diff --git a/plugins/scenes/opengl/scene_opengl.cpp b/plugins/scenes/opengl/scene_opengl.cpp index bafc57533..13786a0d9 100644 --- a/plugins/scenes/opengl/scene_opengl.cpp +++ b/plugins/scenes/opengl/scene_opengl.cpp @@ -1,2759 +1,2728 @@ /******************************************************************** KWin - the KDE window manager This file is part of the KDE project. Copyright (C) 2006 Lubos Lunak Copyright (C) 2009, 2010, 2011 Martin Gräßlin Copyright (C) 2019 Vlad Zahorodnii Based on glcompmgr code by Felix Bellaby. Using code from Compiz and Beryl. Explicit command stream synchronization based on the sample implementation by James Jones , Copyright © 2011 NVIDIA Corporation This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . *********************************************************************/ #include "scene_opengl.h" #include "platform.h" #include "wayland_server.h" #include "platformsupport/scenes/opengl/texture.h" #include #include #include "utils.h" #include "x11client.h" #include "composite.h" #include "deleted.h" #include "effects.h" #include "lanczosfilter.h" #include "main.h" #include "overlaywindow.h" #include "screens.h" #include "cursor.h" #include "decorations/decoratedclient.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // HACK: workaround for libepoxy < 1.3 #ifndef GL_GUILTY_CONTEXT_RESET #define GL_GUILTY_CONTEXT_RESET 0x8253 #endif #ifndef GL_INNOCENT_CONTEXT_RESET #define GL_INNOCENT_CONTEXT_RESET 0x8254 #endif #ifndef GL_UNKNOWN_CONTEXT_RESET #define GL_UNKNOWN_CONTEXT_RESET 0x8255 #endif namespace KWin { extern int currentRefreshRate(); /** * SyncObject represents a fence used to synchronize operations in * the kwin command stream with operations in the X command stream. */ class SyncObject { public: enum State { Ready, TriggerSent, Waiting, Done, Resetting }; SyncObject(); ~SyncObject(); State state() const { return m_state; } void trigger(); void wait(); bool finish(); void reset(); void finishResetting(); private: State m_state; GLsync m_sync; xcb_sync_fence_t m_fence; xcb_get_input_focus_cookie_t m_reset_cookie; }; SyncObject::SyncObject() { m_state = Ready; xcb_connection_t * const c = connection(); m_fence = xcb_generate_id(c); xcb_sync_create_fence(c, rootWindow(), m_fence, false); xcb_flush(c); m_sync = glImportSyncEXT(GL_SYNC_X11_FENCE_EXT, m_fence, 0); } SyncObject::~SyncObject() { // If glDeleteSync is called before the xcb fence is signalled // the nvidia driver (the only one to implement GL_SYNC_X11_FENCE_EXT) // deadlocks waiting for the fence to be signalled. // To avoid this, make sure the fence is signalled before // deleting the sync. if (m_state == Resetting || m_state == Ready){ trigger(); // The flush is necessary! // The trigger command needs to be sent to the X server. xcb_flush(connection()); } xcb_sync_destroy_fence(connection(), m_fence); glDeleteSync(m_sync); if (m_state == Resetting) xcb_discard_reply(connection(), m_reset_cookie.sequence); } void SyncObject::trigger() { Q_ASSERT(m_state == Ready || m_state == Resetting); // Finish resetting the fence if necessary if (m_state == Resetting) finishResetting(); xcb_sync_trigger_fence(connection(), m_fence); m_state = TriggerSent; } void SyncObject::wait() { if (m_state != TriggerSent) return; glWaitSync(m_sync, 0, GL_TIMEOUT_IGNORED); m_state = Waiting; } bool SyncObject::finish() { if (m_state == Done) return true; // Note: It is possible that we never inserted a wait for the fence. // This can happen if we ended up not rendering the damaged // window because it is fully occluded. Q_ASSERT(m_state == TriggerSent || m_state == Waiting); // Check if the fence is signaled GLint value; glGetSynciv(m_sync, GL_SYNC_STATUS, 1, nullptr, &value); if (value != GL_SIGNALED) { qCDebug(KWIN_OPENGL) << "Waiting for X fence to finish"; // Wait for the fence to become signaled with a one second timeout const GLenum result = glClientWaitSync(m_sync, 0, 1000000000); switch (result) { case GL_TIMEOUT_EXPIRED: qCWarning(KWIN_OPENGL) << "Timeout while waiting for X fence"; return false; case GL_WAIT_FAILED: qCWarning(KWIN_OPENGL) << "glClientWaitSync() failed"; return false; } } m_state = Done; return true; } void SyncObject::reset() { Q_ASSERT(m_state == Done); xcb_connection_t * const c = connection(); // Send the reset request along with a sync request. // We use the cookie to ensure that the server has processed the reset // request before we trigger the fence and call glWaitSync(). // Otherwise there is a race condition between the reset finishing and // the glWaitSync() call. xcb_sync_reset_fence(c, m_fence); m_reset_cookie = xcb_get_input_focus(c); xcb_flush(c); m_state = Resetting; } void SyncObject::finishResetting() { Q_ASSERT(m_state == Resetting); free(xcb_get_input_focus_reply(connection(), m_reset_cookie, nullptr)); m_state = Ready; } // ----------------------------------------------------------------------- /** * SyncManager manages a set of fences used for explicit synchronization * with the X command stream. */ class SyncManager { public: enum { MaxFences = 4 }; SyncManager(); ~SyncManager(); SyncObject *nextFence(); bool updateFences(); private: std::array m_fences; int m_next; }; SyncManager::SyncManager() : m_next(0) { } SyncManager::~SyncManager() { } SyncObject *SyncManager::nextFence() { SyncObject *fence = &m_fences[m_next]; m_next = (m_next + 1) % MaxFences; return fence; } bool SyncManager::updateFences() { for (int i = 0; i < qMin(2, MaxFences - 1); i++) { const int index = (m_next + i) % MaxFences; SyncObject &fence = m_fences[index]; switch (fence.state()) { case SyncObject::Ready: break; case SyncObject::TriggerSent: case SyncObject::Waiting: if (!fence.finish()) return false; fence.reset(); break; // Should not happen in practice since we always reset the fence // after finishing it case SyncObject::Done: fence.reset(); break; case SyncObject::Resetting: fence.finishResetting(); break; } } return true; } // ----------------------------------------------------------------------- /************************************************ * SceneOpenGL ***********************************************/ SceneOpenGL::SceneOpenGL(OpenGLBackend *backend, QObject *parent) : Scene(parent) , init_ok(true) , m_backend(backend) , m_syncManager(nullptr) , m_currentFence(nullptr) { if (m_backend->isFailed()) { init_ok = false; return; } if (!viewportLimitsMatched(screens()->size())) return; // perform Scene specific checks GLPlatform *glPlatform = GLPlatform::instance(); if (!glPlatform->isGLES() && !hasGLExtension(QByteArrayLiteral("GL_ARB_texture_non_power_of_two")) && !hasGLExtension(QByteArrayLiteral("GL_ARB_texture_rectangle"))) { qCCritical(KWIN_OPENGL) << "GL_ARB_texture_non_power_of_two and GL_ARB_texture_rectangle missing"; init_ok = false; return; // error } if (glPlatform->isMesaDriver() && glPlatform->mesaVersion() < kVersionNumber(10, 0)) { qCCritical(KWIN_OPENGL) << "KWin requires at least Mesa 10.0 for OpenGL compositing."; init_ok = false; return; } m_debug = qstrcmp(qgetenv("KWIN_GL_DEBUG"), "1") == 0; initDebugOutput(); // set strict binding if (options->isGlStrictBindingFollowsDriver()) { options->setGlStrictBinding(!glPlatform->supports(LooseBinding)); } bool haveSyncObjects = glPlatform->isGLES() ? hasGLVersion(3, 0) : hasGLVersion(3, 2) || hasGLExtension("GL_ARB_sync"); if (hasGLExtension("GL_EXT_x11_sync_object") && haveSyncObjects && kwinApp()->operationMode() == Application::OperationModeX11) { const QByteArray useExplicitSync = qgetenv("KWIN_EXPLICIT_SYNC"); if (useExplicitSync != "0") { qCDebug(KWIN_OPENGL) << "Initializing fences for synchronization with the X command stream"; m_syncManager = new SyncManager; } else { qCDebug(KWIN_OPENGL) << "Explicit synchronization with the X command stream disabled by environment variable"; } } } -static SceneOpenGL *gs_debuggedScene = nullptr; SceneOpenGL::~SceneOpenGL() { - // do cleanup after initBuffer() - gs_debuggedScene = nullptr; - if (init_ok) { makeOpenGLContextCurrent(); } SceneOpenGL::EffectFrame::cleanup(); delete m_syncManager; // backend might be still needed for a different scene delete m_backend; } -static void scheduleVboReInit() -{ - if (!gs_debuggedScene) - return; - - static QPointer timer; - if (!timer) { - delete timer; - timer = new QTimer(gs_debuggedScene); - timer->setSingleShot(true); - QObject::connect(timer.data(), &QTimer::timeout, gs_debuggedScene, []() { - GLVertexBuffer::cleanup(); - GLVertexBuffer::initStatic(); - }); - } - timer->start(250); -} void SceneOpenGL::initDebugOutput() { const bool have_KHR_debug = hasGLExtension(QByteArrayLiteral("GL_KHR_debug")); const bool have_ARB_debug = hasGLExtension(QByteArrayLiteral("GL_ARB_debug_output")); if (!have_KHR_debug && !have_ARB_debug) return; if (!have_ARB_debug) { // if we don't have ARB debug, but only KHR debug we need to verify whether the context is a debug context // it should work without as well, but empirical tests show: no it doesn't if (GLPlatform::instance()->isGLES()) { if (!hasGLVersion(3, 2)) { // empirical data shows extension doesn't work return; } } else if (!hasGLVersion(3, 0)) { return; } // can only be queried with either OpenGL >= 3.0 or OpenGL ES of at least 3.1 GLint value = 0; glGetIntegerv(GL_CONTEXT_FLAGS, &value); if (!(value & GL_CONTEXT_FLAG_DEBUG_BIT)) { return; } } - gs_debuggedScene = this; - // Set the callback function auto callback = [](GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const GLvoid *userParam) { Q_UNUSED(source) Q_UNUSED(severity) Q_UNUSED(userParam) while (message[length] == '\n' || message[length] == '\r') --length; switch (type) { case GL_DEBUG_TYPE_ERROR: case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR: qCWarning(KWIN_OPENGL, "%#x: %.