return true; } void Align::newFITS(IBLOB *bp) { // Ignore guide head if there is any. if (!strcmp(bp->name, "CCD2")) return; disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Align::newFITS); disconnect(currentCCD, &ISD::CCD::newExposureValue, this, &Ekos::Align::checkCCDExposureProgress); blobType = *(static_cast(bp->aux1)); blobFileName = QString(static_cast(bp->aux2)); // If it's Refresh, we're done if (pahStage == PAH_REFRESH) { setCaptureComplete(); return; } appendLogText(i18n("Image received.")); if (solverBackendGroup->checkedId() != SOLVER_REMOTE) { if (blobType == ISD::CCD::BLOB_FITS) { ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (alignDarkFrameCheck->isChecked()) { int x, y, w, h, binx = 1, biny = 1; targetChip->getFrame(&x, &y, &w, &h); targetChip->getBinning(&binx, &biny); uint16_t offsetX = x / binx; uint16_t offsetY = y / biny; FITSData *darkData = DarkLibrary::Instance()->getDarkFrame(targetChip, exposureIN->value()); connect(DarkLibrary::Instance(), &DarkLibrary::darkFrameCompleted, this, [&](bool completed) { DarkLibrary::Instance()->disconnect(this); alignDarkFrameCheck->setChecked(completed); if (completed) setCaptureComplete(); else abort(); }); connect(DarkLibrary::Instance(), &DarkLibrary::newLog, this, &Ekos::Align::appendLogText); if (darkData) DarkLibrary::Instance()->subtract(darkData, alignView, FITS_NONE, offsetX, offsetY); else { DarkLibrary::Instance()->captureAndSubtract(targetChip, alignView, exposureIN->value(), offsetX, offsetY); } return; } } setCaptureComplete(); } } void Align::setCaptureComplete() { DarkLibrary::Instance()->disconnect(this); if (pahStage == PAH_REFRESH) { newFrame(alignView); captureAndSolve(); return; } emit newImage(alignView); if (solverBackendGroup->checkedId() == SOLVER_ASTROMETRYNET && astrometryTypeCombo->currentIndex() == SOLVER_ONLINE && Options::astrometryUseJPEG()) { ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); if (targetChip) { QString jpegFile = blobFileName + ".jpg"; bool rc = alignView->getDisplayImage().save(jpegFile, "JPG"); if (rc) blobFileName = jpegFile; } } solverFOV->setImage(alignView->getDisplayImage()); startSolving(blobFileName); } void Align::setSolverAction(int mode) { gotoModeButtonGroup->button(mode)->setChecked(true); currentGotoMode = static_cast(mode); } void Align::startSolving(const QString &filename, bool isGenerated) { QStringList solverArgs; QString options = solverOptions->text().simplified(); if (isGenerated) { solverArgs = options.split(' '); // Replace RA and DE with LST & 90/-90 pole if (pahStage == PAH_FIRST_CAPTURE) { for (int i = 0; i < solverArgs.count(); i++) { // RA if (solverArgs[i] == "-3") solverArgs[i + 1] = QString::number(KStarsData::Instance()->lst()->Degrees()); // DE. +90 for Northern hemisphere. -90 for southern hemisphere else if (solverArgs[i] == "-4") solverArgs[i + 1] = QString::number(hemisphere == NORTH_HEMISPHERE ? 90 : -90); } } } else if (filename.endsWith(QLatin1String("fits")) || filename.endsWith(QLatin1String("fit"))) { solverArgs = getSolverOptionsFromFITS(filename); appendLogText(i18n("Using solver options: %1", solverArgs.join(' '))); } else { KGuiItem blindItem(i18n("Blind solver"), QString(), i18n("Blind solver takes a very long time to solve but can reliably solve any image any " "where in the sky given enough time.")); KGuiItem existingItem(i18n("Use existing settings"), QString(), i18n("Mount must be pointing close to the target location and current field of view must " "match the image's field of view.")); int rc = KMessageBox::questionYesNoCancel(nullptr, i18n("No metadata is available in this image. Do you want to use the " "blind solver or the existing solver settings?"), i18n("Astrometry solver"), blindItem, existingItem, KStandardGuiItem::cancel(), "blind_solver_or_existing_solver_option"); if (rc == KMessageBox::Yes) { QVariantMap optionsMap; if (Options::astrometryUseNoVerify()) optionsMap["noverify"] = true; if (Options::astrometryUseResort()) optionsMap["resort"] = true; if (Options::astrometryUseNoFITS2FITS()) optionsMap["nofits2fits"] = true; if (Options::astrometryUseDownsample()) optionsMap["downsample"] = Options::astrometryDownsample(); solverArgs = generateOptions(optionsMap, solverBackendGroup->checkedId()); } else if (rc == KMessageBox::No) solverArgs = options.split(' '); else { abort(); return; } } if (solverIterations == 0 && mountModelReset == false) { double ra, dec; currentTelescope->getEqCoords(&ra, &dec); targetCoord.setRA(ra); targetCoord.setDec(dec); } mountModelReset = false; Options::setSolverAccuracyThreshold(accuracySpin->value()); Options::setAlignDarkFrame(alignDarkFrameCheck->isChecked()); Options::setSolverGotoOption(currentGotoMode); if (fov_x > 0) parser->verifyIndexFiles(fov_x, fov_y); solverTimer.start(); m_AlignTimer.start(); if (currentGotoMode == GOTO_SLEW) appendLogText(i18n("Solver iteration #%1", solverIterations + 1)); state = ALIGN_PROGRESS; emit newStatus(state); parser->startSovler(filename, solverArgs, isGenerated); } void Align::solverFinished(double orientation, double ra, double dec, double pixscale) { pi->stopAnimation(); stopB->setEnabled(false); solveB->setEnabled(true); sOrientation = orientation; sRA = ra; sDEC = dec; // Reset Telescope Type to remembered value if (rememberTelescopeType != ISD::CCD::TELESCOPE_UNKNOWN) { currentCCD->setTelescopeType(rememberTelescopeType); rememberTelescopeType = ISD::CCD::TELESCOPE_UNKNOWN; } m_AlignTimer.stop(); if (solverBackendGroup->checkedId() == SOLVER_ASTROMETRYNET && astrometryTypeCombo->currentIndex() == SOLVER_REMOTE && remoteParser.get() != nullptr) { // Disable remote parse dynamic_cast(remoteParser.get())->setEnabled(false); } int binx, biny; ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); targetChip->getBinning(&binx, &biny); if (Options::alignmentLogging()) - appendLogText(i18n("Solver RA (%1) DEC (%2) Orientation (%3) Pixel Scale (%4)", QString::number(ra, 'g', 5), - QString::number(dec, 'g', 5), QString::number(orientation, 'g', 5), - QString::number(pixscale, 'g', 5))); + appendLogText(i18n("Solver RA (%1) DEC (%2) Orientation (%3) Pixel Scale (%4)", QString::number(ra, 'f', 5), + QString::number(dec, 'f', 5), QString::number(orientation, 'f', 5), + QString::number(pixscale, 'f', 5))); if ( (fov_x == 0 || m_EffectiveFOVPending) && pixscale > 0) { double newFOVW = ccd_width * pixscale / binx / 60.0; double newFOVH = ccd_height * pixscale / biny / 60.0; saveNewEffectiveFOV(newFOVW, newFOVH); m_EffectiveFOVPending = false; } alignCoord.setRA0(ra / 15.0); alignCoord.setDec0(dec); - RotOut->setText(QString::number(orientation, 'g', 5)); + RotOut->setText(QString::number(orientation, 'f', 5)); // Convert to JNow alignCoord.apparentCoord(static_cast(J2000), KStars::Instance()->data()->ut().djd()); // Get horizontal coords alignCoord.EquatorialToHorizontal(KStarsData::Instance()->lst(), KStarsData::Instance()->geo()->lat()); double raDiff = (alignCoord.ra().deltaAngle(targetCoord.ra())).Degrees() * 3600; double deDiff = (alignCoord.dec().deltaAngle(targetCoord.dec())).Degrees() * 3600; dms RADiff(fabs(raDiff) / 3600.0), DEDiff(deDiff / 3600.0); QString dRAText = QString("%1%2").arg((raDiff > 0 ? "+" : "-"), RADiff.toHMSString()); QString dDEText = DEDiff.toDMSString(true); pixScaleOut->setText(QString::number(pixscale, 'f', 2)); targetDiff = sqrt(raDiff * raDiff + deDiff * deDiff); errOut->setText(QString("%1 arcsec. RA:%2 DE:%3").arg( QString::number(targetDiff, 'f', 0), QString::number(raDiff, 'f', 0), QString::number(deDiff, 'f', 0))); if (targetDiff <= static_cast(accuracySpin->value())) errOut->setStyleSheet("color:green"); else if (targetDiff < 1.5 * accuracySpin->value()) errOut->setStyleSheet("color:yellow"); else errOut->setStyleSheet("color:red"); double solverPA = orientation; // TODO 2019-11-06 JM: KStars needs to support "upside-down" displays since this is a hack. // Because astrometry reads image upside-down (bottom to top), the orientation is rotated 180 degrees when compared to PA // PA = Orientation + 180 double solverFlippedPA = orientation + 180; // Limit PA to -180 to +180 if (solverFlippedPA > 180) solverFlippedPA -= 360; if (solverFlippedPA < -180) solverFlippedPA += 360; solverFOV->setCenter(alignCoord); solverFOV->setPA(solverFlippedPA); solverFOV->setImageDisplay(Options::astrometrySolverOverlay()); // Sensor FOV as well sensorFOV->setPA(solverFlippedPA); QString ra_dms, dec_dms; getFormattedCoords(alignCoord.ra().Hours(), alignCoord.dec().Degrees(), ra_dms, dec_dms); SolverRAOut->setText(ra_dms); SolverDecOut->setText(dec_dms); //This block of code will write the result into the solution table and plot it on the graph. int currentRow = solutionTable->rowCount() - 1; if (loadSlewState == IPS_IDLE) { QTableWidgetItem *dRAReport = new QTableWidgetItem(); if (dRAReport) { dRAReport->setText(QString::number(raDiff, 'f', 3) + "\""); dRAReport->setTextAlignment(Qt::AlignHCenter); dRAReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 4, dRAReport); } QTableWidgetItem *dDECReport = new QTableWidgetItem(); if (dDECReport) { dDECReport->setText(QString::number(deDiff, 'f', 3) + "\""); dDECReport->setTextAlignment(Qt::AlignHCenter); dDECReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 5, dDECReport); } double raPlot = raDiff; double decPlot = deDiff; alignPlot->graph(0)->addData(raPlot, decPlot); QCPItemText *textLabel = new QCPItemText(alignPlot); textLabel->setPositionAlignment(Qt::AlignVCenter | Qt::AlignHCenter); textLabel->position->setType(QCPItemPosition::ptPlotCoords); textLabel->position->setCoords(raPlot, decPlot); textLabel->setColor(Qt::red); textLabel->setPadding(QMargins(0, 0, 0, 0)); textLabel->setBrush(Qt::white); textLabel->setPen(Qt::NoPen); textLabel->setText(' ' + QString::number(solutionTable->rowCount()) + ' '); textLabel->setFont(QFont(font().family(), 8)); if (!alignPlot->xAxis->range().contains(raDiff)) { alignPlot->graph(0)->rescaleKeyAxis(true); alignPlot->yAxis->setScaleRatio(alignPlot->xAxis, 1.0); } if (!alignPlot->yAxis->range().contains(deDiff)) { alignPlot->graph(0)->rescaleValueAxis(true); alignPlot->xAxis->setScaleRatio(alignPlot->yAxis, 1.0); } alignPlot->replot(); } if (Options::astrometrySolverWCS()) { INumberVectorProperty *ccdRotation = currentCCD->getBaseDevice()->getNumber("CCD_ROTATION"); if (ccdRotation) { INumber *rotation = IUFindNumber(ccdRotation, "CCD_ROTATION_VALUE"); if (rotation) { ClientManager *clientManager = currentCCD->getDriverInfo()->getClientManager(); rotation->value = orientation; clientManager->sendNewNumber(ccdRotation); if (m_wcsSynced == false) { appendLogText( i18n("WCS information