*s", id, length, message); break; case GL_DEBUG_TYPE_OTHER: - // at least the nvidia driver seems prone to end up with invalid VBOs after - // transferring them between system heap and VRAM - // so we re-init them whenever this happens (typically when switching VT, resuming - // from STR and XRandR events - #344326 - if (strstr(message, "Buffer detailed info:") && strstr(message, "has been updated")) - scheduleVboReInit(); - // fall through! for general message printing - Q_FALLTHROUGH(); case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR: case GL_DEBUG_TYPE_PORTABILITY: case GL_DEBUG_TYPE_PERFORMANCE: default: qCDebug(KWIN_OPENGL, "%#x: %.*s", id, length, message); break; } }; glDebugMessageCallback(callback, nullptr); // This state exists only in GL_KHR_debug if (have_KHR_debug) glEnable(GL_DEBUG_OUTPUT); #if !defined(QT_NO_DEBUG) // Enable all debug messages glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, nullptr, GL_TRUE); #else // Enable error messages glDebugMessageControl(GL_DONT_CARE, GL_DEBUG_TYPE_ERROR, GL_DONT_CARE, 0, nullptr, GL_TRUE); glDebugMessageControl(GL_DONT_CARE, GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR, GL_DONT_CARE, 0, nullptr, GL_TRUE); #endif // Insert a test message const QByteArray message = QByteArrayLiteral("OpenGL debug output initialized"); glDebugMessageInsert(GL_DEBUG_SOURCE_APPLICATION, GL_DEBUG_TYPE_OTHER, 0, GL_DEBUG_SEVERITY_LOW, message.length(), message.constData()); } SceneOpenGL *SceneOpenGL::createScene(QObject *parent) { OpenGLBackend *backend = kwinApp()->platform()->createOpenGLBackend(); if (!backend) { return nullptr; } if (!backend->isFailed()) { backend->init(); } if (backend->isFailed()) { delete backend; return nullptr; } SceneOpenGL *scene = nullptr; // first let's try an OpenGL 2 scene if (SceneOpenGL2::supported(backend)) { scene = new SceneOpenGL2(backend, parent); if (scene->initFailed()) { delete scene; scene = nullptr; } else { return scene; } } if (!scene) { if (GLPlatform::instance()->recommendedCompositor() == XRenderCompositing) { qCCritical(KWIN_OPENGL) << "OpenGL driver recommends XRender based compositing. Falling back to XRender."; qCCritical(KWIN_OPENGL) << "To overwrite the detection use the environment variable KWIN_COMPOSE"; qCCritical(KWIN_OPENGL) << "For more information see https://community.kde.org/KWin/Environment_Variables#KWIN_COMPOSE"; } delete backend; } return scene; } OverlayWindow *SceneOpenGL::overlayWindow() const { return m_backend->overlayWindow(); } bool SceneOpenGL::hasSwapEvent() const { return m_backend->hasSwapEvent(); } void SceneOpenGL::idle() { m_backend->idle(); Scene::idle(); } bool SceneOpenGL::initFailed() const { return !init_ok; } void SceneOpenGL::handleGraphicsReset(GLenum status) { switch (status) { case GL_GUILTY_CONTEXT_RESET: qCDebug(KWIN_OPENGL) << "A graphics reset attributable to the current GL context occurred."; break; case GL_INNOCENT_CONTEXT_RESET: qCDebug(KWIN_OPENGL) << "A graphics reset not attributable to the current GL context occurred."; break; case GL_UNKNOWN_CONTEXT_RESET: qCDebug(KWIN_OPENGL) << "A graphics reset of an unknown cause occurred."; break; default: break; } QElapsedTimer timer; timer.start(); // Wait until the reset is completed or max 10 seconds while (timer.elapsed() < 10000 && glGetGraphicsResetStatus() != GL_NO_ERROR) usleep(50); qCDebug(KWIN_OPENGL) << "Attempting to reset compositing."; QMetaObject::invokeMethod(this, "resetCompositing", Qt::QueuedConnection); KNotification::event(QStringLiteral("graphicsreset"), i18n("Desktop effects were restarted due to a graphics reset")); } void SceneOpenGL::triggerFence() { if (m_syncManager) { m_currentFence = m_syncManager->nextFence(); m_currentFence->trigger(); } } void SceneOpenGL::insertWait() { if (m_currentFence && m_currentFence->state() != SyncObject::Waiting) { m_currentFence->wait(); } } /** * Render cursor texture in case hardware cursor is disabled. * Useful for screen recording apps or backends that can't do planes. */ void SceneOpenGL2::paintCursor() { // don't paint if we use hardware cursor or the cursor is hidden if (!kwinApp()->platform()->usesSoftwareCursor() || kwinApp()->platform()->isCursorHidden() || kwinApp()->platform()->softwareCursor().isNull()) { return; } // lazy init texture cursor only in case we need software rendering if (!m_cursorTexture) { auto updateCursorTexture = [this] { // don't paint if no image for cursor is set const QImage img = kwinApp()->platform()->softwareCursor(); if (img.isNull()) { return; } m_cursorTexture.reset(new GLTexture(img)); }; // init now updateCursorTexture(); // handle shape update on case cursor image changed connect(kwinApp()->platform(), &Platform::cursorChanged, this, updateCursorTexture); } // get cursor position in projection coordinates const QPoint cursorPos = Cursor::pos() - kwinApp()->platform()->softwareCursorHotspot(); const QRect cursorRect(0, 0, m_cursorTexture->width(), m_cursorTexture->height()); QMatrix4x4 mvp = m_projectionMatrix; mvp.translate(cursorPos.x(), cursorPos.y()); // handle transparence glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // paint texture in cursor offset m_cursorTexture->bind(); ShaderBinder binder(ShaderTrait::MapTexture); binder.shader()->setUniform(GLShader::ModelViewProjectionMatrix, mvp); m_cursorTexture->render(QRegion(cursorRect), cursorRect); m_cursorTexture->unbind(); kwinApp()->platform()->markCursorAsRendered(); glDisable(GL_BLEND); } qint64 SceneOpenGL::paint(QRegion damage, QList toplevels) { // actually paint the frame, flushed with the NEXT frame createStackingOrder(toplevels); // After this call, updateRegion will contain the damaged region in the // back buffer. This is the region that needs to be posted to repair // the front buffer. It doesn't include the additional damage returned // by prepareRenderingFrame(). validRegion is the region that has been // repainted, and may be larger than updateRegion. QRegion updateRegion, validRegion; if (m_backend->perScreenRendering()) { // trigger start render timer m_backend->prepareRenderingFrame(); for (int i = 0; i < screens()->count(); ++i) { const QRect &geo = screens()->geometry(i); QRegion update; QRegion valid; // prepare rendering makes context current on the output QRegion repaint = m_backend->prepareRenderingForScreen(i); GLVertexBuffer::setVirtualScreenGeometry(geo); GLRenderTarget::setVirtualScreenGeometry(geo); GLVertexBuffer::setVirtualScreenScale(screens()->scale(i)); GLRenderTarget::setVirtualScreenScale(screens()->scale(i)); const GLenum status = glGetGraphicsResetStatus(); if (status != GL_NO_ERROR) { handleGraphicsReset(status); return 0; } int mask = 0; updateProjectionMatrix(); paintScreen(&mask, damage.intersected(geo), repaint, &update, &valid, projectionMatrix(), geo); // call generic implementation paintCursor(); GLVertexBuffer::streamingBuffer()->endOfFrame(); m_backend->endRenderingFrameForScreen(i, valid, update); GLVertexBuffer::streamingBuffer()->framePosted(); } } else { m_backend->makeCurrent(); QRegion repaint = m_backend->prepareRenderingFrame(); const GLenum status = glGetGraphicsResetStatus(); if (status != GL_NO_ERROR) { handleGraphicsReset(status); return 0; } GLVertexBuffer::setVirtualScreenGeometry(screens()->geometry()); GLRenderTarget::setVirtualScreenGeometry(screens()->geometry()); GLVertexBuffer::setVirtualScreenScale(1); GLRenderTarget::setVirtualScreenScale(1); int mask = 0; updateProjectionMatrix(); paintScreen(&mask, damage, repaint, &updateRegion, &validRegion, projectionMatrix()); // call generic implementation if (!GLPlatform::instance()->isGLES()) { const QSize &screenSize = screens()->size(); const QRegion displayRegion(0, 0, screenSize.width(), screenSize.height()); // copy dirty parts from front to backbuffer if (!m_backend->supportsBufferAge() && options->glPreferBufferSwap() == Options::CopyFrontBuffer && validRegion != displayRegion) { glReadBuffer(GL_FRONT); m_backend->copyPixels(displayRegion - validRegion); glReadBuffer(GL_BACK); validRegion = displayRegion; } } GLVertexBuffer::streamingBuffer()->endOfFrame(); m_backend->endRenderingFrame(validRegion, updateRegion); GLVertexBuffer::streamingBuffer()->framePosted(); } if (m_currentFence) { if (!m_syncManager->updateFences()) { qCDebug(KWIN_OPENGL) << "Aborting explicit synchronization with the X command stream."; qCDebug(KWIN_OPENGL) << "Future frames will be rendered unsynchronized."; delete m_syncManager; m_syncManager = nullptr; } m_currentFence = nullptr; } // do cleanup clearStackingOrder(); return m_backend->renderTime(); } QMatrix4x4 SceneOpenGL::transformation(int mask, const ScreenPaintData &data) const { QMatrix4x4 matrix; if (!