updated. Images captured from this point forward shall have valid WCS.")); // Just send telescope info in case the CCD driver did not pick up before. INumberVectorProperty *telescopeInfo = currentTelescope->getBaseDevice()->getNumber("TELESCOPE_INFO"); if (telescopeInfo) clientManager->sendNewNumber(telescopeInfo); m_wcsSynced = true; } } } } m_CaptureErrorCounter = 0; m_SlewErrorCounter = 0; m_CaptureTimeoutCounter = 0; appendLogText(i18n("Solution coordinates: RA (%1) DEC (%2) Telescope Coordinates: RA (%3) DEC (%4)", alignCoord.ra().toHMSString(), alignCoord.dec().toDMSString(), telescopeCoord.ra().toHMSString(), telescopeCoord.dec().toDMSString())); if (loadSlewState == IPS_IDLE && currentGotoMode == GOTO_SLEW) { dms diffDeg(targetDiff / 3600.0); appendLogText(i18n("Target is within %1 degrees of solution coordinates.", diffDeg.toDMSString())); } if (rememberUploadMode != currentCCD->getUploadMode()) currentCCD->setUploadMode(rememberUploadMode); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); //This block of code along with some sections in the switch below will set the status report in the solution table for this item. std::unique_ptr statusReport(new QTableWidgetItem()); if (loadSlewState == IPS_IDLE) { solutionTable->setCellWidget(currentRow, 3, new QWidget()); statusReport->setFlags(Qt::ItemIsSelectable); } // Update Rotator offsets if (currentRotator != nullptr) { // When Load&Slew image is solved, we check if we need to rotate the rotator to match the position angle of the image if (loadSlewState == IPS_BUSY && Options::astrometryUseRotator()) { loadSlewTargetPA = solverPA; qCDebug(KSTARS_EKOS_ALIGN) << "loaSlewTargetPA:" << loadSlewTargetPA; } else { INumberVectorProperty *absAngle = currentRotator->getBaseDevice()->getNumber("ABS_ROTATOR_ANGLE"); if (absAngle) { // PA = RawAngle * Multiplier + Offset currentRotatorPA = solverPA; double rawAngle = absAngle->np[0].value; double offset = range360(solverPA - (rawAngle * Options::pAMultiplier())); qCDebug(KSTARS_EKOS_ALIGN) << "Raw Rotator Angle:" << rawAngle << "Rotator PA:" << currentRotatorPA << "Rotator Offset:" << offset; Options::setPAOffset(offset); } if (absAngle && std::isnan(loadSlewTargetPA) == false && fabs(currentRotatorPA - loadSlewTargetPA) * 60 > Options::astrometryRotatorThreshold()) { double rawAngle = range360((loadSlewTargetPA - Options::pAOffset()) / Options::pAMultiplier()); // if (rawAngle < 0) // rawAngle += 360; // else if (rawAngle > 360) // rawAngle -= 360; absAngle->np[0].value = rawAngle; ClientManager *clientManager = currentRotator->getDriverInfo()->getClientManager(); clientManager->sendNewNumber(absAngle); appendLogText(i18n("Setting position angle to %1 degrees E of N...", loadSlewTargetPA)); return; } } } emit newSolverResults(orientation, ra, dec, pixscale); QJsonObject solution = { {"ra", SolverRAOut->text()}, {"de", SolverDecOut->text()}, {"dRA", dRAText}, {"dDE", dDEText}, {"pix", pixscale}, {"rot", orientation}, {"fov", FOVOut->text()}, }; emit newSolution(solution.toVariantMap()); switch (currentGotoMode) { case GOTO_SYNC: executeGOTO(); if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } return; case GOTO_SLEW: if (loadSlewState == IPS_BUSY || targetDiff > static_cast(accuracySpin->value())) { if (loadSlewState == IPS_IDLE && ++solverIterations == MAXIMUM_SOLVER_ITERATIONS) { appendLogText(i18n("Maximum number of iterations reached. Solver failed.")); if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } solverFailed(); if (mountModelRunning) finishAlignmentPoint(false); return; } targetAccuracyNotMet = true; if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignWarning.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } executeGOTO(); return; } if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } appendLogText(i18n("Target is within acceptable range. Astrometric solver is successful.")); if (mountModelRunning) { finishAlignmentPoint(true); if (mountModelRunning) return; } break; case GOTO_NOTHING: if (loadSlewState == IPS_IDLE) { statusReport->setIcon(QIcon(":/icons/AlignSuccess.svg")); solutionTable->setItem(currentRow, 3, statusReport.release()); } if (mountModelRunning) { finishAlignmentPoint(true); if (mountModelRunning) return; } break; } KSNotification::event(QLatin1String("AlignSuccessful"), i18n("Astrometry alignment completed successfully")); state = ALIGN_COMPLETE; emit newStatus(state); solverIterations = 0; solverFOV->setProperty("visible", true); if (pahStage != PAH_IDLE) processPAHStage(orientation, ra, dec, pixscale); else if (azStage > AZ_INIT || altStage > ALT_INIT) executePolarAlign(); else { solveB->setEnabled(true); loadSlewB->setEnabled(true); } } void Align::solverFailed() { KSNotification::event(QLatin1String("AlignFailed"), i18n("Astrometry alignment failed with errors"), KSNotification::EVENT_ALERT); pi->stopAnimation(); stopB->setEnabled(false); solveB->setEnabled(true); m_AlignTimer.stop(); azStage = AZ_INIT; altStage = ALT_INIT; loadSlewState = IPS_IDLE; solverIterations = 0; m_CaptureErrorCounter = 0; m_CaptureTimeoutCounter = 0; m_SlewErrorCounter = 0; state = ALIGN_FAILED; emit newStatus(state); solverFOV->setProperty("visible", false); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); } void Align::abort() { m_CaptureTimer.stop(); parser->stopSolver(); pi->stopAnimation(); stopB->setEnabled(false); solveB->setEnabled(true); loadSlewB->setEnabled(true); // Reset Telescope Type to remembered value if (rememberTelescopeType != ISD::CCD::TELESCOPE_UNKNOWN) { currentCCD->setTelescopeType(rememberTelescopeType); rememberTelescopeType = ISD::CCD::TELESCOPE_UNKNOWN; } azStage = AZ_INIT; altStage = ALT_INIT; loadSlewState = IPS_IDLE; solverIterations = 0; m_CaptureErrorCounter = 0; m_CaptureTimeoutCounter = 0; m_SlewErrorCounter = 0; m_AlignTimer.stop(); disconnect(currentCCD, &ISD::CCD::BLOBUpdated, this, &Ekos::Align::newFITS); disconnect(currentCCD, &ISD::CCD::newExposureValue, this, &Ekos::Align::checkCCDExposureProgress); if (rememberUploadMode != currentCCD->getUploadMode()) currentCCD->setUploadMode(rememberUploadMode); if (rememberCCDExposureLooping) currentCCD->setExposureLoopingEnabled(true); ISD::CCDChip *targetChip = currentCCD->getChip(useGuideHead ? ISD::CCDChip::GUIDE_CCD : ISD::CCDChip::PRIMARY_CCD); // If capture is still in progress, let's stop that. if (pahStage == PAH_REFRESH) { if (targetChip->isCapturing()) targetChip->abortExposure(); appendLogText(i18n("Refresh is complete.")); } else { if (targetChip->isCapturing()) { targetChip->abortExposure(); appendLogText(i18n("Capture aborted.")); } else { int elapsed = static_cast(round(solverTimer.elapsed() / 1000.0)); appendLogText(i18np("Solver aborted after %1 second.", "Solver aborted after %1 seconds", elapsed)); } } state = ALIGN_ABORTED; emit newStatus(state); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); } QList Align::getSolutionResult() { QList result; result << sOrientation << sRA << sDEC; return result; } void Align::appendLogText(const QString &text) { m_LogText.insert(0, i18nc("log entry; %1 is the date, %2 is the text", "%1 %2", KStarsData::Instance()->lt().toString("yyyy-MM-ddThh:mm:ss"), text)); qCInfo(KSTARS_EKOS_ALIGN) << text; emit newLog(text); } void Align::clearLog() { m_LogText.clear(); emit newLog(QString()); } void Align::processSwitch(ISwitchVectorProperty *svp) { if (!strcmp(svp->name, "DOME_MOTION")) { // If dome is not ready and state is now if (domeReady == false && svp->s == IPS_OK) { domeReady = true; // trigger process number for mount so that it proceeds with normal workflow since // it was stopped by dome not being ready handleMountStatus(); } } else if ((!strcmp(svp->name, "TELESCOPE_MOTION_NS") || !strcmp(svp->name, "TELESCOPE_MOTION_WE"))) switch (svp->s) { case IPS_BUSY: // react upon mount motion handleMountMotion(); m_wasSlewStarted = true; break; default: qCDebug(KSTARS_EKOS_ALIGN) << "Mount motion finished."; handleMountStatus(); break; } } void Align::processNumber(INumberVectorProperty *nvp) { if (!strcmp(nvp->name, "EQUATORIAL_EOD_COORD") || !strcmp(nvp->name, "EQUATORIAL_COORD")) { QString ra_dms, dec_dms; if (!strcmp(nvp->name, "EQUATORIAL_COORD")) { telescopeCoord.setRA0(nvp->np[0].value); telescopeCoord.setDec0(nvp->np[1].value); // Get JNow as well telescopeCoord.apparentCoord(static_cast(J2000), KStars::Instance()->data()->ut().djd()); } else { telescopeCoord.setRA(nvp->np[0].value); telescopeCoord.setDec(nvp->np[1].value); } getFormattedCoords(telescopeCoord.ra().Hours(), telescopeCoord.dec().Degrees(), ra_dms, dec_dms); telescopeCoord.EquatorialToHorizontal(KStarsData::Instance()->lst(), KStarsData::Instance()->geo()->lat()); ScopeRAOut->setText(ra_dms); ScopeDecOut->setText(dec_dms); // qCDebug(KSTARS_EKOS_ALIGN) << "## RA" << ra_dms << "DE" << dec_dms // << "state:" << pstateStr(nvp->s) << "slewStarted?" << m_wasSlewStarted; switch (nvp->s) { // Idle --> Mount not tracking or slewing case IPS_IDLE: m_wasSlewStarted = false; //qCDebug(KSTARS_EKOS_ALIGN) << "## IPS_IDLE --> setting slewStarted to FALSE"; break; // Ok --> Mount Tracking. If m_wasSlewStarted is true // then it just finished slewing case IPS_OK: { // Update the boxes as the mount just finished slewing if (m_wasSlewStarted && Options::astrometryAutoUpdatePosition()) { //qCDebug(KSTARS_EKOS_ALIGN) << "## IPS_OK --> Auto Update Position..."; opsAstrometry->estRA->setText(ra_dms); opsAstrometry->estDec->setText(dec_dms); Options::setAstrometryPositionRA(nvp->np[0].value * 15); Options::setAstrometryPositionDE(nvp->np[1].value); generateArgs(); } // If dome is syncing, wait until it stops if (currentDome && currentDome->isMoving()) { domeReady = false; return; } // If we are looking for celestial pole if (m_wasSlewStarted && pahStage == PAH_FIND_CP) { //qCDebug(KSTARS_EKOS_ALIGN) << "## PAH_FIND_CP--> setting slewStarted to FALSE"; m_wasSlewStarted = false; appendLogText(i18n("Mount completed slewing near celestial pole. Capture again to verify.")); setSolverAction(GOTO_NOTHING); pahStage = PAH_FIRST_CAPTURE; emit newPAHStage(pahStage); return; } switch (state) { case ALIGN_PROGRESS: break; case ALIGN_SYNCING: { m_wasSlewStarted = false; //qCDebug(KSTARS_EKOS_ALIGN) << "## ALIGN_SYNCING --> setting slewStarted to FALSE"; if (currentGotoMode == GOTO_SLEW) { Slew(); return; } else { appendLogText(i18n("Mount is synced to solution coordinates. Astrometric solver is successful.")); KSNotification::event(QLatin1String("AlignSuccessful"), i18n("Astrometry alignment completed successfully")); state = ALIGN_COMPLETE; emit newStatus(state); solverIterations = 0; if (mountModelRunning) finishAlignmentPoint(true); } } break; case