(mask & PAINT_SCREEN_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation->applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } void SceneOpenGL::paintBackground(QRegion region) { PaintClipper pc(region); if (!PaintClipper::clip()) { glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT); return; } if (pc.clip() && pc.paintArea().isEmpty()) return; // no background to paint QVector verts; for (PaintClipper::Iterator iterator; !iterator.isDone(); iterator.next()) { QRect r = iterator.boundingRect(); verts << r.x() + r.width() << r.y(); verts << r.x() << r.y(); verts << r.x() << r.y() + r.height(); verts << r.x() << r.y() + r.height(); verts << r.x() + r.width() << r.y() + r.height(); verts << r.x() + r.width() << r.y(); } doPaintBackground(verts); } void SceneOpenGL::extendPaintRegion(QRegion ®ion, bool opaqueFullscreen) { if (m_backend->supportsBufferAge()) return; const QSize &screenSize = screens()->size(); if (options->glPreferBufferSwap() == Options::ExtendDamage) { // only Extend "large" repaints const QRegion displayRegion(0, 0, screenSize.width(), screenSize.height()); uint damagedPixels = 0; const uint fullRepaintLimit = (opaqueFullscreen?0.49f:0.748f)*screenSize.width()*screenSize.height(); // 16:9 is 75% of 4:3 and 2.55:1 is 49.01% of 5:4 // (5:4 is the most square format and 2.55:1 is Cinemascope55 - the widest ever shot // movie aspect - two times ;-) It's a Fox format, though, so maybe we want to restrict // to 2.20:1 - Panavision - which has actually been used for interesting movies ...) // would be 57% of 5/4 for (const QRect &r : region) { // damagedPixels += r.width() * r.height(); // combined window damage test damagedPixels = r.width() * r.height(); // experimental single window damage testing if (damagedPixels > fullRepaintLimit) { region = displayRegion; return; } } } else if (options->glPreferBufferSwap() == Options::PaintFullScreen) { // forced full rePaint region = QRegion(0, 0, screenSize.width(), screenSize.height()); } } SceneOpenGLTexture *SceneOpenGL::createTexture() { return new SceneOpenGLTexture(m_backend); } bool SceneOpenGL::viewportLimitsMatched(const QSize &size) const { if (kwinApp()->operationMode() != Application::OperationModeX11) { // TODO: On Wayland we can't suspend. Find a solution that works here as well! return true; } GLint limit[2]; glGetIntegerv(GL_MAX_VIEWPORT_DIMS, limit); if (limit[0] < size.width() || limit[1] < size.height()) { auto compositor = static_cast(Compositor::self()); QMetaObject::invokeMethod(compositor, [compositor]() { compositor->suspend(X11Compositor::AllReasonSuspend); }, Qt::QueuedConnection); return false; } return true; } void SceneOpenGL::screenGeometryChanged(const QSize &size) { if (!viewportLimitsMatched(size)) return; Scene::screenGeometryChanged(size); glViewport(0,0, size.width(), size.height()); m_backend->screenGeometryChanged(size); GLRenderTarget::setVirtualScreenSize(size); } void SceneOpenGL::paintDesktop(int desktop, int mask, const QRegion ®ion, ScreenPaintData &data) { const QRect r = region.boundingRect(); glEnable(GL_SCISSOR_TEST); glScissor(r.x(), screens()->size().height() - r.y() - r.height(), r.width(), r.height()); KWin::Scene::paintDesktop(desktop, mask, region, data); glDisable(GL_SCISSOR_TEST); } void SceneOpenGL::paintEffectQuickView(EffectQuickView *w) { GLShader *shader = ShaderManager::instance()->pushShader(ShaderTrait::MapTexture); const QRect rect = w->geometry(); GLTexture *t = w->bufferAsTexture(); if (!t) { return; } QMatrix4x4 mvp(projectionMatrix()); mvp.translate(rect.x(), rect.y()); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp); glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); t->bind(); t->render(QRegion(infiniteRegion()), w->geometry()); t->unbind(); glDisable(GL_BLEND); ShaderManager::instance()->popShader(); } bool SceneOpenGL::makeOpenGLContextCurrent() { return m_backend->makeCurrent(); } void SceneOpenGL::doneOpenGLContextCurrent() { m_backend->doneCurrent(); } Scene::EffectFrame *SceneOpenGL::createEffectFrame(EffectFrameImpl *frame) { return new SceneOpenGL::EffectFrame(frame, this); } Shadow *SceneOpenGL::createShadow(Toplevel *toplevel) { return new SceneOpenGLShadow(toplevel); } Decoration::Renderer *SceneOpenGL::createDecorationRenderer(Decoration::DecoratedClientImpl *impl) { return new SceneOpenGLDecorationRenderer(impl); } bool SceneOpenGL::animationsSupported() const { return !GLPlatform::instance()->isSoftwareEmulation(); } QVector SceneOpenGL::openGLPlatformInterfaceExtensions() const { return m_backend->extensions().toVector(); } //**************************************** // SceneOpenGL2 //**************************************** bool SceneOpenGL2::supported(OpenGLBackend *backend) { const QByteArray forceEnv = qgetenv("KWIN_COMPOSE"); if (!forceEnv.isEmpty()) { if (qstrcmp(forceEnv, "O2") == 0 || qstrcmp(forceEnv, "O2ES") == 0) { qCDebug(KWIN_OPENGL) << "OpenGL 2 compositing enforced by environment variable"; return true; } else { // OpenGL 2 disabled by environment variable return false; } } if (!backend->isDirectRendering()) { return false; } if (GLPlatform::instance()->recommendedCompositor() < OpenGL2Compositing) { qCDebug(KWIN_OPENGL) << "Driver does not recommend OpenGL 2 compositing"; return false; } return true; } SceneOpenGL2::SceneOpenGL2(OpenGLBackend *backend, QObject *parent) : SceneOpenGL(backend, parent) , m_lanczosFilter(nullptr) { if (!init_ok) { // base ctor already failed return; } // We only support the OpenGL 2+ shader API, not GL_ARB_shader_objects if (!hasGLVersion(2, 0)) { qCDebug(KWIN_OPENGL) << "OpenGL 2.0 is not supported"; init_ok = false; return; } const QSize &s = screens()->size(); GLRenderTarget::setVirtualScreenSize(s); GLRenderTarget::setVirtualScreenGeometry(screens()->geometry()); // push one shader on the stack so that one is always bound ShaderManager::instance()->pushShader(ShaderTrait::MapTexture); if (checkGLError("Init")) { qCCritical(KWIN_OPENGL) << "OpenGL 2 compositing setup failed"; init_ok = false; return; // error } // It is not legal to not have a vertex array object bound in a core context if (!GLPlatform::instance()->isGLES() && hasGLExtension(QByteArrayLiteral("GL_ARB_vertex_array_object"))) { glGenVertexArrays(1, &vao); glBindVertexArray(vao); } if (!ShaderManager::instance()->selfTest()) { qCCritical(KWIN_OPENGL) << "ShaderManager self test failed"; init_ok = false; return; } qCDebug(KWIN_OPENGL) << "OpenGL 2 compositing successfully initialized"; init_ok = true; } SceneOpenGL2::~SceneOpenGL2() { if (m_lanczosFilter) { makeOpenGLContextCurrent(); delete m_lanczosFilter; m_lanczosFilter = nullptr; } } QMatrix4x4 SceneOpenGL2::createProjectionMatrix() const { // Create a perspective projection with a 60° field-of-view, // and an aspect ratio of 1.0. const float fovY = 60.0f; const float aspect = 1.0f; const float zNear = 0.1f; const float zFar = 100.0f; const float yMax = zNear * std::tan(fovY * M_PI / 360.0f); const float yMin = -yMax; const float xMin = yMin * aspect; const float xMax = yMax * aspect; QMatrix4x4 projection; projection.frustum(xMin, xMax, yMin, yMax, zNear, zFar); // Create a second matrix that transforms screen coordinates // to world coordinates. const float scaleFactor = 1.1 * std::tan(fovY * M_PI / 360.0f) / yMax; const QSize size = screens()->size(); QMatrix4x4 matrix; matrix.translate(xMin * scaleFactor, yMax * scaleFactor, -1.1); matrix.scale( (xMax - xMin) * scaleFactor / size.width(), -(yMax - yMin) * scaleFactor / size.height(), 0.001); // Combine the matrices return projection * matrix; } void SceneOpenGL2::updateProjectionMatrix() { m_projectionMatrix = createProjectionMatrix(); } void SceneOpenGL2::paintSimpleScreen(int mask, QRegion region) { m_screenProjectionMatrix = m_projectionMatrix; Scene::paintSimpleScreen(mask, region); } void SceneOpenGL2::paintGenericScreen(int mask, ScreenPaintData data) { const QMatrix4x4 screenMatrix = transformation(mask, data); m_screenProjectionMatrix = m_projectionMatrix * screenMatrix; Scene::paintGenericScreen(mask, data); } void SceneOpenGL2::doPaintBackground(const QVector< float >& vertices) { GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setUseColor(true); vbo->setData(vertices.count() / 2, 2, vertices.data(), nullptr); ShaderBinder binder(ShaderTrait::UniformColor); binder.shader()->setUniform(GLShader::ModelViewProjectionMatrix, m_projectionMatrix); vbo->render(GL_TRIANGLES); } Scene::Window *SceneOpenGL2::createWindow(Toplevel *t) { SceneOpenGL2Window *w = new SceneOpenGL2Window(t); w->setScene(this); return w; } void SceneOpenGL2::finalDrawWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (waylandServer() && waylandServer()->isScreenLocked() && !w->window()->isLockScreen() && !w->window()->isInputMethod()) { return; } performPaintWindow(w, mask, region, data); } void SceneOpenGL2::performPaintWindow(EffectWindowImpl* w, int mask, QRegion region, WindowPaintData& data) { if (mask & PAINT_WINDOW_LANCZOS) { if (!m_lanczosFilter) { m_lanczosFilter = new LanczosFilter(this); // reset the lanczos filter when the screen gets resized // it will get created next paint connect(screens(), &Screens::changed, this, [this]() { makeOpenGLContextCurrent(); delete m_lanczosFilter; m_lanczosFilter = nullptr; }); } m_lanczosFilter->performPaint(w, mask, region, data); } else w->sceneWindow()->performPaint(mask, region, data); } //**************************************** // SceneOpenGL::Window //**************************************** SceneOpenGL::Window::Window(Toplevel* c) : Scene::Window(c) , m_scene(nullptr) { } SceneOpenGL::Window::~Window() { } static SceneOpenGLTexture *s_frameTexture = nullptr; // Bind the window pixmap to an OpenGL texture. bool SceneOpenGL::Window::bindTexture() { s_frameTexture = nullptr; OpenGLWindowPixmap *pixmap = windowPixmap(); if (!pixmap) { return false; } s_frameTexture = pixmap->texture(); if (pixmap->isDiscarded()) { return !pixmap->texture()->isNull(); } if (!window()->damage().isEmpty()) m_scene->insertWait(); return pixmap->bind(); } QMatrix4x4 SceneOpenGL::Window::transformation(int mask, const WindowPaintData &data) const { QMatrix4x4 matrix; matrix.translate(x(), y()); if (!(mask & PAINT_WINDOW_TRANSFORMED)) return matrix; matrix.translate(data.translation()); data.scale().applyTo(&matrix); if (data.rotationAngle() == 0.0) return matrix; // Apply the rotation // cannot use data.rotation.applyTo(&matrix) as QGraphicsRotation uses projectedRotate to map back to 2D matrix.translate(data.rotationOrigin()); const QVector3D axis = data.rotationAxis(); matrix.rotate(data.rotationAngle(), axis.x(), axis.y(), axis.z()); matrix.translate(-data.rotationOrigin()); return matrix; } bool SceneOpenGL::Window::beginRenderWindow(int mask, const QRegion ®ion, WindowPaintData &data) { if (region.isEmpty()) return false; m_hardwareClipping = region != infiniteRegion() && (mask & PAINT_WINDOW_TRANSFORMED) && !(mask & PAINT_SCREEN_TRANSFORMED); if (region != infiniteRegion() && !m_hardwareClipping) { WindowQuadList quads; quads.reserve(data.quads.count()); const QRegion filterRegion = region.translated(-x(), -y()); // split all quads in bounding rect with the actual rects in the region foreach (const WindowQuad &quad, data.quads) { for (const QRect &r : filterRegion) { const QRectF rf(r); const QRectF quadRect(QPointF(quad.left(), quad.top()), QPointF(quad.right(), quad.bottom())); const QRectF &intersected = rf.intersected(quadRect); if (intersected.isValid()) { if (quadRect == intersected) { // case 1: completely contains, include and do not check other rects quads << quad; break; } // case 2: intersection quads << quad.makeSubQuad(intersected.left(), intersected.top(), intersected.right(), intersected.bottom()); } } } data.quads = quads; } if (data.quads.isEmpty()) return false; if (!bindTexture() || !s_frameTexture) { return false; } if (m_hardwareClipping) { glEnable(GL_SCISSOR_TEST); } // Update the texture filter if (waylandServer()) { filter = ImageFilterGood; s_frameTexture->setFilter(GL_LINEAR); } else { if (options->glSmoothScale() != 0 && (mask & (PAINT_WINDOW_TRANSFORMED | PAINT_SCREEN_TRANSFORMED))) filter = ImageFilterGood; else filter = ImageFilterFast; s_frameTexture->setFilter(filter == ImageFilterGood ? GL_LINEAR : GL_NEAREST); } const GLVertexAttrib attribs[] = { { VA_Position, 2, GL_FLOAT, offsetof(GLVertex2D, position) }, { VA_TexCoord, 2, GL_FLOAT, offsetof(GLVertex2D, texcoord) }, }; GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); vbo->reset(); vbo->setAttribLayout(attribs, 2, sizeof(GLVertex2D)); return true; } void SceneOpenGL::Window::endRenderWindow() { if (m_hardwareClipping) { glDisable(GL_SCISSOR_TEST); } } GLTexture *SceneOpenGL::Window::getDecorationTexture() const { if (AbstractClient *client = dynamic_cast(toplevel)) { if (client->noBorder()) { return nullptr; } if (!client->isDecorated()) { return nullptr; } if (SceneOpenGLDecorationRenderer *renderer = static_cast(client->decoratedClient()->renderer())) { renderer->render(); return renderer->texture(); } } else if (toplevel->isDeleted()) { Deleted *deleted = static_cast(toplevel); if (!deleted->wasClient() || deleted->noBorder()) { return nullptr; } if (const SceneOpenGLDecorationRenderer *renderer = static_cast(deleted->decorationRenderer())) { return renderer->texture(); } } return nullptr; } WindowPixmap* SceneOpenGL::Window::createWindowPixmap() { return new OpenGLWindowPixmap(this, m_scene); } //*************************************** // SceneOpenGL2Window //*************************************** SceneOpenGL2Window::SceneOpenGL2Window(Toplevel *c) : SceneOpenGL::Window(c) , m_blendingEnabled(false) { } SceneOpenGL2Window::~SceneOpenGL2Window() { } QVector4D SceneOpenGL2Window::modulate(float opacity, float brightness) const { const float a = opacity; const float rgb = opacity * brightness; return QVector4D(rgb, rgb, rgb, a); } void SceneOpenGL2Window::setBlendEnabled(bool enabled) { if (enabled && !m_blendingEnabled) glEnable(GL_BLEND); else if (!enabled && m_blendingEnabled) glDisable(GL_BLEND); m_blendingEnabled = enabled; } void SceneOpenGL2Window::setupLeafNodes(LeafNode *nodes, const WindowQuadList *quads, const WindowPaintData &data) { if (!quads[ShadowLeaf].isEmpty()) { nodes[ShadowLeaf].texture = static_cast(m_shadow)->shadowTexture(); nodes[ShadowLeaf].opacity = data.opacity(); nodes[ShadowLeaf].hasAlpha = true; nodes[ShadowLeaf].coordinateType = NormalizedCoordinates; } if (!quads[DecorationLeaf].isEmpty()) { nodes[DecorationLeaf].texture = getDecorationTexture(); nodes[DecorationLeaf].opacity = data.opacity(); nodes[DecorationLeaf].hasAlpha = true; nodes[DecorationLeaf].coordinateType = UnnormalizedCoordinates; } nodes[ContentLeaf].texture = s_frameTexture; nodes[ContentLeaf].hasAlpha = !isOpaque(); // TODO: ARGB crsoofading is atm. a hack, playing on opacities for two dumb SrcOver operations // Should be a shader if (data.crossFadeProgress() != 1.0 && (data.opacity() < 0.95 || toplevel->hasAlpha())) { const float opacity = 1.0 - data.crossFadeProgress(); nodes[ContentLeaf].opacity = data.opacity() * (1 - pow(opacity, 1.0f + 2.0f * data.opacity())); } else { nodes[ContentLeaf].opacity = data.opacity(); } nodes[ContentLeaf].coordinateType = UnnormalizedCoordinates; if (data.crossFadeProgress() != 1.0) { OpenGLWindowPixmap *previous = previousWindowPixmap(); nodes[PreviousContentLeaf].texture = previous ? previous->texture() : nullptr; nodes[PreviousContentLeaf].hasAlpha = !isOpaque(); nodes[PreviousContentLeaf].opacity = data.opacity() * (1.0 - data.crossFadeProgress()); nodes[PreviousContentLeaf].coordinateType = NormalizedCoordinates; } } QMatrix4x4 SceneOpenGL2Window::modelViewProjectionMatrix(int mask, const WindowPaintData &data) const { SceneOpenGL2 *scene = static_cast(m_scene); const QMatrix4x4 pMatrix = data.projectionMatrix(); const QMatrix4x4 mvMatrix = data.modelViewMatrix(); // An effect may want to override the default projection matrix in some cases, // such as when it is rendering a window on a render target that doesn't have // the same dimensions as the default framebuffer. // // Note that the screen transformation is not applied here. if (!pMatrix.isIdentity()) return pMatrix * mvMatrix; // If an effect has specified a model-view matrix, we multiply that matrix // with the default projection matrix. If the effect hasn't specified a // model-view matrix, mvMatrix will be the identity matrix. if (mask & Scene::PAINT_SCREEN_TRANSFORMED) return scene->screenProjectionMatrix() * mvMatrix; return scene->projectionMatrix() * mvMatrix; } void SceneOpenGL2Window::renderSubSurface(GLShader *shader, const QMatrix4x4 &mvp, const QMatrix4x4 &windowMatrix, OpenGLWindowPixmap *pixmap, const QRegion ®ion, bool hardwareClipping) { QMatrix4x4 newWindowMatrix = windowMatrix; newWindowMatrix.translate(pixmap->subSurface()->position().x(), pixmap->subSurface()->position().y()); qreal scale = 1.0; if (pixmap->surface()) { scale = pixmap->surface()->scale(); } if (!pixmap->texture()->isNull()) { setBlendEnabled(pixmap->buffer() && pixmap->buffer()->hasAlphaChannel()); // render this texture shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp * newWindowMatrix); auto texture = pixmap->texture(); texture->bind(); texture->render(region, QRect(0, 0, texture->width() / scale, texture->height() / scale), hardwareClipping); texture->unbind(); } const auto &children = pixmap->children(); for (auto pixmap : children) { if (pixmap->subSurface().isNull() || pixmap->subSurface()->surface().isNull() || !pixmap->subSurface()->surface()->isMapped()) { continue; } renderSubSurface(shader, mvp, newWindowMatrix, static_cast(pixmap), region, hardwareClipping); } } void SceneOpenGL2Window::performPaint(int mask, QRegion region, WindowPaintData data) { if (!beginRenderWindow(mask, region, data)) return; QMatrix4x4 windowMatrix = transformation(mask, data); const QMatrix4x4 modelViewProjection = modelViewProjectionMatrix(mask, data); const QMatrix4x4 mvpMatrix = modelViewProjection * windowMatrix; bool useX11TextureClamp = false; GLShader *shader = data.shader; GLenum filter; if (waylandServer()) { filter = GL_LINEAR; } else { const bool isTransformed = mask & (Effect::PAINT_WINDOW_TRANSFORMED | Effect::PAINT_SCREEN_TRANSFORMED); useX11TextureClamp = isTransformed; if (isTransformed && options->glSmoothScale() != 0) { filter = GL_LINEAR; } else { filter = GL_NEAREST; } } if (!shader) { ShaderTraits traits = ShaderTrait::MapTexture; if (useX11TextureClamp) { traits |= ShaderTrait::ClampTexture; } if (data.opacity() != 1.0 || data.brightness() != 1.0 || data.crossFadeProgress() != 1.0) traits |= ShaderTrait::Modulate; if (data.saturation() != 1.0) traits |= ShaderTrait::AdjustSaturation; shader = ShaderManager::instance()->pushShader(traits); } shader->setUniform(GLShader::ModelViewProjectionMatrix, mvpMatrix); shader->setUniform(GLShader::Saturation, data.saturation()); WindowQuadList quads[LeafCount]; // Split the quads into separate lists for each type foreach (const WindowQuad &quad, data.quads) { switch (quad.type()) { case WindowQuadDecoration: quads[DecorationLeaf].append(quad); continue; case WindowQuadContents: quads[ContentLeaf].append(quad); continue; case WindowQuadShadow: quads[ShadowLeaf].append(quad); continue; default: continue; } } if (data.crossFadeProgress() != 1.0) { OpenGLWindowPixmap *previous = previousWindowPixmap(); if (previous) { const QRect &oldGeometry = previous->contentsRect(); for (const WindowQuad &quad : quads[ContentLeaf]) { // we need to create new window quads with normalize texture coordinates // normal quads divide the x/y position by width/height. This would not work as the texture // is larger than the visible content in case of a decorated Client resulting in garbage being shown. // So we calculate the normalized texture coordinate in the Client's new content space and map it to // the previous Client's content space. WindowQuad newQuad(WindowQuadContents); for (int i = 0; i < 4; ++i) { const qreal xFactor = qreal(quad[i].textureX() - toplevel->clientPos().x())/qreal(toplevel->clientSize().width()); const qreal yFactor = qreal(quad[i].textureY() - toplevel->clientPos().y())/qreal(toplevel->clientSize().height()); WindowVertex vertex(quad[i].x(), quad[i].y(), (xFactor * oldGeometry.width() + oldGeometry.x())/qreal(previous->size().width()), (yFactor * oldGeometry.height() + oldGeometry.y())/qreal(previous->size().height())); newQuad[i] = vertex; } quads[PreviousContentLeaf].append(newQuad); } } } const bool indexedQuads = GLVertexBuffer::supportsIndexedQuads(); const GLenum primitiveType = indexedQuads ? GL_QUADS : GL_TRIANGLES; const int verticesPerQuad = indexedQuads ? 