ALIGN_SLEWING: if (m_wasSlewStarted == false) { // If mount has not started slewing yet, then skip //qCDebug(KSTARS_EKOS_ALIGN) << "Mount slew planned, but not started slewing yet..."; break; } //qCDebug(KSTARS_EKOS_ALIGN) << "Mount slew completed."; m_wasSlewStarted = false; if (loadSlewState == IPS_BUSY) { loadSlewState = IPS_IDLE; //qCDebug(KSTARS_EKOS_ALIGN) << "loadSlewState is IDLE."; state = ALIGN_PROGRESS; emit newStatus(state); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); return; } else if (differentialSlewingActivated) { appendLogText(i18n("Differential slewing complete. Astrometric solver is successful.")); KSNotification::event(QLatin1String("AlignSuccessful"), i18n("Astrometry alignment completed successfully")); state = ALIGN_COMPLETE; emit newStatus(state); solverIterations = 0; if (mountModelRunning) finishAlignmentPoint(true); } else if (currentGotoMode == GOTO_SLEW || mountModelRunning) { if (targetAccuracyNotMet) appendLogText(i18n("Slew complete. Target accuracy is not met, running solver again...")); else appendLogText(i18n("Slew complete. Solving Alignment Point. . .")); targetAccuracyNotMet = false; state = ALIGN_PROGRESS; emit newStatus(state); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); return; } break; default: { //qCDebug(KSTARS_EKOS_ALIGN) << "## Align State " << state << "--> setting slewStarted to FALSE"; m_wasSlewStarted = false; } break; } } break; // Busy --> Mount Slewing or Moving (NSWE buttons) case IPS_BUSY: { //qCDebug(KSTARS_EKOS_ALIGN) << "Mount slew running."; m_wasSlewStarted = true; handleMountMotion(); } break; // Alert --> Mount has problem moving or communicating. case IPS_ALERT: { //qCDebug(KSTARS_EKOS_ALIGN) << "IPS_ALERT --> setting slewStarted to FALSE"; m_wasSlewStarted = false; if (state == ALIGN_SYNCING || state == ALIGN_SLEWING) { if (state == ALIGN_SYNCING) appendLogText(i18n("Syncing failed.")); else appendLogText(i18n("Slewing failed.")); if (++m_SlewErrorCounter == 3) { abort(); return; } else { if (currentGotoMode == GOTO_SLEW) Slew(); else Sync(); } } return; } } if (pahStage == PAH_FIRST_ROTATE) { // only wait for telescope to slew to new position if manual slewing is switched off if(!PAHManual->isChecked()) { double deltaAngle = fabs(telescopeCoord.ra().deltaAngle(targetPAH.ra()).Degrees()); qCDebug(KSTARS_EKOS_ALIGN) << "First mount rotation remaining degrees:" << deltaAngle; if (deltaAngle <= PAH_ROTATION_THRESHOLD) { currentTelescope->StopWE(); appendLogText(i18n("Mount first rotation is complete.")); pahStage = PAH_SECOND_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondCapturePage); emit newPAHMessage(secondCaptureText->text()); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); } // If for some reason we didn't stop, let's stop if we get too far else if (deltaAngle > PAHRotationSpin->value() * 1.25) { currentTelescope->Abort(); appendLogText(i18n("Mount aborted. Please restart the process and reduce the speed.")); stopPAHProcess(); } return; } // endif not manual slew } else if (pahStage == PAH_SECOND_ROTATE) { // only wait for telescope to slew to new position if manual slewing is switched off if(!PAHManual->isChecked()) { double deltaAngle = fabs(telescopeCoord.ra().deltaAngle(targetPAH.ra()).Degrees()); qCDebug(KSTARS_EKOS_ALIGN) << "Second mount rotation remaining degrees:" << deltaAngle; if (deltaAngle <= PAH_ROTATION_THRESHOLD) { currentTelescope->StopWE(); appendLogText(i18n("Mount second rotation is complete.")); pahStage = PAH_THIRD_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHThirdCapturePage); emit newPAHMessage(thirdCaptureText->text()); if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); } // If for some reason we didn't stop, let's stop if we get too far else if (deltaAngle > PAHRotationSpin->value() * 1.25) { currentTelescope->Abort(); appendLogText(i18n("Mount aborted. Please restart the process and reduce the speed.")); stopPAHProcess(); } return; } // endif not manual slew } switch (azStage) { case AZ_SYNCING: if (currentTelescope->isSlewing()) azStage = AZ_SLEWING; break; case AZ_SLEWING: if (currentTelescope->isSlewing() == false) { azStage = AZ_SECOND_TARGET; measureAzError(); } break; case AZ_CORRECTING: if (currentTelescope->isSlewing() == false) { appendLogText(i18n( "Slew complete. Please adjust azimuth knob until the target is in the center of the view.")); azStage = AZ_INIT; } break; default: break; } switch (altStage) { case ALT_SYNCING: if (currentTelescope->isSlewing()) altStage = ALT_SLEWING; break; case ALT_SLEWING: if (currentTelescope->isSlewing() == false) { altStage = ALT_SECOND_TARGET; measureAltError(); } break; case ALT_CORRECTING: if (currentTelescope->isSlewing() == false) { appendLogText(i18n( "Slew complete. Please adjust altitude knob until the target is in the center of the view.")); altStage = ALT_INIT; } break; default: break; } } else if (!strcmp(nvp->name, "ABS_ROTATOR_ANGLE")) { // PA = RawAngle * Multiplier + Offset currentRotatorPA = (nvp->np[0].value * Options::pAMultiplier()) + Options::pAOffset(); if (currentRotatorPA > 180) currentRotatorPA -= 360; if (currentRotatorPA < -180) currentRotatorPA += 360; if (std::isnan(loadSlewTargetPA) == false && fabs(currentRotatorPA - loadSlewTargetPA) * 60 <= Options::astrometryRotatorThreshold()) { appendLogText(i18n("Rotator reached target position angle.")); targetAccuracyNotMet = true; loadSlewTargetPA = std::numeric_limits::quiet_NaN(); QTimer::singleShot(Options::settlingTime(), this, &Ekos::Align::executeGOTO); } } // N.B. Ekos::Manager already manages TELESCOPE_INFO, why here again? //if (!strcmp(coord->name, "TELESCOPE_INFO")) //syncTelescopeInfo(); } void Align::handleMountMotion() { if (state == ALIGN_PROGRESS) { if (pahStage == PAH_IDLE) { // whoops, mount slews during alignment appendLogText(i18n("Slew detected, aborting solving...")); abort(); // reset the state to busy so that solving restarts after slewing finishes loadSlewState = IPS_BUSY; // if mount model is running, retry the current alignment point if (mountModelRunning) { appendLogText(i18n("Restarting alignment point %1", currentAlignmentPoint + 1)); if (currentAlignmentPoint > 0) currentAlignmentPoint--; } } state = ALIGN_SLEWING; } } void Align::handleMountStatus() { INumberVectorProperty *nvp = nullptr; if (currentTelescope->isJ2000()) nvp = currentTelescope->getBaseDevice()->getNumber("EQUATORIAL_COORD"); else nvp = currentTelescope->getBaseDevice()->getNumber("EQUATORIAL_EOD_COORD"); if (nvp) processNumber(nvp); } void Align::executeGOTO() { if (loadSlewState == IPS_BUSY) { targetCoord = alignCoord; SlewToTarget(); } else if (currentGotoMode == GOTO_SYNC) Sync(); else if (currentGotoMode == GOTO_SLEW) SlewToTarget(); } void Align::Sync() { state = ALIGN_SYNCING; if (currentTelescope->Sync(&alignCoord)) { emit newStatus(state); appendLogText( i18n("Syncing to RA (%1) DEC (%2)", alignCoord.ra().toHMSString(), alignCoord.dec().toDMSString())); } else { state = ALIGN_IDLE; emit newStatus(state); appendLogText(i18n("Syncing failed.")); } } void Align::Slew() { state = ALIGN_SLEWING; emit newStatus(state); //qCDebug(KSTARS_EKOS_ALIGN) << "## Before SLEW command: wasSlewStarted -->" << m_wasSlewStarted; //m_wasSlewStarted = currentTelescope->Slew(&targetCoord); //qCDebug(KSTARS_EKOS_ALIGN) << "## After SLEW command: wasSlewStarted -->" << m_wasSlewStarted; // JM 2019-08-23: Do not assume that slew was started immediately. Wait until IPS_BUSY state is triggered // from Goto currentTelescope->Slew(&targetCoord); appendLogText(i18n("Slewing to target coordinates: RA (%1) DEC (%2).", targetCoord.ra().toHMSString(), targetCoord.dec().toDMSString())); } void Align::SlewToTarget() { if (canSync && loadSlewState == IPS_IDLE) { // 2018-01-24 JM: This is ugly. Maybe use DBus? Signal/Slots? Ekos Manager usage like this should be avoided if (Ekos::Manager::Instance()->getCurrentJobName().isEmpty()) { KSNotification::event(QLatin1String("EkosSchedulerTelescopeSynced"), i18n("Ekos job (%1) - Telescope synced", Ekos::Manager::Instance()->getCurrentJobName())); } // Do we perform a regular sync or use differential slewing? if (Options::astrometryDifferentialSlewing()) { dms raDiff = alignCoord.ra().deltaAngle(targetCoord.ra()); dms deDiff = alignCoord.dec().deltaAngle(targetCoord.dec()); targetCoord.setRA(targetCoord.ra() - raDiff); targetCoord.setDec(targetCoord.dec() - deDiff); differentialSlewingActivated = true; qCDebug(KSTARS_EKOS_ALIGN) << "Using differential slewing..."; Slew(); } else Sync(); return; } Slew(); } void Align::executePolarAlign() { appendLogText(i18n("Processing solution for polar alignment...")); switch (azStage) { case AZ_FIRST_TARGET: case AZ_FINISHED: measureAzError(); break; default: break; } switch (altStage) { case ALT_FIRST_TARGET: case ALT_FINISHED: measureAltError(); break; default: break; } } void Align::measureAzError() { static double initRA = 0, initDEC = 0, finalRA = 0, finalDEC = 0, initAz = 0; if (pahStage != PAH_IDLE && (KMessageBox::warningContinueCancel(KStars::Instance(), i18n("Polar Alignment Helper is still active. Do you want to continue " "using legacy polar alignment tool?")) != KMessageBox::Continue)) return; pahStage = PAH_IDLE; emit newPAHStage(pahStage); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Measuring Azimuth Error..."; switch (azStage) { case AZ_INIT: // Display message box confirming user point scope near meridian and south // N.B. This action cannot be automated. if (KMessageBox::warningContinueCancel( nullptr, hemisphere == NORTH_HEMISPHERE ? i18n("Point the telescope at the southern meridian. Press Continue when ready.") : i18n("Point the telescope at the northern meridian. Press Continue when ready."), i18n("Polar Alignment Measurement"), KStandardGuiItem::cont(), KStandardGuiItem::cancel(), "ekos_measure_az_error") != KMessageBox::Continue) return; appendLogText(i18n("Solving first frame near the meridian.")); azStage = AZ_FIRST_TARGET; captureAndSolve(); break; case AZ_FIRST_TARGET: // start solving there, find RA/DEC initRA = alignCoord.ra().Degrees(); initDEC = alignCoord.dec().Degrees(); initAz = alignCoord.az().