4 : 6; const size_t size = verticesPerQuad * (quads[0].count() + quads[1].count() + quads[2].count() + quads[3].count()) * sizeof(GLVertex2D); GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer(); GLVertex2D *map = (GLVertex2D *) vbo->map(size); LeafNode nodes[LeafCount]; setupLeafNodes(nodes, quads, data); for (int i = 0, v = 0; i < LeafCount; i++) { if (quads[i].isEmpty() || !nodes[i].texture) continue; nodes[i].firstVertex = v; nodes[i].vertexCount = quads[i].count() * verticesPerQuad; const QMatrix4x4 matrix = nodes[i].texture->matrix(nodes[i].coordinateType); quads[i].makeInterleavedArrays(primitiveType, &map[v], matrix); v += quads[i].count() * verticesPerQuad; } vbo->unmap(); vbo->bindArrays(); // Make sure the blend function is set up correctly in case we will be doing blending glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); float opacity = -1.0; for (int i = 0; i < LeafCount; i++) { if (nodes[i].vertexCount == 0) continue; setBlendEnabled(nodes[i].hasAlpha || nodes[i].opacity < 1.0); if (opacity != nodes[i].opacity) { shader->setUniform(GLShader::ModulationConstant, modulate(nodes[i].opacity, data.brightness())); opacity = nodes[i].opacity; } nodes[i].texture->setFilter(filter); nodes[i].texture->setWrapMode(GL_CLAMP_TO_EDGE); nodes[i].texture->bind(); if (i == ContentLeaf && useX11TextureClamp) { // X11 windows are reparented to have their buffer in the middle of a larger texture // holding the frame window. // This code passes the texture geometry to the fragment shader // any samples near the edge of the texture will be constrained to be // at least half a pixel in bounds, meaning we don't bleed the transparent border QRectF bufferContentRect = clientShape().boundingRect(); bufferContentRect.adjust(0.5, 0.5, -0.5, -0.5); const QRect bufferGeometry = toplevel->bufferGeometry(); float leftClamp = bufferContentRect.left() / bufferGeometry.width(); float topClamp = bufferContentRect.top() / bufferGeometry.height(); float rightClamp = bufferContentRect.right() / bufferGeometry.width(); float bottomClamp = bufferContentRect.bottom() / bufferGeometry.height(); shader->setUniform(GLShader::TextureClamp, QVector4D({leftClamp, topClamp, rightClamp, bottomClamp})); } else { shader->setUniform(GLShader::TextureClamp, QVector4D({0, 0, 1, 1})); } vbo->draw(region, primitiveType, nodes[i].firstVertex, nodes[i].vertexCount, m_hardwareClipping); } vbo->unbindArrays(); // render sub-surfaces auto wp = windowPixmap(); const auto &children = wp ? wp->children() : QVector(); const QPoint mainSurfaceOffset = bufferOffset(); windowMatrix.translate(mainSurfaceOffset.x(), mainSurfaceOffset.y()); for (auto pixmap : children) { if (pixmap->subSurface().isNull() || pixmap->subSurface()->surface().isNull() || !pixmap->subSurface()->surface()->isMapped()) { continue; } renderSubSurface(shader, modelViewProjection, windowMatrix, static_cast(pixmap), region, m_hardwareClipping); } setBlendEnabled(false); if (!data.shader) ShaderManager::instance()->popShader(); endRenderWindow(); } //**************************************** // OpenGLWindowPixmap //**************************************** OpenGLWindowPixmap::OpenGLWindowPixmap(Scene::Window *window, SceneOpenGL* scene) : WindowPixmap(window) , m_texture(scene->createTexture()) , m_scene(scene) { } OpenGLWindowPixmap::OpenGLWindowPixmap(const QPointer &subSurface, WindowPixmap *parent, SceneOpenGL *scene) : WindowPixmap(subSurface, parent) , m_texture(scene->createTexture()) , m_scene(scene) { } OpenGLWindowPixmap::~OpenGLWindowPixmap() { } static bool needsPixmapUpdate(const OpenGLWindowPixmap *pixmap) { // That's a regular Wayland client. if (pixmap->surface()) { return !pixmap->surface()->trackedDamage().isEmpty(); } // That's an internal client with a raster buffer attached. if (!pixmap->internalImage().isNull()) { return !pixmap->toplevel()->damage().isEmpty(); } // That's an internal client with an opengl framebuffer object attached. if (!pixmap->fbo().isNull()) { return !pixmap->toplevel()->damage().isEmpty(); } // That's an X11 client. return false; } bool OpenGLWindowPixmap::bind() { if (!m_texture->isNull()) { // always call updateBuffer to get the sub-surface tree updated if (subSurface().isNull() && !toplevel()->damage().isEmpty()) { updateBuffer(); } if (needsPixmapUpdate(this)) { m_texture->updateFromPixmap(this); // mipmaps need to be updated m_texture->setDirty(); } if (subSurface().isNull()) { toplevel()->resetDamage(); } // also bind all children for (auto it = children().constBegin(); it != children().constEnd(); ++it) { static_cast(*it)->bind(); } return true; } // also bind all children, needs to be done before checking isValid // as there might be valid children to render, see https://bugreports.qt.io/browse/QTBUG-52192 if (subSurface().isNull()) { updateBuffer(); } for (auto it = children().constBegin(); it != children().constEnd(); ++it) { static_cast(*it)->bind(); } if (!isValid()) { return false; } bool success = m_texture->load(this); if (success) { if (subSurface().isNull()) { toplevel()->resetDamage(); } } else qCDebug(KWIN_OPENGL) << "Failed to bind window"; return success; } WindowPixmap *OpenGLWindowPixmap::createChild(const QPointer &subSurface) { return new OpenGLWindowPixmap(subSurface, this, m_scene); } bool OpenGLWindowPixmap::isValid() const { if (!m_texture->isNull()) { return true; } return WindowPixmap::isValid(); } //**************************************** // SceneOpenGL::EffectFrame //**************************************** GLTexture* SceneOpenGL::EffectFrame::m_unstyledTexture = nullptr; QPixmap* SceneOpenGL::EffectFrame::m_unstyledPixmap = nullptr; SceneOpenGL::EffectFrame::EffectFrame(EffectFrameImpl* frame, SceneOpenGL *scene) : Scene::EffectFrame(frame) , m_texture(nullptr) , m_textTexture(nullptr) , m_oldTextTexture(nullptr) , m_textPixmap(nullptr) , m_iconTexture(nullptr) , m_oldIconTexture(nullptr) , m_selectionTexture(nullptr) , m_unstyledVBO(nullptr) , m_scene(scene) { if (m_effectFrame->style() == EffectFrameUnstyled && !m_unstyledTexture) { updateUnstyledTexture(); } } SceneOpenGL::EffectFrame::~EffectFrame() { delete m_texture; delete m_textTexture; delete m_textPixmap; delete m_oldTextTexture; delete m_iconTexture; delete m_oldIconTexture; delete m_selectionTexture; delete m_unstyledVBO; } void SceneOpenGL::EffectFrame::free() { glFlush(); delete m_texture; m_texture = nullptr; delete m_textTexture; m_textTexture = nullptr; delete m_textPixmap; m_textPixmap = nullptr; delete m_iconTexture; m_iconTexture = nullptr; delete m_selectionTexture; m_selectionTexture = nullptr; delete m_unstyledVBO; m_unstyledVBO = nullptr; delete m_oldIconTexture; m_oldIconTexture = nullptr; delete m_oldTextTexture; m_oldTextTexture = nullptr; } void SceneOpenGL::EffectFrame::freeIconFrame() { delete m_iconTexture; m_iconTexture = nullptr; } void SceneOpenGL::EffectFrame::freeTextFrame() { delete m_textTexture; m_textTexture = nullptr; delete m_textPixmap; m_textPixmap = nullptr; } void SceneOpenGL::EffectFrame::freeSelection() { delete m_selectionTexture; m_selectionTexture = nullptr; } void SceneOpenGL::EffectFrame::crossFadeIcon() { delete m_oldIconTexture; m_oldIconTexture = m_iconTexture; m_iconTexture = nullptr; } void SceneOpenGL::EffectFrame::crossFadeText() { delete m_oldTextTexture; m_oldTextTexture = m_textTexture; m_textTexture = nullptr; } void SceneOpenGL::EffectFrame::render(QRegion region, double opacity, double frameOpacity) { if (m_effectFrame->geometry().isEmpty()) return; // Nothing to display region = infiniteRegion(); // TODO: Old region doesn't seem to work with OpenGL GLShader* shader = m_effectFrame->shader(); if (!shader) { shader = ShaderManager::instance()->pushShader(ShaderTrait::MapTexture | ShaderTrait::Modulate); } else if (shader) { ShaderManager::instance()->pushShader(shader); } if (shader) { shader->setUniform(GLShader::ModulationConstant, QVector4D(1.0, 1.0, 1.0, 1.0)); shader->setUniform(GLShader::Saturation, 1.0f); } const QMatrix4x4 projection = m_scene->projectionMatrix(); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Render the actual frame if (m_effectFrame->style() == EffectFrameUnstyled) { if (!m_unstyledVBO) { m_unstyledVBO = new GLVertexBuffer(GLVertexBuffer::Static); QRect area = m_effectFrame->geometry(); area.moveTo(0, 0); area.adjust(-5, -5, 5, 5); const int roundness = 5; QVector verts, texCoords; verts.reserve(84); texCoords.reserve(84); // top left verts << area.left() << area.top(); texCoords << 0.0f << 0.0f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; // top verts << area.left() + roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.left() + roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; // top right verts << area.right() - roundness << area.top(); texCoords << 0.5f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; verts << area.right() - roundness << area.top() + roundness; texCoords << 0.5f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top(); texCoords << 1.0f << 0.0f; // bottom left verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.left() << area.bottom(); texCoords << 0.0f << 1.0f; verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom verts << area.left() + roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.left() + roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; // bottom right verts << area.right() - roundness << area.bottom() - roundness; texCoords << 0.5f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() - roundness << area.bottom(); texCoords << 0.5f << 1.0f; verts << area.right() << area.bottom(); texCoords << 1.0f << 1.0f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; // center verts << area.left() << area.top() + roundness; texCoords << 0.