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar initRA " << alignCoord.ra().toHMSString() << " initDEC " << alignCoord.dec().toDMSString() << " initlAz " << alignCoord.az().toDMSString() << " initAlt " << alignCoord.alt().toDMSString(); // Now move 30 arcminutes in RA if (canSync) { azStage = AZ_SYNCING; currentTelescope->Sync(initRA / 15.0, initDEC); currentTelescope->Slew((initRA - RAMotion) / 15.0, initDEC); } // If telescope doesn't sync, we slew relative to its current coordinates else { azStage = AZ_SLEWING; currentTelescope->Slew(telescopeCoord.ra().Hours() - RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing 30 arcminutes in RA...")); break; case AZ_SECOND_TARGET: // We reached second target now // Let now solver for RA/DEC appendLogText(i18n("Solving second frame near the meridian.")); azStage = AZ_FINISHED; captureAndSolve(); break; case AZ_FINISHED: // Measure deviation in DEC // Call function to report error // set stage to AZ_FIRST_TARGET again appendLogText(i18n("Calculating azimuth alignment error...")); finalRA = alignCoord.ra().Degrees(); finalDEC = alignCoord.dec().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar finalRA " << alignCoord.ra().toHMSString() << " finalDEC " << alignCoord.dec().toDMSString() << " finalAz " << alignCoord.az().toDMSString() << " finalAlt " << alignCoord.alt().toDMSString(); // Slew back to original position if (canSync) currentTelescope->Slew(initRA / 15.0, initDEC); else { currentTelescope->Slew(telescopeCoord.ra().Hours() + RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing back to original position...")); calculatePolarError(initRA, initDEC, finalRA, finalDEC, initAz); azStage = AZ_INIT; break; default: break; } } void Align::measureAltError() { static double initRA = 0, initDEC = 0, finalRA = 0, finalDEC = 0, initAz = 0; if (pahStage != PAH_IDLE && (KMessageBox::warningContinueCancel(KStars::Instance(), i18n("Polar Alignment Helper is still active. Do you want to continue " "using legacy polar alignment tool?")) != KMessageBox::Continue)) return; pahStage = PAH_IDLE; emit newPAHStage(pahStage); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Measuring Altitude Error..."; switch (altStage) { case ALT_INIT: // Display message box confirming user point scope near meridian and south // N.B. This action cannot be automated. if (KMessageBox::warningContinueCancel(nullptr, i18n("Point the telescope to the eastern or western horizon with a " "minimum altitude of 20 degrees. Press continue when ready."), i18n("Polar Alignment Measurement"), KStandardGuiItem::cont(), KStandardGuiItem::cancel(), "ekos_measure_alt_error") != KMessageBox::Continue) return; appendLogText(i18n("Solving first frame.")); altStage = ALT_FIRST_TARGET; if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); break; case ALT_FIRST_TARGET: // start solving there, find RA/DEC initRA = alignCoord.ra().Degrees(); initDEC = alignCoord.dec().Degrees(); initAz = alignCoord.az().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar initRA " << alignCoord.ra().toHMSString() << " initDEC " << alignCoord.dec().toDMSString() << " initlAz " << alignCoord.az().toDMSString() << " initAlt " << alignCoord.alt().toDMSString(); // Now move 30 arcminutes in RA if (canSync) { altStage = ALT_SYNCING; currentTelescope->Sync(initRA / 15.0, initDEC); currentTelescope->Slew((initRA - RAMotion) / 15.0, initDEC); } // If telescope doesn't sync, we slew relative to its current coordinates else { altStage = ALT_SLEWING; currentTelescope->Slew(telescopeCoord.ra().Hours() - RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing 30 arcminutes in RA...")); break; case ALT_SECOND_TARGET: // We reached second target now // Let now solver for RA/DEC appendLogText(i18n("Solving second frame.")); altStage = ALT_FINISHED; if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); break; case ALT_FINISHED: // Measure deviation in DEC // Call function to report error appendLogText(i18n("Calculating altitude alignment error...")); finalRA = alignCoord.ra().Degrees(); finalDEC = alignCoord.dec().Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar finalRA " << alignCoord.ra().toHMSString() << " finalDEC " << alignCoord.dec().toDMSString() << " finalAz " << alignCoord.az().toDMSString() << " finalAlt " << alignCoord.alt().toDMSString(); // Slew back to original position if (canSync) currentTelescope->Slew(initRA / 15.0, initDEC); // If telescope doesn't sync, we slew relative to its current coordinates else { currentTelescope->Slew(telescopeCoord.ra().Hours() + RAMotion / 15.0, telescopeCoord.dec().Degrees()); } appendLogText(i18n("Slewing back to original position...")); calculatePolarError(initRA, initDEC, finalRA, finalDEC, initAz); altStage = ALT_INIT; break; default: break; } } void Align::calculatePolarError(double initRA, double initDEC, double finalRA, double finalDEC, double initAz) { double raMotion = finalRA - initRA; decDeviation = finalDEC - initDEC; // East/West of meridian int horizon = (initAz > 0 && initAz <= 180) ? 0 : 1; // How much time passed siderrally form initRA to finalRA? //double RATime = fabs(raMotion / SIDRATE) / 60.0; // 2016-03-30: Diff in RA is sufficient for time difference // raMotion in degrees. RATime in minutes. double RATime = fabs(raMotion) * 60.0; // Equation by Frank Berret (Measuring Polar Axis Alignment Error, page 4) // In degrees double deviation = (3.81 * (decDeviation * 3600)) / (RATime * cos(initDEC * dms::DegToRad)) / 60.0; dms devDMS(fabs(deviation)); KLocalizedString deviationDirection; switch (hemisphere) { // Northern hemisphere case NORTH_HEMISPHERE: if (azStage == AZ_FINISHED) { if (decDeviation > 0) deviationDirection = ki18n("%1 too far east"); else deviationDirection = ki18n("%1 too far west"); } else if (altStage == ALT_FINISHED) { switch (horizon) { // East case 0: if (decDeviation > 0) deviationDirection = ki18n("%1 too far high"); else deviationDirection = ki18n("%1 too far low"); break; // West case 1: if (decDeviation > 0) deviationDirection = ki18n("%1 too far low"); else deviationDirection = ki18n("%1 too far high"); break; default: break; } } break; // Southern hemisphere case SOUTH_HEMISPHERE: if (azStage == AZ_FINISHED) { if (decDeviation > 0) deviationDirection = ki18n("%1 too far west"); else deviationDirection = ki18n("%1 too far east"); } else if (altStage == ALT_FINISHED) { switch (horizon) { // East case 0: if (decDeviation > 0) deviationDirection = ki18n("%1 too far low"); else deviationDirection = ki18n("%1 too far high"); break; // West case 1: if (decDeviation > 0) deviationDirection = ki18n("%1 too far high"); else deviationDirection = ki18n("%1 too far low"); break; default: break; } } break; } qCDebug(KSTARS_EKOS_ALIGN) << "Polar Hemisphere is " << ((hemisphere == NORTH_HEMISPHERE) ? "North" : "South") << " --- initAz " << initAz; qCDebug(KSTARS_EKOS_ALIGN) << "Polar initRA " << initRA << " initDEC " << initDEC << " finalRA " << finalRA << " finalDEC " << finalDEC; qCDebug(KSTARS_EKOS_ALIGN) << "Polar decDeviation " << decDeviation * 3600 << " arcsec " << " RATime " << RATime << " minutes"; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Raw Deviation " << deviation << " degrees."; if (azStage == AZ_FINISHED) { azError->setText(deviationDirection.subs(QString("%1").arg(devDMS.toDMSString())).toString()); azDeviation = deviation * (decDeviation > 0 ? 1 : -1); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Azimuth Deviation " << azDeviation << " degrees."; correctAzB->setEnabled(true); } if (altStage == ALT_FINISHED) { altError->setText(deviationDirection.subs(QString("%1").arg(devDMS.toDMSString())).toString()); altDeviation = deviation * (decDeviation > 0 ? 1 : -1); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Altitude Deviation " << altDeviation << " degrees."; correctAltB->setEnabled(true); } } void Align::correctAltError() { double newRA, newDEC; SkyPoint currentCoord(telescopeCoord); dms targetLat; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Correcting Altitude Error..."; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Current Mount RA " << currentCoord.ra().toHMSString() << " DEC " << currentCoord.dec().toDMSString() << "Az " << currentCoord.az().toDMSString() << " Alt " << currentCoord.alt().toDMSString(); // An error in polar alignment altitude reflects a deviation in the latitude of the mount from actual latitude of the site // Calculating the latitude accounting for the altitude deviation. This is the latitude at which the altitude deviation should be zero. targetLat.setD(KStars::Instance()->data()->geo()->lat()->Degrees() + altDeviation); // Calculate the Az/Alt of the mount if it were located at the corrected latitude currentCoord.EquatorialToHorizontal(KStars::Instance()->data()->lst(), &targetLat); // Convert corrected Az/Alt to RA/DEC given the local sideral time and current (not corrected) latitude currentCoord.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); // New RA/DEC should reflect the position in the sky at which the polar alignment altitude error is minimal. newRA = currentCoord.ra().Hours(); newDEC = currentCoord.dec().Degrees(); altStage = ALT_CORRECTING; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Target Latitude = Latitude " << KStars::Instance()->data()->geo()->lat()->Degrees() << " + Altitude Deviation " << altDeviation << " = " << targetLat.Degrees(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Slewing to calibration position..."; currentTelescope->Slew(newRA, newDEC); appendLogText(i18n("Slewing to calibration position, please wait until telescope completes slewing.")); } void Align::correctAzError() { double newRA, newDEC, currentAlt, currentAz; SkyPoint currentCoord(telescopeCoord); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Correcting Azimuth Error..."; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Current Mount RA " << currentCoord.ra().toHMSString() << " DEC " << currentCoord.dec().toDMSString() << "Az " << currentCoord.az().toDMSString() << " Alt " << currentCoord.alt().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "Polar Target Azimuth = Current Azimuth " << currentCoord.az().Degrees() << " + Azimuth Deviation " << azDeviation << " = " << currentCoord.az().Degrees() + azDeviation; // Get current horizontal coordinates of the mount currentCoord.EquatorialToHorizontal(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); // Keep Altitude as it is and change Azimuth to account for the azimuth deviation // The new sky position should be where the polar alignment azimuth error is minimal currentAlt = currentCoord.alt().Degrees(); currentAz = currentCoord.az().Degrees() + azDeviation; // Update current Alt and Azimuth to new values currentCoord.setAlt(currentAlt); currentCoord.setAz(currentAz); // Convert Alt/Az back to equatorial coordinates currentCoord.HorizontalToEquatorial(KStars::Instance()->data()->lst(), KStars::Instance()->data()->geo()->lat()); // Get new RA and DEC newRA = currentCoord.ra().Hours(); newDEC = currentCoord.dec().Degrees(); azStage = AZ_CORRECTING; qCDebug(KSTARS_EKOS_ALIGN) << "Polar Slewing to calibration position..."; currentTelescope->Slew(newRA, newDEC); appendLogText(i18n("Slewing to calibration position, please wait until telescope completes slewing.")); } void Align::getFormattedCoords(double ra, double dec, QString &ra_str, QString &dec_str) { dms ra_s, dec_s; ra_s.setH(ra); dec_s.setD(dec); ra_str = QString("%1:%2:%3") .arg(ra_s.hour(), 2, 10, QChar('0')) .arg(ra_s.minute(), 2, 10, QChar('0')) .arg(ra_s.second(), 2, 10, QChar('0')); if (dec_s.Degrees() < 0) dec_str = QString("-%1:%2:%3") .arg(abs(dec_s.degree()), 2, 10, QChar('0')) .arg(abs(dec_s.arcmin()), 2, 10, QChar('0')) .arg(dec_s.arcsec(), 2, 10, QChar('0')); else dec_str = QString("%1:%2:%3") .arg(dec_s.degree(), 2, 10, QChar('0')) .arg(dec_s.arcmin(), 2, 10, QChar('0')) .arg(dec_s.arcsec(), 2, 10, QChar('0')); } bool Align::loadAndSlew(QString fileURL) { #ifdef Q_OS_OSX if(solverBackendGroup->checkedId() == SOLVER_OFFLINE) { if(Options::useDefaultPython()) { if( !opsAlign->astropyInstalled() || !opsAlign->pythonInstalled() ) { KSNotification::error(i18n("Astrometry.net uses python3 and the astropy package for plate solving images offline. These were not detected on your system. Please go into the Align Options and either click the setup button to install them or uncheck the default button and enter the path to python3 on your system and manually install astropy.")); return false; } } } #endif if (fileURL.isEmpty()) fileURL = QFileDialog::getOpenFileName(KStars::Instance(), i18n("Load Image"), dirPath, "Images (*.fits *.fit *.jpg *.jpeg)"); if (fileURL.isEmpty()) return false; QFileInfo fileInfo(fileURL); dirPath = fileInfo.absolutePath(); differentialSlewingActivated = false; loadSlewState = IPS_BUSY; stopPAHProcess(); slewR->setChecked(true); currentGotoMode = GOTO_SLEW; solveB->setEnabled(false); stopB->setEnabled(true); pi->startAnimation(); startSolving(fileURL, false); return true; } void Align::setExposure(double value) { exposureIN->setValue(value); } void Align::setBinningIndex(int binIndex) { syncSettings(); Options::setSolverBinningIndex(binIndex); // If sender is not our combo box, then we need to update the combobox itself if (dynamic_cast(sender()) != binningCombo) { binningCombo->blockSignals(true); binningCombo->setCurrentIndex(binIndex); binningCombo->blockSignals(false); } // Need to calculate FOV and args for APP if (Options::astrometryImageScaleUnits() == OpsAstrometry::SCALE_ARCSECPERPIX) { calculateFOV(); generateArgs(); } } void Align::setSolverArguments(const QString &value) { solverOptions->setText(value); } QString Align::solverArguments() { return solverOptions->text(); } void Align::setFOVTelescopeType(int index) { FOVScopeCombo->setCurrentIndex(index); } void Align::addFilter(ISD::GDInterface *newFilter) { for (auto filter : Filters) { if (!strcmp(filter->getDeviceName(), newFilter->getDeviceName())) return; } FilterCaptureLabel->setEnabled(true); FilterDevicesCombo->setEnabled(true); FilterPosLabel->setEnabled(true); FilterPosCombo->setEnabled(true); FilterDevicesCombo->addItem(newFilter->getDeviceName()); Filters.append(static_cast(newFilter)); int filterWheelIndex = 1; if (Options::defaultAlignFilterWheel().isEmpty() == false) filterWheelIndex = FilterDevicesCombo->findText(Options::defaultAlignFilterWheel()); if (filterWheelIndex < 1) filterWheelIndex = 1; checkFilter(filterWheelIndex); FilterDevicesCombo->setCurrentIndex(filterWheelIndex); } bool Align::setFilterWheel(const QString &device) { bool deviceFound = false; for (int i = 1; i < FilterDevicesCombo->count(); i++) if (device == FilterDevicesCombo->itemText(i)) { checkFilter(i); deviceFound = true; break; } if (deviceFound == false) return false; return true; } QString Align::filterWheel() { if (FilterDevicesCombo->currentIndex() >= 1) return FilterDevicesCombo->currentText(); return QString(); } bool Align::setFilter(const QString &filter) { if (FilterDevicesCombo->currentIndex() >= 1) { FilterPosCombo->setCurrentText(filter); return true; } return false; } QString Align::filter() { return FilterPosCombo->currentText(); } void Align::checkFilter(int filterNum) { if (filterNum == -1) { filterNum = FilterDevicesCombo->currentIndex(); if (filterNum == -1) return; } // "--" is no filter if (filterNum == 0) { currentFilter = nullptr; currentFilterPosition = -1; FilterPosCombo->clear(); return; } if (filterNum <= Filters.count()) currentFilter = Filters.at(filterNum - 1); FilterPosCombo->clear(); FilterPosCombo->addItems(filterManager->getFilterLabels()); currentFilterPosition = filterManager->getFilterPosition(); FilterPosCombo->setCurrentIndex(Options::lockAlignFilterIndex()); syncSettings(); } void Align::setWCSEnabled(bool enable) { if (currentCCD == nullptr) return; ISwitchVectorProperty *wcsControl = currentCCD->getBaseDevice()->getSwitch("WCS_CONTROL"); ISwitch *wcs_enable = IUFindSwitch(wcsControl, "WCS_ENABLE"); ISwitch *wcs_disable = IUFindSwitch(wcsControl, "WCS_DISABLE"); if (!wcs_enable || !wcs_disable) return; if ((wcs_enable->s == ISS_ON && enable) || (wcs_disable->s == ISS_ON && !enable)) return; IUResetSwitch(wcsControl); if (enable) { appendLogText(i18n("World Coordinate System (WCS) is enabled. CCD rotation must be set either manually in the " "CCD driver or by solving an image before proceeding to capture any further images, " "otherwise the WCS information may be invalid.")); wcs_enable->s = ISS_ON; } else { wcs_disable->s = ISS_ON; m_wcsSynced = false; appendLogText(i18n("World Coordinate System (WCS) is disabled.")); } ClientManager *clientManager = currentCCD->getDriverInfo()->getClientManager(); clientManager->sendNewSwitch(wcsControl); } void Align::checkCCDExposureProgress(ISD::CCDChip *targetChip, double remaining, IPState state) { INDI_UNUSED(targetChip); INDI_UNUSED(remaining); if (state == IPS_ALERT) { if (++m_CaptureErrorCounter == 3 && pahStage != PAH_REFRESH) { appendLogText(i18n("Capture error. Aborting...")); abort(); return; } appendLogText(i18n("Restarting capture attempt #%1", m_CaptureErrorCounter)); int currentRow = solutionTable->rowCount() - 1; solutionTable->setCellWidget(currentRow, 3, new QWidget()); QTableWidgetItem *statusReport = new QTableWidgetItem(); statusReport->setIcon(QIcon(":/icons/AlignFailure.svg")); statusReport->setFlags(Qt::ItemIsSelectable); solutionTable->setItem(currentRow, 3, statusReport); captureAndSolve(); } } void Align::setFocusStatus(Ekos::FocusState state) { focusState = state; } QStringList Align::getSolverOptionsFromFITS(const QString &filename) { QVariantMap optionsMap; // For ASTAP, we just default settings if (solverBackendGroup->checkedId() == SOLVER_ASTAP) { if (Options::aSTAPSearchRadius()) optionsMap["radius"] = Options::aSTAPSearchRadiusValue(); if (Options::aSTAPDownSample() && Options::aSTAPDownSampleValue() > 0) optionsMap["downsample"] = Options::aSTAPDownSampleValue(); optionsMap["speed"] = Options::aSTAPLargeSearchWindow() ? "slow" : "auto"; if (Options::aSTAPUpdateFITS()) optionsMap["update"] = true; return generateOptions(optionsMap, solverBackendGroup->checkedId()); } int status = 0, fits_ccd_width, fits_ccd_height, fits_binx = 1, fits_biny = 1; char comment[128], error_status[512]; fitsfile *fptr = nullptr; double ra = 0, dec = 0, fits_fov_x, fits_fov_y, fov_lower, fov_upper, fits_ccd_hor_pixel = -1, fits_ccd_ver_pixel = -1, fits_focal_length = -1; QString fov_low, fov_high; QStringList solver_args; if (Options::astrometryUseNoVerify()) optionsMap["noverify"] = true; if (Options::astrometryUseResort()) optionsMap["resort"] = true; if (Options::astrometryUseNoFITS2FITS()) optionsMap["nofits2fits"] = true; if (Options::astrometryUseDownsample()) optionsMap["downsample"] = Options::astrometryDownsample(); if (Options::astrometryCustomOptions().isEmpty() == false) optionsMap["custom"] = Options::astrometryCustomOptions(); solver_args = generateOptions(optionsMap, solverBackendGroup->checkedId()); status = 0; // Use open diskfile as it does not use extended file names which has problems opening // files with [ ] or ( ) in their names. if (fits_open_diskfile(&fptr, filename.toLatin1(), READONLY, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); qCCritical(KSTARS_EKOS_ALIGN) << QString::fromUtf8(error_status); return solver_args; } status = 0; if (fits_movabs_hdu(fptr, 1, IMAGE_HDU, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); qCCritical(KSTARS_EKOS_ALIGN) << QString::fromUtf8(error_status); return solver_args; } status = 0; if (fits_read_key(fptr, TINT, "NAXIS1", &fits_ccd_width, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find NAXIS1.")); return solver_args; } status = 0; if (fits_read_key(fptr, TINT, "NAXIS2", &fits_ccd_height, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find NAXIS2.")); return solver_args; } // If we need to auto downsample, let us figure out the scale and regenerate options if (Options::astrometryAutoDownsample()) { optionsMap["downsample"] = getSolverDownsample(fits_ccd_width); solver_args = generateOptions(optionsMap, SOLVER_ASTROMETRYNET); } bool coord_ok = true; status = 0; char objectra_str[32]; if (fits_read_key(fptr, TSTRING, "OBJCTRA", objectra_str, comment, &status)) { if (fits_read_key(fptr, TDOUBLE, "RA", &ra, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); coord_ok = false; appendLogText(i18n("FITS header: cannot find OBJCTRA (%1).", QString(error_status))); } else // Degrees to hours ra /= 15; } else { dms raDMS = dms::fromString(objectra_str, false); ra = raDMS.Hours(); } status = 0; char objectde_str[32]; if (coord_ok && fits_read_key(fptr, TSTRING, "OBJCTDEC", objectde_str, comment, &status)) { if (fits_read_key(fptr, TDOUBLE, "DEC", &dec, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); coord_ok = false; appendLogText(i18n("FITS header: cannot find OBJCTDEC (%1).", QString(error_status))); } } else { dms deDMS = dms::fromString(objectde_str, true); dec = deDMS.Degrees(); } if (coord_ok && Options::astrometryUsePosition()) solver_args << "-3" << QString::number(ra * 15.0) << "-4" << QString::number(dec) << "-5" << "15"; status = 0; double pixelScale = 0; // If we have pixel scale in arcsecs per pixel then lets use that directly // instead of calculating it from FOCAL length and other information if (fits_read_key(fptr, TDOUBLE, "SCALE", &pixelScale, comment, &status) == 0) { fov_low = QString::number(0.9 * pixelScale); fov_high = QString::number(1.1 * pixelScale); if (Options::astrometryUseImageScale()) solver_args << "-L" << fov_low << "-H" << fov_high << "-u" << "app"; return solver_args; } if (fits_read_key(fptr, TDOUBLE, "FOCALLEN", &fits_focal_length, comment, &status)) { int integer_focal_length = -1; if (fits_read_key(fptr, TINT, "FOCALLEN", &integer_focal_length, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find FOCALLEN (%1).", QString(error_status))); return solver_args; } else fits_focal_length = integer_focal_length; } status = 0; if (fits_read_key(fptr, TDOUBLE, "PIXSIZE1", &fits_ccd_hor_pixel, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find PIXSIZE1 (%1).", QString(error_status))); return solver_args; } status = 0; if (fits_read_key(fptr, TDOUBLE, "PIXSIZE2", &fits_ccd_ver_pixel, comment, &status)) { fits_report_error(stderr, status); fits_get_errstatus(status, error_status); appendLogText(i18n("FITS header: cannot find PIXSIZE2 (%1).", QString(error_status))); return solver_args; } status = 0; fits_read_key(fptr, TINT, "XBINNING", &fits_binx, comment, &status); status = 0; fits_read_key(fptr, TINT, "YBINNING", &fits_biny, comment, &status); // Calculate FOV fits_fov_x = 206264.8062470963552 * fits_ccd_width * fits_ccd_hor_pixel / 1000.0 / fits_focal_length * fits_binx; fits_fov_y = 206264.8062470963552 * fits_ccd_height * fits_ccd_ver_pixel / 1000.0 / fits_focal_length * fits_biny; fits_fov_x /= 60.0; fits_fov_y /= 60.0; // let's stretch the boundaries by 10% fov_lower = qMin(fits_fov_x, fits_fov_y); fov_upper = qMax(fits_fov_x, fits_fov_y); fov_lower *= 0.90; fov_upper *= 1.10; fov_low = QString::number(fov_lower); fov_high = QString::number(fov_upper); if (Options::astrometryUseImageScale()) solver_args << "-L" << fov_low << "-H" << fov_high << "-u" << "aw"; return solver_args; } uint8_t Align::getSolverDownsample(uint16_t binnedW) { uint8_t downsample = Options::astrometryDownsample(); if (!Options::astrometryAutoDownsample()) return downsample; while (downsample < 8) { if (binnedW / downsample <= 1024) break; downsample += 2; } return downsample; } void Align::saveSettleTime() { Options::setSettlingTime(delaySpin->value()); } void Align::setCaptureStatus(CaptureState newState) { switch (newState) { case CAPTURE_ALIGNING: if (currentTelescope && currentTelescope->hasAlignmentModel() && Options::resetMountModelAfterMeridian()) { mountModelReset = currentTelescope->clearAlignmentModel(); qCDebug(KSTARS_EKOS_ALIGN) << "Post meridian flip mount model reset" << (mountModelReset ? "successful." : "failed."); } m_CaptureTimer.start(Options::settlingTime()); break; default: break; } } void Align::showFITSViewer() { FITSData *data = alignView->getImageData(); if (data) { QUrl url = QUrl::fromLocalFile(data->filename()); if (fv.isNull()) { if (Options::singleWindowCapturedFITS()) fv = KStars::Instance()->genericFITSViewer(); else { fv = new FITSViewer(Options::independentWindowFITS() ? nullptr : KStars::Instance()); KStars::Instance()->addFITSViewer(fv); } fv->addFITS(url); FITSView *currentView = fv->getCurrentView(); if (currentView) currentView->getImageData()->setAutoRemoveTemporaryFITS(false); } else fv->updateFITS(url, 0); fv->show(); } } void Align::toggleAlignWidgetFullScreen() { if (alignWidget->parent() == nullptr) { alignWidget->setParent(this); rightLayout->insertWidget(0, alignWidget); alignWidget->showNormal(); } else { alignWidget->setParent(nullptr); alignWidget->setWindowTitle(i18n("Align Frame")); alignWidget->setWindowFlags(Qt::Window | Qt::WindowTitleHint | Qt::CustomizeWindowHint); alignWidget->showMaximized(); alignWidget->show(); } } void Align::startPAHProcess() { qCInfo(KSTARS_EKOS_ALIGN) << "Starting Polar Alignment Assistant process..."; pahStage = PAH_FIRST_CAPTURE; emit newPAHStage(pahStage); nothingR->setChecked(true); currentGotoMode = GOTO_NOTHING; loadSlewB->setEnabled(false); rememberSolverWCS = Options::astrometrySolverWCS(); rememberAutoWCS = Options::autoWCS(); Options::setAutoWCS(false); Options::setAstrometrySolverWCS(true); if (Options::limitedResourcesMode()) appendLogText(i18n("Warning: Equatorial Grid Lines will not be drawn due to limited resources mode.")); if (currentTelescope->hasAlignmentModel()) { appendLogText(i18n("Clearing mount Alignment Model...")); mountModelReset = currentTelescope->clearAlignmentModel(); } // Unpark currentTelescope->UnPark(); // Set tracking ON if not already if (currentTelescope->canControlTrack() && currentTelescope->isTracking() == false) currentTelescope->setTrackEnabled(true); PAHStartB->setEnabled(false); PAHStopB->setEnabled(true); PAHWidgets->setCurrentWidget(PAHFirstCapturePage); emit newPAHMessage(firstCaptureText->text()); captureAndSolve(); } void Align::stopPAHProcess() { if (pahStage == PAH_IDLE) return; qCInfo(KSTARS_EKOS_ALIGN) << "Stopping Polar Alignment Assistant process..."; // Only display dialog if user explicitly restarts if ((static_cast(sender()) == PAHStopB) && KMessageBox::questionYesNo(KStars::Instance(), i18n("Are you sure you want to stop the polar alignment process?"), i18n("Polar Alignment Assistant"), KStandardGuiItem::yes(), KStandardGuiItem::no(), "restart_PAA_process_dialog") == KMessageBox::No) return; stopB->click(); if (currentTelescope && currentTelescope->isInMotion()) currentTelescope->Abort(); pahStage = PAH_IDLE; emit newPAHStage(pahStage); PAHStartB->setEnabled(true); PAHStopB->setEnabled(false); PAHRefreshB->setEnabled(true); PAHWidgets->setCurrentWidget(PAHIntroPage); emit newPAHMessage(introText->text()); qDeleteAll(pahImageInfos); pahImageInfos.clear(); correctionVector = QLineF(); correctionOffset = QPointF(); alignView->setCorrectionParams(correctionVector); alignView->setCorrectionOffset(correctionOffset); alignView->setRACircle(QVector3D()); alignView->setRefreshEnabled(false); emit newFrame(alignView); disconnect(alignView, &AlignView::trackingStarSelected, this, &Ekos::Align::setPAHCorrectionOffset); disconnect(alignView, &AlignView::newCorrectionVector, this, &Ekos::Align::newCorrectionVector); if (Options::pAHAutoPark()) { currentTelescope->Park(); appendLogText(i18n("Parking the mount...")); } state = ALIGN_IDLE; emit newStatus(state); } void Align::rotatePAH() { double raDiff = PAHRotationSpin->value(); bool westMeridian = PAHDirectionCombo->currentIndex() == 0; // West if (westMeridian) raDiff *= -1; // East else raDiff *= 1; // JM 2018-05-03: Hemispheres shouldn't affect rotation direction in RA // if Manual slewing is selected, don't move the mount if (PAHManual->isChecked()) { appendLogText(i18n("Please rotate your mount about %1deg in RA", raDiff )); return; } // raDiff is in degrees dms newTelescopeRA = (telescopeCoord.ra() + dms(raDiff)).reduce(); targetPAH.setRA(newTelescopeRA); targetPAH.setDec(telescopeCoord.dec()); //currentTelescope->Slew(&targetPAH); // Set Selected Speed currentTelescope->setSlewRate(PAHSlewRateCombo->currentIndex()); // Go to direction currentTelescope->MoveWE(westMeridian ? ISD::Telescope::MOTION_WEST : ISD::Telescope::MOTION_EAST, ISD::Telescope::MOTION_START); appendLogText(i18n("Please wait until mount completes rotating to RA (%1) DE (%2)", targetPAH.ra().toHMSString(), targetPAH.dec().toDMSString())); } void Align::calculatePAHError() { QVector3D RACircle; bool rc = findRACircle(RACircle); if (rc == false) { appendLogText(i18n("Failed to find a solution. Try again.")); stopPAHProcess(); return; } if (alignView->isEQGridShown() == false) alignView->toggleEQGrid(); alignView->setRACircle(RACircle); FITSData *imageData = alignView->getImageData(); QPointF RACenterPoint(RACircle.x(), RACircle.y()); SkyPoint RACenter; rc = imageData->pixelToWCS(RACenterPoint, RACenter); if (rc == false) { appendLogText(i18n("Failed to find RA Axis center: %1.", imageData->getLastError())); return; } SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); RACenter.setRA(RACenter.ra0()); RACenter.setDec(RACenter.dec0()); double PA = 0; dms polarError = RACenter.angularDistanceTo(&CP, &PA); if (Options::alignmentLogging()) { qCDebug(KSTARS_EKOS_ALIGN) << "RA Axis Circle X: " << RACircle.x() << " Y: " << RACircle.y() << " Radius: " << RACircle.z(); qCDebug(KSTARS_EKOS_ALIGN) << "RA Axis Location RA: " << RACenter.ra0().toHMSString() << "DE: " << RACenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "RA Axis Offset: " << polarError.toDMSString() << "PA:" << PA; qCDebug(KSTARS_EKOS_ALIGN) << "CP Axis Location X:" << celestialPolePoint.x() << "Y:" << celestialPolePoint.y(); } RACenter.EquatorialToHorizontal(KStarsData::Instance()->lst(), KStarsData::Instance()->geo()->lat()); QString azDirection = RACenter.az().Degrees() < 30 ? "Right" : "Left"; QString atDirection = RACenter.alt().Degrees() < KStarsData::Instance()->geo()->lat()->Degrees() ? "Bottom" : "Top"; // FIXME should this be reversed for southern hemisphere? appendLogText(i18n("Mount axis is to the %1 %2 of the celestial pole", atDirection, azDirection)); PAHErrorLabel->setText(polarError.toDMSString()); // JM 2019-08-17: Flip for southern hemisphere. // Possible fix for: https://indilib.org/forum/ekos/5558-ekos-polar-alignment-vector-backwards.html correctionVector.setP1((hemisphere == NORTH_HEMISPHERE) ? celestialPolePoint : RACenterPoint); correctionVector.setP2((hemisphere == NORTH_HEMISPHERE) ? RACenterPoint : celestialPolePoint); connect(alignView, &AlignView::trackingStarSelected, this, &Ekos::Align::setPAHCorrectionOffset); emit polarResultUpdated(correctionVector, polarError.toDMSString()); connect(alignView, &AlignView::newCorrectionVector, this, &Ekos::Align::newCorrectionVector, Qt::UniqueConnection); emit newCorrectionVector(correctionVector); alignView->setCorrectionParams(correctionVector); emit newFrame(alignView); } void Align::setPAHCorrectionOffsetPercentage(double dx, double dy) { double x = dx * alignView->zoomedWidth() * (alignView->getCurrentZoom() / 100); double y = dy * alignView->zoomedHeight() * (alignView->getCurrentZoom() / 100); setPAHCorrectionOffset(static_cast(round(x)), static_cast(round(y))); } void Align::setPAHCorrectionOffset(int x, int y) { correctionOffset.setX(x); correctionOffset.setY(y); alignView->setCorrectionOffset(correctionOffset); emit newFrame(alignView); } void Align::setPAHCorrectionSelectionComplete() { pahStage = PAH_PRE_REFRESH; emit newPAHStage(pahStage); // If user stops here, we restore the settings, if not we // disable again in the refresh process // and restore when refresh is complete Options::setAstrometrySolverWCS(rememberSolverWCS); Options::setAutoWCS(rememberAutoWCS); PAHWidgets->setCurrentWidget(PAHRefreshPage); emit newPAHMessage(refreshText->text()); } void Align::setPAHSlewDone() { emit newPAHMessage("Manual slew done."); switch(pahStage) { case PAH_FIRST_ROTATE : pahStage = PAH_SECOND_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondCapturePage); appendLogText(i18n("First manual rotation done.")); break; case PAH_SECOND_ROTATE : pahStage = PAH_THIRD_CAPTURE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHThirdCapturePage); appendLogText(i18n("Second manual rotation done.")); break; default : return; // no other stage should be able to trigger this event } if (delaySpin->value() >= DELAY_THRESHOLD_NOTIFY) appendLogText(i18n("Settling...")); m_CaptureTimer.start(delaySpin->value()); } void Align::startPAHRefreshProcess() { qCInfo(KSTARS_EKOS_ALIGN) << "Starting Polar Alignment Assistant refreshing..."; pahStage = PAH_REFRESH; emit newPAHStage(pahStage); PAHRefreshB->setEnabled(false); // Hide EQ Grids if shown if (alignView->isEQGridShown()) alignView->toggleEQGrid(); alignView->setRefreshEnabled(true); Options::setAstrometrySolverWCS(false); Options::setAutoWCS(false); // We for refresh, just capture really captureAndSolve(); } void Align::setPAHRefreshComplete() { abort(); Options::setAstrometrySolverWCS(rememberSolverWCS); Options::setAutoWCS(rememberAutoWCS); stopPAHProcess(); } void Align::processPAHStage(double orientation, double ra, double dec, double pixscale) { //QString newWCSFile = QDir::tempPath() + QString("/fitswcs%1").arg(QUuid::createUuid().toString().remove(QRegularExpression("[-{}]"))); if (pahStage == PAH_FIND_CP) { setSolverAction(GOTO_NOTHING); appendLogText( i18n("Mount is synced to celestial pole. You can now continue Polar Alignment Assistant procedure.")); pahStage = PAH_FIRST_CAPTURE; emit newPAHStage(pahStage); return; } if (pahStage == PAH_FIRST_CAPTURE) { // Set First PAH Center PAHImageInfo *solution = new PAHImageInfo(); solution->skyCenter.setRA0(alignCoord.ra0()); solution->skyCenter.setDec0(alignCoord.dec0()); solution->orientation = orientation; solution->pixelScale = pixscale; pahImageInfos.append(solution); // Only invoke this if limited resource mode is false since we want to use CPU heavy WCS if (Options::limitedResourcesMode() == false) { appendLogText(i18n("Please wait while WCS data is processed...")); connect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled, Qt::UniqueConnection); alignView->injectWCS(orientation, ra, dec, pixscale); return; } pahStage = PAH_FIRST_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHFirstRotatePage); emit newPAHMessage(firstRotateText->text()); rotatePAH(); } else if (pahStage == PAH_SECOND_CAPTURE) { // Set 2nd PAH Center PAHImageInfo *solution = new PAHImageInfo(); solution->skyCenter.setRA0(alignCoord.ra0()); solution->skyCenter.setDec0(alignCoord.dec0()); solution->orientation = orientation; solution->pixelScale = pixscale; pahImageInfos.append(solution); // Only invoke this if limited resource mode is false since we want to use CPU heavy WCS if (Options::limitedResourcesMode() == false) { appendLogText(i18n("Please wait while WCS data is processed...")); connect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled, Qt::UniqueConnection); alignView->injectWCS(orientation, ra, dec, pixscale); return; } pahStage = PAH_SECOND_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondRotatePage); emit newPAHMessage(secondRotateText->text()); rotatePAH(); } else if (pahStage == PAH_THIRD_CAPTURE) { // Set Third PAH Center PAHImageInfo *solution = new PAHImageInfo(); solution->skyCenter.setRA0(alignCoord.ra0()); solution->skyCenter.setDec0(alignCoord.dec0()); solution->orientation = orientation; solution->pixelScale = pixscale; pahImageInfos.append(solution); appendLogText(i18n("Please wait while WCS data is processed...")); connect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled, Qt::UniqueConnection); alignView->injectWCS(orientation, ra, dec, pixscale); return; } } void Align::setWCSToggled(bool result) { appendLogText(i18n("WCS data processing is complete.")); //alignView->disconnect(this); disconnect(alignView, &AlignView::wcsToggled, this, &Ekos::Align::setWCSToggled); if (pahStage == PAH_FIRST_CAPTURE) { // We need WCS to be synced first if (result == false && m_wcsSynced == true) { appendLogText(i18n("WCS info is now valid. Capturing next frame...")); pahImageInfos.clear(); captureAndSolve(); return; } // Find Celestial pole location SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); FITSData *imageData = alignView->getImageData(); QPointF pixelPoint, imagePoint; bool rc = imageData->wcsToPixel(CP, pixelPoint, imagePoint); pahImageInfos[0]->celestialPole = pixelPoint; // TODO check if pixelPoint is located TOO far from the current position as well // i.e. if X > Width * 2..etc if (rc == false) { appendLogText(i18n("Failed to process World Coordinate System: %1. Try again.", imageData->getLastError())); return; } // If celestial pole out of range, ask the user if they want to move to it if (pixelPoint.x() < (-1 * imageData->width()) || pixelPoint.x() > (imageData->width() * 2) || pixelPoint.y() < (-1 * imageData->height()) || pixelPoint.y() > (imageData->height() * 2)) { // JM 2019-11-15: This creates more problems at times, better leave it off #if 0 if (currentTelescope->canSync() && KMessageBox::questionYesNo( nullptr, i18n("Celestial pole is located outside of the field of view. Would you like to sync and slew " "the telescope to the celestial pole? WARNING: Slewing near poles may cause your mount to " "end up in unsafe position. Proceed with caution.")) == KMessageBox::Yes) { pahStage = PAH_FIND_CP; emit newPAHStage(pahStage); targetCoord.setRA(KStarsData::Instance()->lst()->Hours()); targetCoord.setDec(CP.dec().Degrees() > 0 ? 89.5 : -89.5); qDeleteAll(pahImageInfos); pahImageInfos.clear(); setSolverAction(GOTO_SLEW); Sync(); return; } else #endif appendLogText(i18n("Warning: Celestial pole is located outside the field of view. Move the mount closer to the celestial pole.")); } pahStage = PAH_FIRST_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHFirstRotatePage); emit newPAHMessage(firstRotateText->text()); rotatePAH(); } else if (pahStage == PAH_SECOND_CAPTURE) { // Find Celestial pole location SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); FITSData *imageData = alignView->getImageData(); QPointF pixelPoint, imagePoint; imageData->wcsToPixel(CP, pixelPoint, imagePoint); pahImageInfos[1]->celestialPole = pixelPoint; pahStage = PAH_SECOND_ROTATE; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHSecondRotatePage); emit newPAHMessage(secondRotateText->text()); rotatePAH(); } else if (pahStage == PAH_THIRD_CAPTURE) { FITSData *imageData = alignView->getImageData(); // Critical error if (result == false) { appendLogText(i18n("Failed to process World Coordinate System: %1. Try again.", imageData->getLastError())); return; } // Find Celestial pole location SkyPoint CP(0, (hemisphere == NORTH_HEMISPHERE) ? 90 : -90); QPointF imagePoint; imageData->wcsToPixel(CP, celestialPolePoint, imagePoint); pahImageInfos[2]->celestialPole = celestialPolePoint; // Now find pixel locations for all recorded center coordinates in the 3rd frame reference imageData->wcsToPixel(pahImageInfos[0]->skyCenter, pahImageInfos[0]->pixelCenter, imagePoint); imageData->wcsToPixel(pahImageInfos[1]->skyCenter, pahImageInfos[1]->pixelCenter, imagePoint); imageData->wcsToPixel(pahImageInfos[2]->skyCenter, pahImageInfos[2]->pixelCenter, imagePoint); qCDebug(KSTARS_EKOS_ALIGN) << "P1 RA: " << pahImageInfos[0]->skyCenter.ra0().toHMSString() << "DE: " << pahImageInfos[0]->skyCenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "P2 RA: " << pahImageInfos[1]->skyCenter.ra0().toHMSString() << "DE: " << pahImageInfos[1]->skyCenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "P3 RA: " << pahImageInfos[2]->skyCenter.ra0().toHMSString() << "DE: " << pahImageInfos[2]->skyCenter.dec0().toDMSString(); qCDebug(KSTARS_EKOS_ALIGN) << "P1 X: " << pahImageInfos[0]->pixelCenter.x() << "Y: " << pahImageInfos[0]->pixelCenter.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P2 X: " << pahImageInfos[1]->pixelCenter.x() << "Y: " << pahImageInfos[1]->pixelCenter.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P3 X: " << pahImageInfos[2]->pixelCenter.x() << "Y: " << pahImageInfos[2]->pixelCenter.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P1 CP X: " << pahImageInfos[0]->celestialPole.x() << "CP Y: " << pahImageInfos[0]->celestialPole.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P2 CP X: " << pahImageInfos[1]->celestialPole.x() << "CP Y: " << pahImageInfos[1]->celestialPole.y(); qCDebug(KSTARS_EKOS_ALIGN) << "P3 CP X: " << pahImageInfos[2]->celestialPole.x() << "CP Y: " << pahImageInfos[2]->celestialPole.y(); // We have 3 points which uniquely defines a circle with its center representing the RA Axis // We have celestial pole location. So correction vector is just the vector between these two points calculatePAHError(); pahStage = PAH_STAR_SELECT; emit newPAHStage(pahStage); PAHWidgets->setCurrentWidget(PAHCorrectionPage); emit newPAHMessage(correctionText->text()); } } void Align::updateTelescopeType(int index) { if (currentCCD == nullptr) return; syncSettings(); focal_length = (index == ISD::CCD::TELESCOPE_PRIMARY) ? primaryFL : guideFL; aperture = (index == ISD::CCD::TELESCOPE_PRIMARY) ? primaryAperture : guideAperture; Options::setSolverScopeType(index); syncTelescopeInfo(); } // Function adapted from https://rosettacode.org/wiki/Circles_of_given_radius_through_two_points Align::CircleSolution Align::findCircleSolutions(const QPointF &p1, const QPointF p2, double angle, QPair &circleSolutions) { QPointF solutionOne(1, 1), solutionTwo(1, 1); double radius = distance(p1, p2) / (dms::DegToRad * angle); if (p1 == p2) { if (angle == 0) { circleSolutions = qMakePair(p1, p2); appendLogText(i18n("Only one solution is found.")); return ONE_CIRCLE_SOLUTION; } else { circleSolutions = qMakePair(solutionOne, solutionTwo); appendLogText(i18n("Infinite number of solutions found.")); return INFINITE_CIRCLE_SOLUTION; } } QPointF center(p1.x() / 2 + p2.x() / 2, p1.y() / 2 + p2.y() / 2); double halfDistance = distance(center, p1); if (halfDistance > radius) { circleSolutions = qMakePair(solutionOne, solutionTwo); appendLogText(i18n("No solution is found. Points are too far away")); return NO_CIRCLE_SOLUTION; } if (halfDistance - radius == 0) { circleSolutions = qMakePair(center, solutionTwo); appendLogText(i18n("Only one solution is found.")); return ONE_CIRCLE_SOLUTION; } double root = std::hypotf(radius, halfDistance) / distance(p1, p2); solutionOne.setX(center.x() + root * (p1.y() - p2.y())); solutionOne.setY(center.y() + root * (p2.x() - p1.x())); solutionTwo.setX(center.x() - root * (p1.y() - p2.y())); solutionTwo.setY(center.y() - root * (p2.x() - p1.x())); circleSolutions = qMakePair(solutionOne, solutionTwo); return TWO_CIRCLE_SOLUTION; } double Align::distance(const QPointF &p1, const QPointF &p2) { return