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; verts << area.left() << area.bottom() - roundness; texCoords << 0.0f << 0.5f; verts << area.right() << area.bottom() - roundness; texCoords << 1.0f << 0.5f; verts << area.right() << area.top() + roundness; texCoords << 1.0f << 0.5f; m_unstyledVBO->setData(verts.count() / 2, 2, verts.data(), texCoords.data()); } if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_unstyledTexture->bind(); const QPoint pt = m_effectFrame->geometry().topLeft(); QMatrix4x4 mvp(projection); mvp.translate(pt.x(), pt.y()); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp); m_unstyledVBO->render(region, GL_TRIANGLES); m_unstyledTexture->unbind(); } else if (m_effectFrame->style() == EffectFrameStyled) { if (!m_texture) // Lazy creation updateTexture(); if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_texture->bind(); qreal left, top, right, bottom; m_effectFrame->frame().getMargins(left, top, right, bottom); // m_geometry is the inner geometry const QRect rect = m_effectFrame->geometry().adjusted(-left, -top, right, bottom); QMatrix4x4 mvp(projection); mvp.translate(rect.x(), rect.y()); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp); m_texture->render(region, rect); m_texture->unbind(); } if (!m_effectFrame->selection().isNull()) { if (!m_selectionTexture) { // Lazy creation QPixmap pixmap = m_effectFrame->selectionFrame().framePixmap(); if (!pixmap.isNull()) m_selectionTexture = new GLTexture(pixmap); } if (m_selectionTexture) { if (shader) { const float a = opacity * frameOpacity; shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } QMatrix4x4 mvp(projection); mvp.translate(m_effectFrame->selection().x(), m_effectFrame->selection().y()); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp); glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA); m_selectionTexture->bind(); m_selectionTexture->render(region, m_effectFrame->selection()); m_selectionTexture->unbind(); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } } // Render icon if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) { QPoint topLeft(m_effectFrame->geometry().x(), m_effectFrame->geometry().center().y() - m_effectFrame->iconSize().height() / 2); QMatrix4x4 mvp(projection); mvp.translate(topLeft.x(), topLeft.y()); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp); if (m_effectFrame->isCrossFade() && m_oldIconTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_oldIconTexture->bind(); m_oldIconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_oldIconTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } } if (!m_iconTexture) { // lazy creation m_iconTexture = new GLTexture(m_effectFrame->icon().pixmap(m_effectFrame->iconSize())); } m_iconTexture->bind(); m_iconTexture->render(region, QRect(topLeft, m_effectFrame->iconSize())); m_iconTexture->unbind(); } // Render text if (!m_effectFrame->text().isEmpty()) { QMatrix4x4 mvp(projection); mvp.translate(m_effectFrame->geometry().x(), m_effectFrame->geometry().y()); shader->setUniform(GLShader::ModelViewProjectionMatrix, mvp); if (m_effectFrame->isCrossFade() && m_oldTextTexture) { if (shader) { const float a = opacity * (1.0 - m_effectFrame->crossFadeProgress()); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } m_oldTextTexture->bind(); m_oldTextTexture->render(region, m_effectFrame->geometry()); m_oldTextTexture->unbind(); if (shader) { const float a = opacity * m_effectFrame->crossFadeProgress(); shader->setUniform(GLShader::ModulationConstant, QVector4D(a, a, a, a)); } } else { if (shader) { const QVector4D constant(opacity, opacity, opacity, opacity); shader->setUniform(GLShader::ModulationConstant, constant); } } if (!m_textTexture) // Lazy creation updateTextTexture(); if (m_textTexture) { m_textTexture->bind(); m_textTexture->render(region, m_effectFrame->geometry()); m_textTexture->unbind(); } } if (shader) { ShaderManager::instance()->popShader(); } glDisable(GL_BLEND); } void SceneOpenGL::EffectFrame::updateTexture() { delete m_texture; m_texture = nullptr; if (m_effectFrame->style() == EffectFrameStyled) { QPixmap pixmap = m_effectFrame->frame().framePixmap(); m_texture = new GLTexture(pixmap); } } void SceneOpenGL::EffectFrame::updateTextTexture() { delete m_textTexture; m_textTexture = nullptr; delete m_textPixmap; m_textPixmap = nullptr; if (m_effectFrame->text().isEmpty()) return; // Determine position on texture to paint text QRect rect(QPoint(0, 0), m_effectFrame->geometry().size()); if (!m_effectFrame->icon().isNull() && !m_effectFrame->iconSize().isEmpty()) rect.setLeft(m_effectFrame->iconSize().width()); // If static size elide text as required QString text = m_effectFrame->text(); if (m_effectFrame->isStatic()) { QFontMetrics metrics(m_effectFrame->font()); text = metrics.elidedText(text, Qt::ElideRight, rect.width()); } m_textPixmap = new QPixmap(m_effectFrame->geometry().size()); m_textPixmap->fill(Qt::transparent); QPainter p(m_textPixmap); p.setFont(m_effectFrame->font()); if (m_effectFrame->style() == EffectFrameStyled) p.setPen(m_effectFrame->styledTextColor()); else // TODO: What about no frame? Custom color setting required p.setPen(Qt::white); p.drawText(rect, m_effectFrame->alignment(), text); p.end(); m_textTexture = new GLTexture(*m_textPixmap); } void SceneOpenGL::EffectFrame::updateUnstyledTexture() { delete m_unstyledTexture; m_unstyledTexture = nullptr; delete m_unstyledPixmap; m_unstyledPixmap = nullptr; // Based off circle() from kwinxrenderutils.cpp #define CS 8 m_unstyledPixmap = new QPixmap(2 * CS, 2 * CS); m_unstyledPixmap->fill(Qt::transparent); QPainter p(m_unstyledPixmap); p.setRenderHint(QPainter::Antialiasing); p.setPen(Qt::NoPen); p.setBrush(Qt::black); p.drawEllipse(m_unstyledPixmap->rect()); p.end(); #undef CS m_unstyledTexture = new GLTexture(*m_unstyledPixmap); } void SceneOpenGL::EffectFrame::cleanup() { delete m_unstyledTexture; m_unstyledTexture = nullptr; delete m_unstyledPixmap; m_unstyledPixmap = nullptr; } //**************************************** // SceneOpenGL::Shadow //**************************************** class DecorationShadowTextureCache { public: ~DecorationShadowTextureCache(); DecorationShadowTextureCache(const DecorationShadowTextureCache&) = delete; static DecorationShadowTextureCache &instance(); void unregister(SceneOpenGLShadow *shadow); QSharedPointer getTexture(SceneOpenGLShadow *shadow); private: DecorationShadowTextureCache() = default; struct Data { QSharedPointer texture; QVector shadows; }; QHash m_cache; }; DecorationShadowTextureCache &DecorationShadowTextureCache::instance() { static DecorationShadowTextureCache s_instance; return s_instance; } DecorationShadowTextureCache::~DecorationShadowTextureCache() { Q_ASSERT(m_cache.isEmpty()); } void DecorationShadowTextureCache::unregister(SceneOpenGLShadow *shadow) { auto it = m_cache.begin(); while (it != m_cache.end()) { auto &d = it.value(); // check whether the Vector of Shadows contains our shadow and remove all of them auto glIt = d.shadows.begin(); while (glIt != d.shadows.end()) { if (*glIt == shadow) { glIt = d.shadows.erase(glIt); } else { glIt++; } } // if there are no shadows any more we can erase the cache entry if (d.shadows.isEmpty()) { it = m_cache.erase(it); } else { it++; } } } QSharedPointer DecorationShadowTextureCache::getTexture(SceneOpenGLShadow *shadow) { Q_ASSERT(shadow->hasDecorationShadow()); unregister(shadow); const auto &decoShadow = shadow->decorationShadow(); Q_ASSERT(!decoShadow.isNull()); auto it = m_cache.find(decoShadow.data()); if (it != m_cache.end()) { Q_ASSERT(!it.value().shadows.contains(shadow)); it.value().shadows << shadow; return it.value().texture; } Data d; d.shadows << shadow; d.texture = QSharedPointer::create(shadow->decorationShadowImage()); m_cache.insert(decoShadow.data(), d); return d.texture; } SceneOpenGLShadow::SceneOpenGLShadow(Toplevel *toplevel) : Shadow(toplevel) { } SceneOpenGLShadow::~SceneOpenGLShadow() { Scene *scene = Compositor::self()->scene(); if (scene) { scene->makeOpenGLContextCurrent(); DecorationShadowTextureCache::instance().unregister(this); m_texture.reset(); } } static inline void distributeHorizontally(QRectF &leftRect, QRectF &rightRect) { if (leftRect.right() > rightRect.left()) { const qreal boundedRight = qMin(leftRect.right(), rightRect.right()); const qreal boundedLeft = qMax(leftRect.left(), rightRect.left()); const qreal halfOverlap = (boundedRight - boundedLeft) / 2.0; leftRect.setRight(boundedRight - halfOverlap); rightRect.setLeft(boundedLeft + halfOverlap); } } static inline void distributeVertically(QRectF &topRect, QRectF &bottomRect) { if (topRect.bottom() > bottomRect.top()) { const qreal boundedBottom = qMin(topRect.bottom(), bottomRect.bottom()); const qreal boundedTop = qMax(topRect.top(), bottomRect.top()); const