std::hypotf(p2.x() - p1.x(), p2.y() - p1.y()); } bool Align::findRACircle(QVector3D &RACircle) { bool rc = false; QPointF p1 = pahImageInfos[0]->pixelCenter; QPointF p2 = pahImageInfos[1]->pixelCenter; QPointF p3 = pahImageInfos[2]->pixelCenter; if (!isPerpendicular(p1, p2, p3)) rc = calcCircle(p1, p2, p3, RACircle); else if (!isPerpendicular(p1, p3, p2)) rc = calcCircle(p1, p3, p2, RACircle); else if (!isPerpendicular(p2, p1, p3)) rc = calcCircle(p2, p1, p3, RACircle); else if (!isPerpendicular(p2, p3, p1)) rc = calcCircle(p2, p3, p1, RACircle); else if (!isPerpendicular(p3, p2, p1)) rc = calcCircle(p3, p2, p1, RACircle); else if (!isPerpendicular(p3, p1, p2)) rc = calcCircle(p3, p1, p2, RACircle); else { //TRACE("\nThe three pts are perpendicular to axis\n"); return false; } return rc; } bool Align::isPerpendicular(const QPointF &p1, const QPointF &p2, const QPointF &p3) // Check the given point are perpendicular to x or y axis { double yDelta_a = p2.y() - p1.y(); double xDelta_a = p2.x() - p1.x(); double yDelta_b = p3.y() - p2.y(); double xDelta_b = p3.x() - p2.x(); // checking whether the line of the two pts are vertical if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001) { //TRACE("The points are perpendicular and parallel to x-y axis\n"); return false; } if (fabs(yDelta_a) <= 0.0000001) { //TRACE(" A line of two point are perpendicular to x-axis 1\n"); return true; } else if (fabs(yDelta_b) <= 0.0000001) { //TRACE(" A line of two point are perpendicular to x-axis 2\n"); return true; } else if (fabs(xDelta_a) <= 0.000000001) { //TRACE(" A line of two point are perpendicular to y-axis 1\n"); return true; } else if (fabs(xDelta_b) <= 0.000000001) { //TRACE(" A line of two point are perpendicular to y-axis 2\n"); return true; } else return false; } bool Align::calcCircle(const QPointF &p1, const QPointF &p2, const QPointF &p3, QVector3D &RACircle) { double yDelta_a = p2.y() - p1.y(); double xDelta_a = p2.x() - p1.x(); double yDelta_b = p3.y() - p2.y(); double xDelta_b = p3.x() - p2.x(); if (fabs(xDelta_a) <= 0.000000001 && fabs(yDelta_b) <= 0.000000001) { RACircle.setX(0.5 * (p2.x() + p3.x())); RACircle.setY(0.5 * (p1.y() + p2.y())); QPointF center(RACircle.x(), RACircle.y()); RACircle.setZ(distance(center, p1)); return true; } // IsPerpendicular() assure that xDelta(s) are not zero double aSlope = yDelta_a / xDelta_a; // double bSlope = yDelta_b / xDelta_b; if (fabs(aSlope - bSlope) <= 0.000000001) { // checking whether the given points are colinear. //TRACE("The three ps are colinear\n"); return false; } // calc center RACircle.setX((aSlope * bSlope * (p1.y() - p3.y()) + bSlope * (p1.x() + p2.x()) - aSlope * (p2.x() + p3.x())) / (2 * (bSlope - aSlope))); RACircle.setY(-1 * (RACircle.x() - (p1.x() + p2.x()) / 2) / aSlope + (p1.y() + p2.y()) / 2); QPointF center(RACircle.x(), RACircle.y()); RACircle.setZ(distance(center, p1)); return true; } void Align::setMountStatus(ISD::Telescope::Status newState) { switch (newState) { case ISD::Telescope::MOUNT_PARKING: case ISD::Telescope::MOUNT_SLEWING: case ISD::Telescope::MOUNT_MOVING: solveB->setEnabled(false); loadSlewB->setEnabled(false); PAHStartB->setEnabled(false); break; default: if (state != ALIGN_PROGRESS) { solveB->setEnabled(true); if (pahStage == PAH_IDLE) { PAHStartB->setEnabled(true); loadSlewB->setEnabled(true); } } break; } } void Align::setAstrometryDevice(ISD::GDInterface *newAstrometry) { remoteParserDevice = newAstrometry; if (remoteParser.get() != nullptr) { remoteParser->setAstrometryDevice(remoteParserDevice); connect(remoteParser.get(), &AstrometryParser::solverFinished, this, &Ekos::Align::solverFinished, Qt::UniqueConnection); connect(remoteParser.get(), &AstrometryParser::solverFailed, this, &Ekos::Align::solverFailed, Qt::UniqueConnection); } } void Align::setRotator(ISD::GDInterface *newRotator) { currentRotator = newRotator; connect(currentRotator, &ISD::GDInterface::numberUpdated, this, &Ekos::Align::processNumber, Qt::UniqueConnection); } void Align::refreshAlignOptions() { solverFOV->setImageDisplay(Options::astrometrySolverWCS()); m_AlignTimer.setInterval(Options::astrometryTimeout() * 1000); } void Align::setFilterManager(const QSharedPointer &manager) { filterManager = manager; connect(filterManager.data(), &FilterManager::ready, [this]() { if (filterPositionPending) { focusState = FOCUS_IDLE; filterPositionPending = false; captureAndSolve(); } } ); connect(filterManager.data(), &FilterManager::failed, [this]() { appendLogText(i18n("Filter operation failed.")); abort(); } ); connect(filterManager.data(), &FilterManager::newStatus, [this](Ekos::FilterState filterState) { if (filterPositionPending) { switch (filterState) { case FILTER_OFFSET: appendLogText(i18n("Changing focus offset by %1 steps...", filterManager->getTargetFilterOffset())); break; case FILTER_CHANGE: appendLogText(i18n("Changing filter to %1...", FilterPosCombo->itemText(filterManager->getTargetFilterPosition() - 1))); break; case FILTER_AUTOFOCUS: appendLogText(i18n("Auto focus on filter change...")); break; default: break; } } }); connect(filterManager.data(), &FilterManager::labelsChanged, this, [this]() { checkFilter(); }); connect(filterManager.data(), &FilterManager::positionChanged, this, [this]() { checkFilter(); }); } QVariantMap Align::getEffectiveFOV() { KStarsData::Instance()->userdb()->GetAllEffectiveFOVs(effectiveFOVs); fov_x = fov_y = 0; for (auto &map : effectiveFOVs) { if (map["Profile"].toString() == m_ActiveProfile->name) { if (map["Width"].toInt() == ccd_width && map["Height"].toInt() == ccd_height && map["PixelW"].toDouble() == ccd_hor_pixel && map["PixelH"].toDouble() == ccd_ver_pixel && map["FocalLength"].toDouble() == focal_length) { fov_x = map["FovW"].toDouble(); fov_y = map["FovH"].toDouble(); return map; } } } return QVariantMap(); } void Align::saveNewEffectiveFOV(double newFOVW, double newFOVH) { if (newFOVW < 0 || newFOVH < 0 || (newFOVW == fov_x && newFOVH == fov_y)) return; QVariantMap effectiveMap = getEffectiveFOV(); // If ID exists, delete it first. if (effectiveMap.isEmpty() == false) KStarsData::Instance()->userdb()->DeleteEffectiveFOV(effectiveMap["id"].toString()); // If FOV is 0x0, then we just remove existing effective FOV if (newFOVW == 0.0 && newFOVH == 0.0) { calculateFOV(); return; } effectiveMap["Profile"] = m_ActiveProfile->name; effectiveMap["Width"] = ccd_width; effectiveMap["Height"] = ccd_height; effectiveMap["PixelW"] = ccd_hor_pixel; effectiveMap["PixelH"] = ccd_ver_pixel; effectiveMap["FocalLength"] = focal_length; effectiveMap["FovW"] = newFOVW; effectiveMap["FovH"] = newFOVH; KStarsData::Instance()->userdb()->AddEffectiveFOV(effectiveMap); calculateFOV(); } QStringList Align::getActiveSolvers() const { QStringList solvers; solvers << "Online"; #ifndef Q_OS_WIN solvers << "Offline"; #endif if (remoteParserDevice != nullptr) solvers << "Remote"; return solvers; } int Align::getActiveSolverIndex() const { return solverBackendGroup->checkedId(); } QString Align::getPAHMessage() const { switch (pahStage) { case PAH_IDLE: case PAH_FIND_CP: return introText->text(); case PAH_FIRST_CAPTURE: return firstCaptureText->text(); case PAH_FIRST_ROTATE: return firstRotateText->text(); case PAH_SECOND_CAPTURE: return secondCaptureText->text(); case PAH_SECOND_ROTATE: return secondRotateText->text(); case PAH_THIRD_CAPTURE: return thirdCaptureText->text(); case PAH_STAR_SELECT: return correctionText->text(); case PAH_PRE_REFRESH: case PAH_REFRESH: return refreshText->text(); case PAH_ERROR: return PAHErrorDescriptionLabel->text(); } return QString(); } void Align::zoomAlignView() { alignView->ZoomDefault(); emit newFrame(alignView); } QJsonObject Align::getSettings() const { QJsonObject settings; settings.insert("camera", CCDCaptureCombo->currentText()); settings.insert("fw", FilterDevicesCombo->currentText()); settings.insert("filter", FilterPosCombo->currentText()); settings.insert("exp", exposureIN->value()); settings.insert("bin", qMax(1, binningCombo->currentIndex() + 1)); settings.insert("solverAction", gotoModeButtonGroup->checkedId()); settings.insert("solverBackend", solverBackendGroup->checkedId()); settings.insert("solverType", astrometryTypeCombo->currentIndex()); settings.insert("scopeType", FOVScopeCombo->currentIndex()); return settings; } void Align::setSettings(const QJsonObject &settings) { CCDCaptureCombo->setCurrentText(settings["camera"].toString()); FilterDevicesCombo->setCurrentText(settings["fw"].toString()); FilterPosCombo->setCurrentText(settings["filter"].toString()); Options::setLockAlignFilterIndex(FilterPosCombo->currentIndex()); exposureIN->setValue(settings["exp"].toDouble(1)); binningCombo->setCurrentIndex(settings["bin"].toInt() - 1); gotoModeButtonGroup->button(settings["solverAction"].toInt(1))->click(); int solverBackend = settings["solverBackend"].toInt(1); int solverType = settings["solverType"].toInt(1); if (solverBackend == SOLVER_ASTROMETRYNET) { Options::setAstrometrySolverType(solverType); astrometryTypeCombo->setCurrentIndex(solverType); solverBackendGroup->button(SOLVER_ASTROMETRYNET)->animateClick(); } else { solverBackendGroup->button(SOLVER_ASTAP)->animateClick(); } FOVScopeCombo->setCurrentIndex(settings["scopeType"].toInt(0)); } void Align::syncSettings() { emit settingsUpdated(getSettings()); } QJsonObject Align::getPAHSettings() const { QJsonObject settings = getSettings(); settings.insert("mountDirection", PAHDirectionCombo->currentIndex()); settings.insert("mountSpeed", PAHSlewRateCombo->currentIndex()); settings.insert("mountRotation", PAHRotationSpin->value()); settings.insert("refresh", PAHExposure->value()); settings.insert("manualslew", PAHManual->isChecked()); return settings; } void Align::setPAHSettings(const QJsonObject &settings) { setSettings(settings); PAHDirectionCombo->setCurrentIndex(settings["mountDirection"].toInt(0)); PAHRotationSpin->setValue(settings["mountRotation"].toInt(30)); PAHExposure->setValue(settings["refresh"].toDouble(1)); if (settings.contains("mountSpeed")) PAHSlewRateCombo->setCurrentIndex(settings["mountSpeed"].toInt(0)); PAHManual->setChecked(settings["manualslew"].toBool(false)); } void Align::syncFOV() { QString newFOV = FOVOut->text(); QRegularExpression re("(\\d+\\.*\\d*)\\D*x\\D*(\\d+\\.*\\d*)"); QRegularExpressionMatch match = re.match(newFOV); if (match.hasMatch()) { double newFOVW = match.captured(1).toDouble(); double newFOVH = match.captured(2).toDouble(); //if (newFOVW > 0 && newFOVH > 0) saveNewEffectiveFOV(newFOVW, newFOVH); FOVOut->setStyleSheet(QString()); } else { KSNotification::error(i18n("Invalid FOV.")); FOVOut->setStyleSheet("background-color:red"); } } }