qreal halfOverlap = (boundedBottom - boundedTop) / 2.0; topRect.setBottom(boundedBottom - halfOverlap); bottomRect.setTop(boundedTop + halfOverlap); } } void SceneOpenGLShadow::buildQuads() { // Do not draw shadows if window width or window height is less than // 5 px. 5 is an arbitrary choice. if (topLevel()->width() < 5 || topLevel()->height() < 5) { m_shadowQuads.clear(); setShadowRegion(QRegion()); return; } const QSizeF top(elementSize(ShadowElementTop)); const QSizeF topRight(elementSize(ShadowElementTopRight)); const QSizeF right(elementSize(ShadowElementRight)); const QSizeF bottomRight(elementSize(ShadowElementBottomRight)); const QSizeF bottom(elementSize(ShadowElementBottom)); const QSizeF bottomLeft(elementSize(ShadowElementBottomLeft)); const QSizeF left(elementSize(ShadowElementLeft)); const QSizeF topLeft(elementSize(ShadowElementTopLeft)); const QMarginsF shadowMargins( std::max({topLeft.width(), left.width(), bottomLeft.width()}), std::max({topLeft.height(), top.height(), topRight.height()}), std::max({topRight.width(), right.width(), bottomRight.width()}), std::max({bottomRight.height(), bottom.height(), bottomLeft.height()})); const QRectF outerRect(QPointF(-leftOffset(), -topOffset()), QPointF(topLevel()->width() + rightOffset(), topLevel()->height() + bottomOffset())); const int width = shadowMargins.left() + std::max(top.width(), bottom.width()) + shadowMargins.right(); const int height = shadowMargins.top() + std::max(left.height(), right.height()) + shadowMargins.bottom(); QRectF topLeftRect; if (!topLeft.isEmpty()) { topLeftRect = QRectF(outerRect.topLeft(), topLeft); } else { topLeftRect = QRectF( outerRect.left() + shadowMargins.left(), outerRect.top() + shadowMargins.top(), 0, 0); } QRectF topRightRect; if (!topRight.isEmpty()) { topRightRect = QRectF( outerRect.right() - topRight.width(), outerRect.top(), topRight.width(), topRight.height()); } else { topRightRect = QRectF( outerRect.right() - shadowMargins.right(), outerRect.top() + shadowMargins.top(), 0, 0); } QRectF bottomRightRect; if (!bottomRight.isEmpty()) { bottomRightRect = QRectF( outerRect.right() - bottomRight.width(), outerRect.bottom() - bottomRight.height(), bottomRight.width(), bottomRight.height()); } else { bottomRightRect = QRectF( outerRect.right() - shadowMargins.right(), outerRect.bottom() - shadowMargins.bottom(), 0, 0); } QRectF bottomLeftRect; if (!bottomLeft.isEmpty()) { bottomLeftRect = QRectF( outerRect.left(), outerRect.bottom() - bottomLeft.height(), bottomLeft.width(), bottomLeft.height()); } else { bottomLeftRect = QRectF( outerRect.left() + shadowMargins.left(), outerRect.bottom() - shadowMargins.bottom(), 0, 0); } // Re-distribute the corner tiles so no one of them is overlapping with others. // By doing this, we assume that shadow's corner tiles are symmetric // and it is OK to not draw top/right/bottom/left tile between corners. // For example, let's say top-left and top-right tiles are overlapping. // In that case, the right side of the top-left tile will be shifted to left, // the left side of the top-right tile will shifted to right, and the top // tile won't be rendered. distributeHorizontally(topLeftRect, topRightRect); distributeHorizontally(bottomLeftRect, bottomRightRect); distributeVertically(topLeftRect, bottomLeftRect); distributeVertically(topRightRect, bottomRightRect); qreal tx1 = 0.0, tx2 = 0.0, ty1 = 0.0, ty2 = 0.0; m_shadowQuads.clear(); if (topLeftRect.isValid()) { tx1 = 0.0; ty1 = 0.0; tx2 = topLeftRect.width() / width; ty2 = topLeftRect.height() / height; WindowQuad topLeftQuad(WindowQuadShadow); topLeftQuad[0] = WindowVertex(topLeftRect.left(), topLeftRect.top(), tx1, ty1); topLeftQuad[1] = WindowVertex(topLeftRect.right(), topLeftRect.top(), tx2, ty1); topLeftQuad[2] = WindowVertex(topLeftRect.right(), topLeftRect.bottom(), tx2, ty2); topLeftQuad[3] = WindowVertex(topLeftRect.left(), topLeftRect.bottom(), tx1, ty2); m_shadowQuads.append(topLeftQuad); } if (topRightRect.isValid()) { tx1 = 1.0 - topRightRect.width() / width; ty1 = 0.0; tx2 = 1.0; ty2 = topRightRect.height() / height; WindowQuad topRightQuad(WindowQuadShadow); topRightQuad[0] = WindowVertex(topRightRect.left(), topRightRect.top(), tx1, ty1); topRightQuad[1] = WindowVertex(topRightRect.right(), topRightRect.top(), tx2, ty1); topRightQuad[2] = WindowVertex(topRightRect.right(), topRightRect.bottom(), tx2, ty2); topRightQuad[3] = WindowVertex(topRightRect.left(), topRightRect.bottom(), tx1, ty2); m_shadowQuads.append(topRightQuad); } if (bottomRightRect.isValid()) { tx1 = 1.0 - bottomRightRect.width() / width; tx2 = 1.0; ty1 = 1.0 - bottomRightRect.height() / height; ty2 = 1.0; WindowQuad bottomRightQuad(WindowQuadShadow); bottomRightQuad[0] = WindowVertex(bottomRightRect.left(), bottomRightRect.top(), tx1, ty1); bottomRightQuad[1] = WindowVertex(bottomRightRect.right(), bottomRightRect.top(), tx2, ty1); bottomRightQuad[2] = WindowVertex(bottomRightRect.right(), bottomRightRect.bottom(), tx2, ty2); bottomRightQuad[3] = WindowVertex(bottomRightRect.left(), bottomRightRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomRightQuad); } if (bottomLeftRect.isValid()) { tx1 = 0.0; tx2 = bottomLeftRect.width() / width; ty1 = 1.0 - bottomLeftRect.height() / height; ty2 = 1.0; WindowQuad bottomLeftQuad(WindowQuadShadow); bottomLeftQuad[0] = WindowVertex(bottomLeftRect.left(), bottomLeftRect.top(), tx1, ty1); bottomLeftQuad[1] = WindowVertex(bottomLeftRect.right(), bottomLeftRect.top(), tx2, ty1); bottomLeftQuad[2] = WindowVertex(bottomLeftRect.right(), bottomLeftRect.bottom(), tx2, ty2); bottomLeftQuad[3] = WindowVertex(bottomLeftRect.left(), bottomLeftRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomLeftQuad); } QRectF topRect( QPointF(topLeftRect.right(), outerRect.top()), QPointF(topRightRect.left(), outerRect.top() + top.height())); QRectF rightRect( QPointF(outerRect.right() - right.width(), topRightRect.bottom()), QPointF(outerRect.right(), bottomRightRect.top())); QRectF bottomRect( QPointF(bottomLeftRect.right(), outerRect.bottom() - bottom.height()), QPointF(bottomRightRect.left(), outerRect.bottom())); QRectF leftRect( QPointF(outerRect.left(), topLeftRect.bottom()), QPointF(outerRect.left() + left.width(), bottomLeftRect.top())); // Re-distribute left/right and top/bottom shadow tiles so they don't // overlap when the window is too small. Please notice that we don't // fix overlaps between left/top(left/bottom, right/top, and so on) // corner tiles because corresponding counter parts won't be valid when // the window is too small, which means they won't be rendered. distributeHorizontally(leftRect, rightRect); distributeVertically(topRect, bottomRect); if (topRect.isValid()) { tx1 = shadowMargins.left() / width; ty1 = 0.0; tx2 = tx1 + top.width() / width; ty2 = topRect.height() / height; WindowQuad topQuad(WindowQuadShadow); topQuad[0] = WindowVertex(topRect.left(), topRect.top(), tx1, ty1); topQuad[1] = WindowVertex(topRect.right(), topRect.top(), tx2, ty1); topQuad[2] = WindowVertex(topRect.right(), topRect.bottom(), tx2, ty2); topQuad[3] = WindowVertex(topRect.left(), topRect.bottom(), tx1, ty2); m_shadowQuads.append(topQuad); } if (rightRect.isValid()) { tx1 = 1.0 - rightRect.width() / width; ty1 = shadowMargins.top() / height; tx2 = 1.0; ty2 = ty1 + right.height() / height; WindowQuad rightQuad(WindowQuadShadow); rightQuad[0] = WindowVertex(rightRect.left(), rightRect.top(), tx1, ty1); rightQuad[1] = WindowVertex(rightRect.right(), rightRect.top(), tx2, ty1); rightQuad[2] = WindowVertex(rightRect.right(), rightRect.bottom(), tx2, ty2); rightQuad[3] = WindowVertex(rightRect.left(), rightRect.bottom(), tx1, ty2); m_shadowQuads.append(rightQuad); } if (bottomRect.isValid()) { tx1 = shadowMargins.left() / width; ty1 = 1.0 - bottomRect.height() / height; tx2 = tx1 + bottom.width() / width; ty2 = 1.0; WindowQuad bottomQuad(WindowQuadShadow); bottomQuad[0] = WindowVertex(bottomRect.left(), bottomRect.top(), tx1, ty1); bottomQuad[1] = WindowVertex(bottomRect.right(), bottomRect.top(), tx2, ty1); bottomQuad[2] = WindowVertex(bottomRect.right(), bottomRect.bottom(), tx2, ty2); bottomQuad[3] = WindowVertex(bottomRect.left(), bottomRect.bottom(), tx1, ty2); m_shadowQuads.append(bottomQuad); } if (leftRect.isValid()) { tx1 = 0.0; ty1 = shadowMargins.top() / height; tx2 = leftRect.width() / width; ty2 = ty1 + left.height() / height; WindowQuad leftQuad(WindowQuadShadow); leftQuad[0] = WindowVertex(leftRect.left(), leftRect.top(), tx1, ty1); leftQuad[1] = WindowVertex(leftRect.right(), leftRect.top(), tx2, ty1); leftQuad[2] = WindowVertex(leftRect.right(), leftRect.bottom(), tx2, ty2); leftQuad[3] = WindowVertex(leftRect.left(), leftRect.bottom(), tx1, ty2); m_shadowQuads.append(leftQuad); } } bool SceneOpenGLShadow::prepareBackend() { if (hasDecorationShadow()) { // simplifies a lot by going directly to Scene *scene = Compositor::self()->scene(); scene->makeOpenGLContextCurrent(); m_texture = DecorationShadowTextureCache::instance().getTexture(this); return true; } const QSize top(shadowPixmap(ShadowElementTop).size()); const QSize topRight(shadowPixmap(ShadowElementTopRight).size()); const QSize right(shadowPixmap(ShadowElementRight).size()); const QSize bottom(shadowPixmap(ShadowElementBottom).size()); const QSize bottomLeft(shadowPixmap(ShadowElementBottomLeft).size()); const QSize left(shadowPixmap(ShadowElementLeft).size()); const QSize topLeft(shadowPixmap(ShadowElementTopLeft).size()); const QSize bottomRight(shadowPixmap(ShadowElementBottomRight).size()); const int width = std::max({topLeft.width(), left.width(), bottomLeft.width()}) + std::max(top.width(), bottom.width()) + std::max({topRight.width(), right.width(), bottomRight.width()}); const int height = std::max({topLeft.height(), top.height(), topRight.height()}) + std::max(left.height(), right.height()) + std::max({bottomLeft.height(), bottom.height(), bottomRight.height()}); if (width == 0 || height == 0) { return false; } QImage image(width, height, QImage::Format_ARGB32); image.fill(Qt::transparent); const int innerRectTop = std::max({topLeft.height(), top.height(), topRight.height()}); const int innerRectLeft = std::max({topLeft.width(), left.width(), bottomLeft.width()}); QPainter p; p.begin(&image); p.drawPixmap(0, 0, shadowPixmap(ShadowElementTopLeft)); p.drawPixmap(innerRectLeft, 0, shadowPixmap(ShadowElementTop)); p.drawPixmap(width - topRight.width(), 0, shadowPixmap(ShadowElementTopRight)); p.drawPixmap(0, innerRectTop, shadowPixmap(ShadowElementLeft)); p.drawPixmap(width - right.width(), innerRectTop, shadowPixmap(ShadowElementRight)); p.drawPixmap(0, height - bottomLeft.height(), shadowPixmap(ShadowElementBottomLeft)); p.drawPixmap(innerRectLeft, height - bottom.height(), shadowPixmap(ShadowElementBottom)); p.drawPixmap(width - bottomRight.width(), height - bottomRight.height(), shadowPixmap(ShadowElementBottomRight)); p.end(); // Check if the image is alpha-only in practice, and if so convert it to an 8-bpp format if (!GLPlatform::instance()->isGLES() && GLTexture::supportsSwizzle() && GLTexture::supportsFormatRG()) { QImage alphaImage(image.size(), QImage::Format_Indexed8); // Change to Format_Alpha8 w/ Qt 5.5 bool alphaOnly = true; for (ptrdiff_t y = 0; alphaOnly && y < image.height(); y++) { const uint32_t * const src = reinterpret_cast(image.scanLine(y)); uint8_t * const dst = reinterpret_cast(alphaImage.scanLine(y)); for (ptrdiff_t x = 0; x < image.width(); x++) { if (src[x] & 0x00ffffff) alphaOnly = false; dst[x] = qAlpha(src[x]); } } if (alphaOnly) { image = alphaImage; } } Scene *scene = Compositor::self()->scene(); scene->makeOpenGLContextCurrent(); m_texture = QSharedPointer::create(image); if (m_texture->internalFormat() == GL_R8) { // Swizzle red to alpha and all other channels to zero m_texture->bind(); m_texture->setSwizzle(GL_ZERO, GL_ZERO, GL_ZERO, GL_RED); } return true; } SceneOpenGLDecorationRenderer::SceneOpenGLDecorationRenderer(Decoration::DecoratedClientImpl *client) : Renderer(client) , m_texture() { connect(this, &Renderer::renderScheduled, client->client(), static_cast(&AbstractClient::addRepaint)); } SceneOpenGLDecorationRenderer::~SceneOpenGLDecorationRenderer() { if (Scene *scene = Compositor::self()->scene()) { scene->makeOpenGLContextCurrent(); } } // Rotates the given source rect 90° counter-clockwise, // and flips it vertically static QImage rotate(const QImage &srcImage, const QRect &srcRect) { auto dpr = srcImage.devicePixelRatio(); QImage image(srcRect.height() * dpr, srcRect.width() * dpr, srcImage.format()); image.setDevicePixelRatio(dpr); const QPoint srcPoint(srcRect.x() * dpr, srcRect.y() * dpr); const uint32_t *src = reinterpret_cast(srcImage.bits()); uint32_t *dst = reinterpret_cast(image.bits()); for (int x = 0; x < image.width(); x++) { const uint32_t *s = src + (srcPoint.y() + x) * srcImage.width() + srcPoint.x(); uint32_t *d = dst + x; for (int y = 0; y < image.height(); y++) { *d = s[y]; d += image.width(); } } return image; } static void clamp_row(int left, int width, int right, const uint32_t *src, uint32_t *dest) { std::fill_n(dest, left, *src); std::copy(src, src + width, dest + left); std::fill_n(dest + left + width, right, *(src + width - 1)); } static void clamp_sides(int left, int width, int right, const uint32_t *src, uint32_t *dest) { std::fill_n(dest, left, *src); std::fill_n(dest + left + width, right, *(src + width - 1)); } static void clamp(QImage &image, const QRect &viewport) { Q_ASSERT(image.depth() == 32); const QRect rect = image.rect(); const int left = viewport.left() - rect.left(); const int top = viewport.top() - rect.top(); const int right = rect.right() - viewport.right(); const int bottom = rect.bottom() - viewport.bottom(); const int width = rect.width() - left - right; const int height = rect.height() - top - bottom; const uint32_t *firstRow = reinterpret_cast(image.scanLine(top)); const uint32_t *lastRow = reinterpret_cast(image.scanLine(top + height - 1)); for (int i = 0; i < top; ++i) { uint32_t *dest = reinterpret_cast(image.scanLine(i)); clamp_row(left, width, right, firstRow + left, dest); } for (int i = 0; i < height; ++i) { uint32_t *dest = reinterpret_cast(image.scanLine(top + i)); clamp_sides(left, width, right, dest + left, dest); } for (int i = 0; i < bottom; ++i) { uint32_t *dest = reinterpret_cast(image.scanLine(top + height + i)); clamp_row(left, width, right, lastRow + left, dest); } } void SceneOpenGLDecorationRenderer::render() { const QRegion scheduled = getScheduled(); const bool dirty = areImageSizesDirty(); if (scheduled.isEmpty() && !dirty) { return; } if (dirty) { resizeTexture(); resetImageSizesDirty(); } if (!m_texture) { // for invalid sizes we get no texture, see BUG 361551 return; } QRect left, top, right, bottom; client()->client()->layoutDecorationRects(left, top, right, bottom); const QRect geometry = dirty ? QRect(QPoint(0, 0), client()->client()->size()) : scheduled.boundingRect(); // We pad each part in the decoration atlas in order to avoid texture bleeding. const int padding = 1; auto renderPart = [=](const QRect &geo, const QRect &partRect, const QPoint &position, bool rotated = false) { if (!geo.isValid()) { return; } QRect rect = geo; // We allow partial decoration updates and it might just so happen that the dirty region // is completely contained inside the decoration part, i.e. the dirty region doesn't touch // any of the decoration's edges. In that case, we should **not** pad the dirty region. if (rect.left() == partRect.left()) { rect.setLeft(rect.left() - padding); } if (rect.top() == partRect.top()) { rect.setTop(rect.top() - padding); } if (rect.right() == partRect.right()) { rect.setRight(rect.right() + padding); } if (rect.bottom() == partRect.bottom()) { rect.setBottom(rect.bottom() + padding); } QRect viewport = geo.translated(-rect.x(), -rect.y()); const qreal devicePixelRatio = client()->client()->screenScale(); QImage image(rect.size() * devicePixelRatio, QImage::Format_ARGB32_Premultiplied); image.setDevicePixelRatio(devicePixelRatio); image.fill(Qt::transparent); QPainter painter(&image); painter.setRenderHint(QPainter::Antialiasing); painter.setViewport(QRect(viewport.topLeft(), viewport.size() * devicePixelRatio)); painter.setWindow(QRect(geo.topLeft(), geo.size() * devicePixelRatio)); painter.setClipRect(geo); renderToPainter(&painter, geo); painter.end(); clamp(image, QRect(viewport.topLeft(), viewport.size() * devicePixelRatio)); if (rotated) { // TODO: get this done directly when rendering to the image image = rotate(image, QRect(QPoint(), rect.size())); viewport = QRect(viewport.y(), viewport.x(), viewport.height(), viewport.width()); } const QPoint dirtyOffset = geo.topLeft() - partRect.topLeft(); m_texture->update(image, (position + dirtyOffset - viewport.topLeft()) * image.devicePixelRatio()); }; const QPoint topPosition(padding, padding); const QPoint bottomPosition(padding, topPosition.y() + top.height() + 2 * padding); const QPoint leftPosition(padding, bottomPosition.y() + bottom.height() + 2 * padding); const QPoint rightPosition(padding, leftPosition.y() + left.width() + 2 * padding); renderPart(left.intersected(geometry), left, leftPosition, true); renderPart(top.intersected(geometry), top, topPosition); renderPart(right.intersected(geometry), right, rightPosition, true); renderPart(bottom.intersected(geometry), bottom, bottomPosition); } static int align(int value, int align) { return (value + align - 1) & ~(align - 1); } void SceneOpenGLDecorationRenderer::resizeTexture() { QRect left, top, right, bottom; client()->client()->layoutDecorationRects(left, top, right, bottom); QSize size; size.rwidth() = qMax(qMax(top.width(), bottom.width()), qMax(left.height(), right.height())); size.rheight() = top.height() + bottom.height() + left.width() + right.width(); // Reserve some space for padding. We pad decoration parts to avoid texture bleeding. const int padding = 1; size.rwidth() += 2 * padding; size.rheight() += 4 * 2 * padding; size.rwidth() = align(size.width(), 128); size *= client()->client()->screenScale(); if (m_texture && m_texture->size() == size) return; if (!size.isEmpty()) { m_texture.reset(new GLTexture(GL_RGBA8, size.width(), size.height())); m_texture->setYInverted(true); m_texture->setWrapMode(GL_CLAMP_TO_EDGE); m_texture->clear(); } else { m_texture.reset(); } } void SceneOpenGLDecorationRenderer::reparent(Deleted *deleted) { render(); Renderer::reparent(deleted); } OpenGLFactory::OpenGLFactory(QObject *parent) : SceneFactory(parent) { } OpenGLFactory::~OpenGLFactory() = default; Scene *OpenGLFactory::create(QObject *parent) const { qCDebug(KWIN_OPENGL) << "Initializing OpenGL compositing"; // Some broken drivers crash on glXQuery() so to prevent constant KWin crashes: if (kwinApp()->platform()->openGLCompositingIsBroken()) { qCWarning(KWIN_OPENGL) << "KWin has detected that your OpenGL library is unsafe to use"; return nullptr; } kwinApp()->platform()->createOpenGLSafePoint(Platform::OpenGLSafePoint::PreInit); auto s = SceneOpenGL::createScene(parent); kwinApp()->platform()->createOpenGLSafePoint(Platform::OpenGLSafePoint::PostInit); if (s && s->initFailed()) { delete s; return nullptr; } return s; } } // namespace